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Abstract We present a brief overview of the different domain and spkm®mpo-

sition techniques that enter in developing and analyzirhgess for discontinuous
Galerkin methods. Emphasis is given to the novel and disfestures that arise
when considering DG discretizations over conforming meéghd&onnections and
differences with the conforming approaches are emphasized
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1 Introduction

The design and the analysis of efficient preconditionersliferontinuous Galerkin
discretizations has been subject of intensive researdteifast decade with efforts
focused mainly on elliptic problems.

A standard point of view when studying most of the precooditig and iterative
solution strategies, in general, is associated with aqadati space decomposition
From the classical theory of Lions [25, 30, 34], we know thiag choice of the
space decomposition plays significant role in the constm@nd also in the con-
vergence properties of the resulting preconditioners.rfearconfoming methods,
domain decomposition and multigrid preconditioners haaerbanalyzed by estab-
lishing connections with their respective conforming saces [10, 27]. In the case
of DG methods, the discontinuous nature of the DG finite etdgrspaces allows to
introduce and study not only space splittings pertinenh&édonforming methods
but also consider new splittings which give rise to new téghes and ideas.

In most of the earlier works, relevant space splittings ef &G finite element
space, were introduced via a domain decomposition. Ovgirig@additive Schwarz
methods have been studied following the classical Schviaary for different DG
schemes [21, 9, 20]. Contrary to the conforming case, agdiind multiplicative)
Schwarz methods based on non-overlapping decompositiémeofomputational
domain have been constructed and proven to be convergeBGamnethods. For
such type of preconditioners, novel features, which havanabog in the conform-
ing case, arise. For both overlapping and non-overlappeigvarz methods, the
splittings are stable in thHe?-norm by construction and can be shown to be stable in
the natural DG energy norm, with constants depending on #shrizes relative to
the coarse and fine subspaces.
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More sophisticated substructuring preconditioners haenbstudied recently
for two dimensional elliptic Poisson problems. In [17, 18, 1] non-overlapping
BDDC, N-N, FETI-DP and BPS domain decomposition precondgrs are intro-
duced and analyzed for a Nitsche-type approximation. BDB&&gnditioners are
studied in [15, 29] for IP-spectral and IP-hybridized methoAlso here, several
different approaches have been considered and new treadrtetdls have been in-
troduced. And of course, the space splitting in which thepneitioner rely, comes
always from domain decomposition. Starting directly witlsgitting of the DG
space, dictated by a hierarchy of meshes, multigrid methads been proposed and
analyzed in [22, 11]. A different approach was taken in [11&] fl4, 13], to develop
respectively, two-level and multilevel preconditioneos the Interior Penalty (IP)
DG methods. A common idea behind these works is to use thaditiauxiliary
spaces for which one knows how do develop a preconditioneh Sreconditioning
techniques have already been applied in a wide range ofgarahih the conforming
case.

The aforementioned auxiliary space preconditioners use eorrections from
the conforming finite element space and they are certaitdya@ to the a posteriori
theory for DG methods [24]. In fact, the stable projectioiveq in [24] provide the
required tools for constructing and analyzing the convecg®f these precondition-
ers including the case of non-conforming meshes.

A novel approach was taken in [8] where a natural decompuwsdf the linear
DG finite element space was introduced. The components aithee decomposi-
tion are orthogonal in the inner product provided by the Digear form. Such a
splitting allows to devise efficient multilevel methods amdform preconditioners
and analyze these iterative schemes in a clean and transpeag This seems to be
the only approach available till now, to prove convergencdfe solvers of thaon-
symmetridnterior Penalty methods. While the methodology has beefiexpbto the
lowest order DG space and conforming meshes, it is valid mand three dimen-
sions, and has already been adapted and extended to a kangér 6f problems:
elliptic with jump coefficients [6]; linear elasticity [5|and convection dominated
problems corresponding to drift-diffusion models for spart of species [7].

