
A Schur Complement Method for DAE Systems
in Power System Dynamic Simulations

Petros Aristidou1, Davide Fabozzi1, and Thierry Van Cutsem2

1 Introduction

Power system dynamic simulations are widely used in industry and academia to
provide important information on the dynamic evolution of a system after the oc-
currence of a disturbance. In modern dynamic simulation software there is the need
to represent complex electric equipment that interact with each other directly or
through the network. These equipment models represent generators, motors, loads,
wind generators, compensators, etc. with all the physics involved and the required
controls. This multi-domain modeling leads to large, non-linear, stiff and hybrid
(i.e. subject to both continuous and discrete dynamics) Differential and Algebraic
Equation (DAE) systems [10].

In these dynamic simulation studies, the speed of simulation is of the utmost
importance. The observations resulting from these simulations can be critical in
scheduling corrective actions to guard the actual power system against instability.
This procedure, called real-time Dynamic Security Assessment, is performed by
many power system companies.

Triggered mainly by the developments in parallel processing technologies, some
DDMs have already been proposed to speed up simulations. They are mainly based
on Schwartz alternating methods and Waveform Relaxation methods [9, 7, 11]. Un-
like space domain decomposition, no geometrical information is given to decom-
pose a DAE system [5] and engineers have to rely on a priori information on the sys-
tem’s topology and operation for partitioning. Furthermore, alternating algorithms
demand great care in the partitioning of the system and the handling of interface
values to ensure the convergence of the methods [1, 8]. If tightly coupled unknowns
are mapped to different partitions and an alternating procedure is used, significantly
slowed down convergence rates or divergence can be experienced [2].

This paper proposes a robust, accurate and efficient parallel algorithm based on
the direct Schur Complement DDM [13]. The algorithm yields significant accelera-
tion when compared to classic, high performance, integrated (applied on the unde-
composed system) dynamic simulation algorithms. The two-fold gain comes from
utilizing the parallel potential of the method and exploiting the locality and sparsity
of power systems. Furthermore, as a direct method, convergence does not depend on
the specific partitioning of the system as the interface values are resolved accurately
at each step before solving the sub-domain problems. A connection between the

1 Department of Electrical Engineering and Computer Science, University of Liège, Liège, Bel-
gium, e-mail: p.aristidou@ieee.org ·2 Fund for Scientific Research (FNRS) at the De-
partment of Electrical Engineering and Computer Science, University of Liège, Liège, Belgium,
e-mail: t.vancutsem@ulg.ac.be

1

2 Petros Aristidou, Davide Fabozzi, and Thierry Van Cutsem

proposed algorithm and quasi-Newton based integrated algorithms is demonstrated
allowing the better comprehension of the algorithm’s properties. Finally, an imple-
mentation of the algorithm using the shared-memory parallel programming model
and some numerical results are presented based on a realistic large-scale test system.

The paper is organized as follows: in Section 2 we present the partitioning
scheme of the proposed algorithm. In Section 3, we explain the formulation of the
dynamic simulation problem and the solution using the Schur Complement method.
In Section 4, some further investigation of the algorithm is made with the help of
quasi-Newton integrated algorithms. Implementation specifics and simulation study
are reported in Section 5 and followed by closing remarks in Section 6.

2 Power System Modeling

An electric power system, under the phasor approximation [10], can be described in
compact form by the following DAE Initial Value Problem:

0 = ΨΨΨ(x,V)
ΓΓΓ ẋ = ΦΦΦ(x,V)

x(t0) = x0,V(t0) = V0

(1)

where V is the vector of voltages through the network, x is the expanded state vector
containing the differential and algebraic variables (except the voltages) of the system

and ΓΓΓ is a diagonal matrix with ΓΓΓ ℓℓ =

{
0, if the ℓ-th equation is algebraic
1, if the ℓ-th equation is differential.