We present here a brief overview of some of the domain andesg@composi-
tion techniques that comprise a set of key tools used in dpirgg and analyzing
solvers for DG methods. In Section 3 we focus on non-oveitappchwarz domain
decomposition methods. In Section 4 and 5 we present the tilctasses of space
decomposition methods commenting on their strengths aa¢tnesses.

2 Discontinuous Galerkin M ethods

We consider the model problem for given déta L?(Q):

—Au*=f inQ u=0 ondQ, 1)
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Here,Q c RY, d = 2,3 is a polygonal (polyhedral) domain. L&k, be a shape-
regular family of partitions of2 into d-dimensional simplexes (triangles ifd = 2
and tetrahedrons d = 3) and leth = maxrc 5 hr with hy denoting the diameter

of T for eachT € %, We denote bys° and&? the sets of all interior faces and
boundary faces (edges ih= 2), respectively, and we sé}, = £°U &2 LetVPC
denote the discontinuous finite element space defined by:

VEG:{ueLZ(Q) Ly, € PY(T) VT eyh}, @)

whereP!(T) denotes the space of polynomials of degree at st eachT. We
also define the conforming finite element spac®@8’ = VP NHI(Q).

We define theverageandjumptrace operators. L& andT~ be two neighboring
elements, and*, n~ be their outward normal unit vectors, respectively & ny-).
Let Z* andt™ be the restriction of andt to T*. We set:

203 =("+{7), [KI={"n"+{n" onEc&, 3)
2{t} =(tt4+17), [r]l=t"-n*+1 -n" onE € &?,

[¢{]={n, {r}=1 onEeé&’. (4)

We will also use the notation

uwg =Y /uwdx uwsg =Y /uw Yu,w, e VPC.
Te.?h'T Ecéh, E

The approximation to the solution of (1) reads:
Find ueVP® suchthat ah(uw) =(f,w)z, YweVW’®, (5

with (-, -) the bilinear form corresponding to the Interior Penalty) (ifethod (see
[4]) defined by:

(U, w) = (Hu, Ow) 7 — ([u]l,{Bw}) g, — {Oul, [wl) g, + (Sl ull, [w])s, . (6)

where$, = aef2hgt with ae > a* > 0 for all e € &, he denotes the length of the
edgeein d =2 and the diameter of the faeén d = 3, andle = _max {lr+,01-},
T+AT-=e

with /7= being the polynomial degree dn*. Following [12], the above IP-biliear
form can be re-written in terms of the weighed residual fdation:

Gh(U,W) = (=Au,w) g+ ([Ou]l, {w})ge + ([ul], (Sa[w] —{Ow}))s, . (7)

Continuity and Stability can be easily shown in the DG normothe induced
|| - | ~-norm, providedre > a* > 0 is taken sufficiently large;

Continuity: h(uw) < ceflullo Wy VuweVPe
Coercivity: h(u,u) > cl|ul2, YueVpe

(8)
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3 Non-overlapping Domain Decomposition Schwarz methods

To define the non-overlapping preconditioners, we needttodnce some further
notation. We denote by’s the family of partitions ofQ into N non-overlapping
subdomaing2 = Ui'\‘:lfzi. Together with-7s, we let 9y and ., be two families of
coarse and fine partitions, respectively, with mesh diz@ndh. The three families
of partitions are assumed to be shape-regular and ne&gted oy C .

Similarly as we did for%, in Section 2, we define the skeleton and the corresponding
sets of internal and boundary edges relative to the subdopaaiition. In particular,
for each subdomaif; € Js we define the sets of interndP = {ec &, : eC Q;}
and boundary edges’ = {e< &, : e C dQ;}, and we set; = £°U&?. Finally,
we denote by the collection of all interior edges that belong to the staref the
subdomain partition;

N
r=Jri, with Ti={ecsy eci}.
i—1

The subdomain partitio¥s induces a natural space splitting of &€ finite el-
ement space. More precisely, we have a local finite elemdisipsice associated to
eachQ; foreachi =1,...,S, defined by

Vi ={weVPC:w=0 incQ-\0Q}. (9)

Let .#T 1V} — VPG be theprolongationoperator, defined as the standard inclu-
sion operator that maps functions\gfinto V,PG. We denote by the correspond-
ing restriction operators defined (for eadhas the transpose of;" with respect
to theL>—inner product. For vector-valued functio,m?ﬁg‘,T and.# are defined com-
ponentwise. Then the following splitting holds (orthogbmih respect td_2-inner
product):

e ALV ALV N ARV (10)

LocAL SoLVvERS: Two types of local solvers have been considered:

(a). Exact local solversFollowing [21], the local solvers are defined as the restric-
tion of the discrete bilinear form to the subspate

ai(u, W) = oh(FTu, ATw) YU, €V, (11)

(b). Inexact local solversFollowing [2, 3] the local solvers are defined as the IP
approximation to the original problem (1) but restrictedthe subdomain;;
ie.,

—Auf = flg,  In @, u'=0 ondQ;. (12)

Then, the bilinear form can be written as:

ai (Ui, Wi) = (—Aui, Wi) 700+ ([0 ], {Wi ) go + ([ui ], Si[wi ] — {DWi}>?173)
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where in the above definition, edgesﬁﬁ are regarded as boundary edges (even
thosee € éﬁ'd . 0Q; so thate € &) and therefore the trace operators on such
edges are defined as in (4).

Observe that, in a conforming framework, the definitionggiin(a) and(b) would
have given rise to exactly the same local solvers. The eiffee in the DG context,
originates from the distinct definition of the trace operatin boundary and internal
edges and the fact thate éﬁ'd N~ dQ; is an interior edge for the global IP method
(and so for (11)), but a boundary edge for (13). See [2, 3]ddhkr details.

Let nowA be the matrix representation of the operator associatéxbtglobal IP
method (6), in some chosen basis (say nodal lagrange basisdns to fix ideas).
We denote byA; and A; the matrix representation (stiffness matrix) of the oper-
ators associated to (11) and (13), respectively. At thebadge level, a one-level
Additive Schwarz preconditioner is then definedBflS = 55 , IT S; I wherel is
the matrix representation of the restriction operator &ndenotes here the matrix
representation of the local solver; and can be chosen tother&j; or A;. Notice
however, that only for the choic® = A, the resulting one level additive Schwarz
methodB21§ corresponds to the standard block jabobi preconditiomehfaglobal
stiffness matrixA. This can be easily checked by noting that the definition ¢higs
at the algebraic leveh; = JIiA]IiT; that is, the matriced; are the principal subma-
trices ofA. In contrast, the one level additive Schwarz based on theeBp= &i
cannot be obtained by starting directly from the algebraiscsure of the global
matrix A; it would require further modifications of the prolongatiand restriction
operators.

On the other hand, in view of the possibility of consideriagléast) these two
definitions for the local solvers, a natural question aridémely, if the inexact
local solvers (13) are approximating the original PDE iettd to the subdomain,
which continuous problem is approximated by the exact Isahders (11), if anyBy
rewriting the bilinear form in the weighted residual formtibn one easily obtains:

ai (Ui, Wi) = (=AU, W) gng + ([Bui ], {wi}) e
([ ] (SoWh ] = {OW D) o s000) (14)
+<%Dui N+ S, W) — (Ui, %DWi “nr,

The terms on the first and second lines are easy to recogh&érdt imposes the
PDE on each element; the second is the consistency termatetths in the second
line ensure stability and symmetry. As regards those indbeline, the first term
is imposing the boundary condition én(the part ofd Q; \. 0 Q). The second term,
could be regarded as an artifact to ensure the symmetry oh#tieod. Then, one
can write the continuous problem

—Aui* = f|Qi in Qi,
u; =0 ondQ;NoQ , (15)
sy =0 onf; .
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This implies that the exact local solvers for the IP methadi(m general for most
DG methods) are approximating the original problem but wigimsmission Robin
conditions. And a$ — 0 the method enforceg = 0 on/l;. Whether such interface
boundary conditions are optimal or could be further tuneahprove the conver-
gence properties of the classical Schwarz methods is adudfjeurrent research.
Optimization of the Schwarz methods with respect to theriate boundary con-
ditions has been recently studied in [23]. The final ingretifeeded to define the
two-level Schwarz method is the coarse solver.