The first part of system (1) corresponds to the purely algebraic network equa-
tions. The second part describes the remaining DAEs of the system. Discrete events
(caused by digital controllers, load tap changing devices, etc.) can alter the power
system equations during the simulation. The handling of these discrete events is not
presented in this paper [4].

2.1 Power System Partitioning

First, the purely algebraic equations describing the electric network are separated to
create one sub-domain. Then, each model of a component connected to the network
(such as a synchronous machine, a load, a motor or even a low-voltage distribution
network) is separated to form the remaining sub-domains. All the aforementioned
devices connected to the network will be called injectors. This term encompasses
devices that either produce or consume power in normal operating conditions. Each
injector is assumed to be connected to a single bus of the network and the interface
is on the physical junction between the sub-domains. Extension to two or more
connection buses is straightforward [4]. The decomposition is visualized in Fig. 1.

Schur Complement Method for Power System Dynamic Simulations 3

Fig. 1 Decomposed Power
System: The Power System is
decomposed into the Network
and the injectors connected to
it. This reveals a star shaped
decomposition layout with
the Network sub-domain
connected to all other sub-
domains.

Network

M

M

M

M

Γiẋi =Φi(xi,V
ext)

0=Ψ(xext
,V)

V

Injectors

The network sub-domain is described by the algebraic equation system (2) while
the sub-domain of each injector i is described by the DAE system (3).

0 =ΨΨΨ(xext ,V)
xext(t0) = xext

0 ,V(t0) = V0
(2)

ΓΓΓ i ẋi =ΦΦΦ i(xi,Vext)
xi(t0) = xi0,Vext(t0) = Vext

0
(3)

Sub-domains numbered 1, . . . ,M−1 relate to injectors and M relates to the network.
Vectors xi and matrices ΓΓΓ i are the projections of x and ΓΓΓ , defined in (1), on the i sub-
domain. The variables of each sub-domain are separated into interior (int) variables
appearing only in equations of the sub-domain itself and interface (ext) variables
appearing in equations of both the Network and an injector sub-domain. Thus, for
injectors xi = [xint

i xext
i] and for the Network V = [Vint Vext] (see Fig. 1).

3 DDM-based Algorithm

3.1 Local System Formulation

Each injector DAE sub-system is algebraized and the resulting non-linear systems of
equations are solved with a quasi-Newton method. The local linear systems involved
in the solution take on the form of (4) for the injectors and (5) for the network.[

A1i A2i
A3i A4i

]
︸ ︷︷ ︸

[
△xint

i
△xext

i

]
︸ ︷︷ ︸ +

[
0 Bi

]︸ ︷︷ ︸
[

0
△Vext

]
=

[
fint
i (xint

i ,xext
i)

fext
i (xint

i ,xext
i ,Vext)

]
︸ ︷︷ ︸

Ai △xi B̃i fi

(4)

4 Petros Aristidou, Davide Fabozzi, and Thierry Van Cutsem[
D1 D2
D3 D4

]
︸ ︷︷ ︸

[
△Vint

△Vext

]
︸ ︷︷ ︸ +∑M−1

j=1

[
0 C j

]︸ ︷︷ ︸
[

0
△xext

j

]
=

[
gint(Vint ,Vext)

gext(Vint ,Vext ,xext)

]
︸ ︷︷ ︸

D △V C̃ j g

(5)

where A1i (resp. D1) represents the coupling between interior variables. A4i (resp.
D4) represents the coupling between local interface variables. A2i and A3i (resp. D2
and D3) represent the coupling between the local interface and the interior variables
and, Bi (resp. C j) represent the coupling between the local interface variables and
the external interface variables of the adjacent sub-domains.

3.2 Global Reduced System Formulation

To formulate the global reduced system involving only the interface variables, the
interior variables of the injector sub-domains are eliminated from (4), which yields
for the i-th injector:

Si△xext
i +Bi△Vext = f̃i (6)

where Si = A4i −A3iA−1
1i A2i is the local Schur complement matrix and f̃i = fext

i −
A3iA−1

1i fint
i the corresponding adjusted mismatch values.