COARSE SOLVER LetV; := V7€ be the coarse space anddet V; x Vi — R be
the coarse solver defined by [21, 2, 3]:

ac(uC,Wc) - th(ﬂJUC, jCTWC) \VIUC,WC S VC (16)

where.7] :V; — VPC is the prolongation operator, defined as the standard inclu-
sion. Notice that with this definition, the correspondingtricas do indeed satisfy
the Galerkin propertyA = I7 AT, but should be noted that unlike in a conforming
frameworkac(Ue, We) # <71 (Ue,We). A two level Schwarz preconditioner can then
be defined:

S
Bagq = Z]IiTSi’l]Ii + I A (17)
i=

It is also possible to define the coarse solver as IP apprdiim@vith the partition
n and the coarse spabg) to the orginal problem (i.e., asty (uc, We)). However
with such definition, the Galerkin property is lost and in@rtb ensure scalability
of the resulting two level Schwarz preconditioner, morelssicated prologation
and restriction operators are required [9].

Let nowB~! denote the inverse operator associated to the two levebpdic
tioner (17). To analyze the convergence properties of theltiag preconditioner
one needs to characterize the dependence of the conS{aatsiCy in

Croh(ww) < (B~'ww) < Chaph(ww)  YweWe (18)

The condition number of the preconditioned matbik is thenC3/C. The proof of
(18) is often guided by Lions lemma (for a proof see [32], [33}, Lemma 2.4]),
which tells that the preconditioner can be written as

(B lw,w) := inf (ac(wc,wc) + Z% (Wi,wi)> , (19)
w; e V! i
We+SiW =W

where we have denoted ly¥;(-,-) the approximate (or exact) subspace sohoer
A
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4 Ficticious Space and Auxiliary Space M ethods

Ficticious Space Lemma was originally introduced by Nepyaschikh in [26], and
further used for developing and analyzing multilevel pragiioners for noncon-
forming approximations in [27] and for conforming methodishwnonconforming
meshes in [33]. There are two main ingredients to constrdictiious space pre-
conditioner for the operata: V°¢ — V,PS associated to the bilinear form (6).

(1) A fictitious spaceV, and an symmetric positive definite operaforV — V
associated with somée’(-,-) : V xV — R.
(2) A continuous, linear and surjective mappifg V — V,?G

The fictitious space preconditionBiis then defined as
B=IToA "ol :V2C PG, (20)

The convergence properties of the preconditideepend on the choice of the ficti-
tious spac¥ and ficticious operatdk. Typically, one chooses a fictitious p&if, A)
for which it is simpler to construct a preconditioner. Thelgsis of such methods
is done via therictitious space lemmg26], which states that if7 has a bounded
(in energy norm) right inverse and is stableimorm, therB is equivalent toA (in
the sense that they satisfy a corresponding (18)) with eotsbf equivalencesg
andCS) depending on the stability and invertibility 6f. The auxiliary space idea,
comes from the observation (see [33]) thadumjectivell is easy to construct for
the choiceV = VP® x W for some spac®/ (the factorv,>® in the product plays a
crucial role).

One natural approach in constructing such preconditidoei3G discretizations
is via subspace splitting which uses the correspondingeorihg space as the com-
ponentW; that isV = V\P® x Vo™, with W := V£ denoting the conforming finite
element space with chosenh > h. This is natural because one expects that the
smooth error (with small energy) is in this space. Then, lierduxiliary precondi-
tionerA " one can choose his favourite solverfe™. Preconditioners based on
such splittings are found in [16] and [14], and more receintfjd 3, 15]. Two-level
methods based on three different splittings of the DG spiacgigen in [16]. In [14],
an auxiliary space preconditioner is proposed (and and)yfpe IP discretizations
with non-conforming meshes and hanging nodes. This aunx#ijpace approach has
been recently extended and used for designing multileeslgrditioners in [13] for
the IP method with arbitrary polynomial degree. The resiutisn [13] are further
used for constructing a BDDC preconditioner for such diszagions in [15].

We wish to point out that for the IP method such decompositivare already
known in the area of adaptivity and a posteriori error analjer DG methods.
The following important decomposition is implicitly coiad in In the seminal
work [24]:

VPG = Vi B, (21)



8 Blanca Ayuso de Dios and Ludmil Zikatanov

whereEp = (V°"+ refers to the complementary spacew§f" in VPC (orthog-
onal with respect to the corresponding energy inner prgdurctfact, an explicit
construction of an interpolation operatgr. VrPG — thonf is provided, on simpli-
cial meshes, even in case of hanging nodes, which is statie ienergy norm, and
therefore can be used as a component in constructing a statpetivelT in the
design of an auxiliary space preconditioner.

The analysis of the auxiliary space preconditioners ugiegbnforming method
as a component of the space decomposition is carried outtemdard fashion by
introducing stable and accurate interpolation operatees €.g. [14] or [16] for
such constructions). Alternatively, at least for tiigersion, one may adapt and use
the framework developed in [24] to analyse the propertigh@$e preconditioners.

5 Orthogonal space splittingsin a nutshell

The approach we present now has been developed in [8] folaperg uniform
solvers for the family of IP discretizations, including neymmetric schemes. It
could be seen as a clever change of basis which allows foradmrompositions
of the DG space. The ideas work in dimensidns 2,3 and are based on a natural
splitting of the linear DG FE space on simplicial meshes withhanging nodes.
Therefore, in all what follow®PC stands for the linear approximation space; i.e.,
¢ = 1. Furthermore, to ease the presentation, we drop the sedinfdom the finite
element space and the bilinear form,sq-,-) = (-, ). For multilevel consider-
ations see for instance [6]. To introduce the space sgittie first introduce some
notation.

Together with the IP bilinear form7(-,-), we also consider the bilinear form
that results by computing all the integrals in (6) with thelrpoint quadrature rule,
known as weakly penalized or IP-0 method:

Ao(u,W) = (—Au,w) 7, + ([Ou], {wh)se + (Z([u]), Sh[w] — {Ow})s, . (22)

where, for eacte € &, let 22 : L?(e) — PO(e) is the L?-orthogonal projection
onto the constants on that edge defined by:

() = %/eu vue L2(e). 23)

We define the following two subspaces\d?®

VER:={veVPe . 2Y([v]) =0Vec &} (24)
7 ={zeVP® . 29{z})=0Vec &} (25)
The first one is the well known lowest order Crouziex-Raviaite element space.

The above subspaces can be seen to be complementary to kactand in fact it
is easy to prove that
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VPG —VvCRg & | (26)

Notice that the explicit characterization of the subspatiesvs to provide basis for
both spaces. (See Fig. 1).