Contrary to matrices Ai, which are small but dense and general, matrix D is
large but sparse and structurally symmetric. Thus, eliminating the interior variables
from (5) would destroy its sparsity and symmetry. Therefore, all the variables of the
network sub-domain are included in the reduced system (7).

S1 0 0 · · · 0 B1
0 S2 0 · · · 0 B2
0 0 S3 · · · 0 B3
...

...
...

. . .
...

...
0 0 0 · · · D1 D2

C1 C2 C3 · · · D3 D4





△xext
1

△xext
2

△xext
3

...
△Vint

△Vext


=



f̃1
f̃2
f̃3
...

gint

gext


(7)

Due to the star layout of the decomposed system (see Fig. 1), the resulting global
Schur complement matrix in (7) is block bordered diagonal. Manipulating this struc-
ture we can further eliminate all the interface variables of the injector sub-domains
and keep only the variables associated to the network sub-domain, as shown in (8).

The elimination factors CiS−1
i Bi affect only non-zero elements of sub-matrix D4

thus retaining the original sparsity pattern. This system is solved efficiently using a
sparse linear solver to update V at each Newton iteration. Then, the network inter-
face variables (Vext) are backward substituted and the injector sub-domain variables
(xi) are updated independently and in parallel using (4).

Schur Complement Method for Power System Dynamic Simulations 5[
D1 D2
D3 D4 −∑N−1

i=1 CiS−1
i Bi

]
︸ ︷︷ ︸

[
∆Vint

∆Vext

]
︸ ︷︷ ︸ =

[
gint

gext −∑M−1
i=1 CiS−1

i f̃i

]
︸ ︷︷ ︸

D̃ ∆V g̃

(8)

3.3 Exploiting Locality

The procedure can be further accelerated by exploiting the locality of the sub-
domains. Some sub-domains, described by strongly non-linear systems or with fast
changing variables, converge slower. Other sub-domains, with “low dynamic activ-
ity”, converge faster. This can be exploited in two ways.

First, subdomains with low dynamic activity are detected by measuring the ef-
fort (number of Newton iterations) needed for convergence at each discrete time. A
subdomain’s system is updated if that effort increases above a threshold. Second, a
subdomain is declared converged (and stops being solved within the discrete time)
if the absolute maximum normalized correction of a Newton solution of the subdo-
main system becomes smaller than a selected tolerance. Since the low dynamics are
detected numerically during the simulation and the tolerance is chosen small enough
so as not to disturb the Newton solution, the accuracy of the solution is preserved.
Figure 2 shows the full parallel algorithm.

Parallel threads

Parallel threads

Increment time

end

all sub-domains
converged?

time horizon
reached?

yes

yes

no

no

if(Injector i sub-domain hasn’t converged){
Solve local system (4) for
interface and interior variablesxi

}
Check if Injectori sub-domain converged
Check if Injectori sub-domain needs update

if(sub-domaini needs update) {
Update local system (4) or (5)
Compute contribution toD̃
of simplified reduced system (8)

}
Compute contribution tõg
of simplified reduced system (8)

if(Network sub-domain hasn’t converged){
Solve simplified reduced system (8) forV

}
Check if Network sub-domain converged
Check if Network sub-domain needs update

Initialize interior and interface variables

Fig. 2 Parallel Algorithm (P)

6 Petros Aristidou, Davide Fabozzi, and Thierry Van Cutsem

4 Further Analysis of the Algorithm

To better understand its properties, Algorithm (P) in Fig. 2 can reformulated into an
equivalent quasi-Newton undecomposed scheme with the k-th iteration described:

Ak1
1 0 · · · 0 B̃

k1
1

0 Ak2
2 · · · 0 B̃

k2
2

...
...

. . .
...