Fig. 1 Basis functions (associated to an edge) for the CrouziexaRapace (left figure) and the
% space (right figure)

A key property satisfied by the space decomposition (26 aisttie two subpaces
are orthogonal in the enegy norm defineddgy(-, ). In fact it can be easily shown
using (22) and the definition of the spaces (24) and (25) that

Ao(,2) = p(zv) =0  VYveVR ze 7. (27)

This already suggest that by perfominglaange of basisf the standard Lagrange
basis forVPC to the ones iR and 2, the stiffness matrix representation i

in the new basis have a block diagonal structure. Thereforéghe IP-0 method the
following algorithm is an exact solver:

Algorithm 1:Let ug be a given initial guess. Fdr> 0, and giveruy = z + v, the
next iterateuy 1 = z 1 + V.1 is defined via the two steps:

1. Solveao(zci1,¥*) = (f,Y%) 5, Ve Z.
2. Solvedo(Vii1,9) = (f,9) 5 V¢ e VER

Notice that algorithm 1 requires two solutions of smalleslgems: one solution in
% -space (step 1 of the algorithm 1), and one solutiovitR-space (step 2 of algo-
rithm 1). As we show next, the solution of the subproblemsZ6mnd onVER can
be done efficiently.

SOLUTION IN THE Z°-SPACE The functions inZ have non-zero jump on every
edge, which suggest the high oscillatory nature of its fianst Using the definition
of the space, the following useful property (Poincare-tyygguality) can be shown:

Lemma 1. Let 2 be the space defined in (25).

21012 —2)2
h™z[5,4 < (22 Sh™7|Zl5.5, VzeZ
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By virtue of this lemma it follows that the condition numbeefoted by) of the
block matrix associated to the restriction.of(-,-) to the subspace”, say AZ’,
satisfiesc (A§?) = O(1) and it is independent of the mesh size. Therefore, efficient
solver for the problem inZ is the Conjugate Gradient (CG) method with a simple
diagonal preconditioner.

SOLUTION IN VER: The restriction ofez (-, -) to theVER sub-space gives the well-
known Crouziex-Raviart approximation method for (1) ;

(v, 9) = (Ov0¢) 7= 5 (OvOP)r Vv,9 €V, (28)
TS,

Therefore, it is enough to resort to any of the solvers thaeleeen already devel-
oped, for instance [10, 27, 28].

So far, an exact solver has been constructed in a simple aad @lay for the
IP-0 method. A last ingredient is needed to provide unifgrodnvergent solvers
for the IP method (6) and it is formulated in next Lemma:

Lemma?2. Let.</(-,-) and.«(-,-) be the bilinear forms of the IIPG method defined
in (6) and (22). Then, there exist c 0 depending only on the shape regularity of
I and g > 0 depending also on the penalty parametesuch that

Coo(U,U) S 7 (U, U) < Cob(u,u) Ve VPO, (29)

The above result establishes #$@ectral equivalencbetweena(-,-) and.</ (-, ).
Therefore, in terms of solution techniques, a uniform pnelitioner for the IP-0
method, already provides a uniform preconditioner for taenlethod.

These ideas and new framework, have been already extendealdapted for
designing and analyzing solvers for other problems:

e In [6] the case of second order elliptic problems with lapg@ps in the dif-
fusion coefficienis considered. In a first step, the space splitting (26) néz e
modified to account for the jumps in the coefficient, whil# beging orthogonal with
respect to the corresponding(-, -)-induced norm. The choice of a robust method
for approximating the continuous problem (definition of thkevante (-, -) bilinear
form) allows to guarantee that the corresponding speafal/alence property (29)
holds with constants, ¢, independent of the mesh size andjimaping coefficient

e In [5] efficient solvers are analyzed for IP approximatiofhdimear elasticity
problems considering all cases: the pure displacement, the mixddtantraction
free problems. The last two cases pose some extra pitfafleianalysis since the
spectral equivalence property (29) does not hold in thosescdn spite of that, the
ideas can still be used to construct block preconditiongugléd by the algebraic
structure of# (-, -) due to the orthogonality) and prove uniform convergence.

e In [7] it is shown how to construct an efficient solver for thawtion of the
linear system that arise from a DG discretization of a cotiwaediffusion problem,
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in the convection dominated regime. The problem is releirasémiconductor ap-
plications. In this case, the original method is a non-symimexponentially fitted
IP weakly-penalized.
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