...

0 0 · · · AkM−1
M−1 B̃

kM−1
M−1

C̃
kM
1 C̃

kM
2 · · · C̃kM

M−1 DkM



k

︸ ︷︷ ︸


△x1
△x2

...
△xM−1
△V


k

︸ ︷︷ ︸
=−


f1
f2
...

fM−1
g


k

︸ ︷︷ ︸
+


r1
r2
...

rM−1
rM


k

︸ ︷︷ ︸
J̃k △yk Fk rk

yk+1 = yk +△yk

where 0 ≤ k j ≤ k (j = 1, ...,M) and ri =

{
fi, if i-th sub-domain has converged
0, otherwise.

The approximate Jacobian J̃k is used by the method at each iteration k. Every
block line i of J̃k corresponds to a sub-domain and is updated independently based
on sub-domain update criteria [4]. Thus, some block lines can be kept constant for
several iterations or even time-steps (ki ≤ k).

Furthermore, sub-domains considered to have converged are not solved any more
(see Fig. 2). In the equivalent quasi-Newton integrated scheme this corresponds to
explicitly setting the mismatch of those sub-domains to zero by introducing some
inaccuracy to the method through the correction term rk. The inaccuracy is bounded
and controlled to avoid affecting the accuracy of the final solution.

Using this formulation for Algorithm (P) allows us to utilize a general and well
developed framework within which quasi-Newton schemes involving inaccuracy
can be described and analyzed [12, 3].

5 Implementation and Numerical Results

The Schur Complement-based DDM was implemented in the simulation software
RAMSES, developed at the University of Liège. The benchmark Algorithm (I) is a
quasi-Newton scheme applied to the undecomposed DAE system (1). It uses an ap-
proximate Jacobian which is updated and factorized if the system hasn’t converged
after three Newton iterations at any discrete time instant. This method (also referred
to as Very Dischonest Newton Method) is considered to be one of the fastest se-
quential algorithms and many traditional industry software use it.

A large-scale model, representative of the Western European main transmission
grid, is used. It includes 15226 buses, 21765 branches and 3483 synchronous ma-
chines represented in detail together with their excitation systems, voltage regu-

Schur Complement Method for Power System Dynamic Simulations 7

lators, power system stabilizers, speed governors and turbines. Additionally, 7211
models are included involving induction motors, dynamically modeled loads and
equivalents of distribution systems. The resulting, undecomposed, DAE system has
146239 states. The disturbance simulated consists of a short circuit near a bus last-
ing 5 cycles (100 ms at 50 Hz), that is cleared by opening a double-circuit line. The
system is then simulated over a period of 240 s with a time step of 1 cycle (20 ms).

Fig. 3 Speedup index:

time elapsed sequential algorithm (I)
time elapsed parallel algorithm (M cores)

This index shows how faster
is the parallel implementa-
tion when compared to the
fast sequential integrated
Algorithm (I) on the same
computer.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 1 2 4 6 8 10 12 14 16 18 20 22 24
 0

 100

 200

 300

 400

 500

 600

 700

 800

S
pe

ed
up

el
ap

se
d

tim
e

(s
)

of cores

Algorithm (I)=663s

Elapsed Time - Alg. (P)
Speedup - Alg. (P)

The same models, algebraization method (second-order Backward Differentia-
tion Formula) and way of handling the discrete events are used in both algorithms.
For the solution of the sparse linear systems, HSL MA41 [6] is used and for the
dense injector linear systems of Algorithm (P), Intel MKL LAPACK library. The
computer used for the simulation is a 24-core, shared memory, AMD Opteron Inter-
lagos (CPU 6238 @ 2.60GHz) running Debian Linux.

Fig. 4 Real-time index:

n =
simulation elapsed time
simulated physical time

This index shows how faster
was the simulation than the
simulated time. This is an
important index for control
center applications where the
speed of computation is an
issue for operator decision. 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 2 4 6 8 10 12 14 16 18 20 22 24

n

of cores

Real-time=240s

Real-time Index - Alg. (P)

Figure 3 shows that the DDM-based algorithm is already twice faster than the
benchmark in sequential execution. This speedup is mainly attributed to the ex-
ploitation of locality in the decomposed algorithm (Section 3.3). As we proceed to
parallel execution, the proposed algorithm performs up to 4.5 times faster. Figure 4
shows the real-time potential of the algorithm in parallel execution.

The ratio of the interface system to the subdomain systems is very important to
the performance of the algorithm since it corresponds to the ratio between the se-

8 Petros Aristidou, Davide Fabozzi, and Thierry Van Cutsem

quential portion of the code and the parallel portion of the code. A higher ratio leads
to better speedup and avoids the saturation observed when increasing the number
of cores. The size of the interface system (8) is the same as of the network subdo-
main (5), that is approx. 30 000 for the test-system considered. At the same time, the
subdomain systems include approx. 120 000 states. Thus, the size ratio is approx.
4, which explains why a relatively small speedup is observed after 6 cores and the
speedup saturates at 4.5 times.

6 Conclusion

In this paper a Schur Complement-based algorithm for dynamic simulation of elec-
tric power systems has been outlined. The algorithm yields acceleration of the simu-
lation procedure in two ways. On the one hand, the procedure is accelerated numer-
ically, by exploiting the locality of the sub-domain systems and avoiding many un-
necessary computations (factorizations, evaluations, solutions). On the other hand,
the procedure is accelerated computationally, by exploiting the parallelization op-
portunities inherent to DDMs.

References

1. Crow, M., Ilic, M., White, J.: Convergence properties of the waveform relaxation method
as applied to electric power systems. In: Circuits and Systems, 1989., IEEE International
Symposium on, pp. 1863 –1866 vol.3 (1989)

2. CRSA, RTE, TE, TU/e: D4.1: Algorithmic requirements for simulation of large network ex-
treme scenarios. Tech. rep. URL http://www.fp7-pegase.eu/

3. Dennis, J., Walker, H.: Inaccuracy in quasi-Newton methods: Local improvement theorems.
Mathematical Programming at Oberwolfach II 22, 70–85 (1984)

4. Fabozzi, D.: Decomposition, Localization and Time-Averaging Approaches in Large-Scale
Power System Dynamic Simulation. Ph.D. thesis, University of Liège (2012)

5. Guibert, D., Tromeur-Dervout, D.: A Schur Complement Method for DAE/ODE Systems in
Multi-Domain Mechanical Design. Domain Decomposition Methods in Science and Engi-
neering XVII pp. 535–541 (2008)

6. HSL(2011): A collection of Fortran codes for large scale scientific computation. URL http:
//www.hsl.rl.ac.uk

7. Ilic’-Spong, M., Crow, M.L., Pai, M.A.: Transient Stability Simulation by Waveform Relax-
ation Methods. Power Systems, IEEE Transactions on 2(4), 943–949 (1987)

8. Jackiewicz, Z., Kwapisz, M.: Convergence of waveform relaxation methods for differential-
algebraic systems. SIAM Journal on Numerical Analysis 33(6), 2303–2317 (1996)

9. Kron, G.: Diakoptics: the piecewise solution of large-scale systems. MacDonald (1963)
10. Kundur, P.: Power system stability and control. McGraw-hill New York (1994)
11. La Scala, M., Bose, A., Tylavsky, D., Chai, J.: A highly parallel method for transient stability

analysis. Power Systems, IEEE Transactions on 5(4), 1439 –1446 (1990)
12. Ortega, J., Rheinboldt, W.: Iterative Solution of Nonlinear Equations in Several Variables.

Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (1987)
13. Saad, Y.: Iterative methods for sparse linear systems, second edn. Society for Industrial and

Applied Mathematics (2003)

