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1 Introduction

Particulate flow, i.e. the flow of a carrier fluid loaded with particles, plays an impor-
tant role in many technical applications. Let us just mention reactors, fluidized beds,
production of nano particles and many more. There exists a hierarchy of models how
to describe the particulate phase and how to describe the interaction between par-
ticles and fluid. For a comprehensive list of references we refer to the articles of
Esmaelli & Tryggvason [6] and Hu [12].

For certain applications it is mandatory to describe the fluid–particle interac-
tion and also a possible particle-particle interaction in full detail without simplified
parametrizations. Computational methods based on such full models are called di-
rect numerical simulations.

One of the most important points in simulating particulate flow is the numerical
representation of the particles’ geometry. In Feng et al. and Johnson & Tezduyar
[7, 13] a remeshing technique was used to explicitly follow the geometry in time;
Wan and Turek [22] introduced a mesh deformation technique and Glowinski et al.
[9] used Lagrange multipliers on regular grids. Also immersed boundary methods
are very popular, for example LeVeque & Li and Veeramani et al. [14, 20]. Dis-
tributed Lagrange multipliers to account for the stress boundary condition are used
in Bönisch & Heuveline and Bönisch et al. [5, 4]. In Maury [16] a projection based
method was already introduced, still following explicitly the geometry, thus requir-
ing remeshing.

Analytical results regarding existence, uniqueness and qualitative behavior of
solutions can be found for instance in Galdi and Serre [8, 19].

The approach presented here is based on the one domain approach by [19, 9],
but differs from the above mentioned articles in one or several aspects, since it

• does not require an explicit meshing of the particles’ domain;
• does not need an explicit evaluation of forces;
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• uses a subspace projection method to account for the constraint of rigid body mo-
tion within the particles, thus avoiding a saddle point problem for this constraint;

• uses time dependent adaptively refined meshes to provide the necessary geomet-
ric resolution.

It turns out that this novel method is therefore easy to implement (only few mod-
ules have to be added to an existing standard software) and rather efficient. A more
detailed presentation can be found in [17].

2 Mathematical Formulation

2.1 Model

In this section we introduce the mathematical model for particulate flows. For ease
of presentation we restrict ourselves to the case of a single particle. The extension to
more particles is straightforward, simply by adding an index. The model also holds
for the 2d-case, one just has to adapt the definition of the cross-product involved in
the equations.

Denote by Ω(t) ⊂ R3 the time-dependent domain occupied by an incompress-
ible, Newtonian fluid with velocity u and pressure p. Its motion is described by
the incompressible Navier-Stokes equations. A homogeneous no-slip condition is
prescribed on the outer boundary ΓD.

ΓD

Ω(t)
P(t)

U, ω

✉✘✘✘✿❈
❈
❈❖

X

Θ
u, p

Fig. 1 Particle P(t) of arbitrary shape inside the fluid domain Ω(t).

P(t)⊂R3 is the time-dependent domain of a rigid particle, with its center of mass
given by X = 1

|P(t)|
∫

P(t) xdx, while r = x−X is its relative coordinate. The particle’s
motion, being a rigid body motion, is governed by Newton’s law, describing values
for the translational and angular velocities U , ω , respectively, and the position X .
The orientation in space is given by a complete system of orthogonal unit vectors
who’s coordinates are denoted by Θ . Since the particle is impermeable, we assume
Ω(t)∩P(t) = /0 for all times t > 0. Finally we assume (for simplicity) that the whole
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volume Ωc = Ω(t)∪P(t)∪∂P(t) is time independent. See also Fig. 2.1 for a sketch
of the situation.

The motions of fluid and particle are coupled on one hand by the no-slip-
condition on the particle boundary Eq. (4) below and and on the other hand by
the stress and pressure forces of the fluid acting on the particle (in the right hand
sides of Eq. (5)). The mathematical model consists of a coupled system of partial
differential equations (PDE) for u, p and of ordinary differential equations (ODE)
for U,ω,X and Θ reading in non-dimensional form

∂tu+(u ·∇)u−∇ ·
(

1
Re

D[u]− pI
)

= 0 in Ω(t), (1)

∇ ·u = 0 in Ω(t), (2)
u = 0 on ΓD, (3)
u =U +ω× r on ∂P(t), (4)

MU̇ = F−
∫

∂P(t)
σ nds, Iω̇ +ω× (Iω) =−

∫
∂P(t)

r×σ nds, (5)

Ẋ =U, Θ̇ = R[ω]Θ . (6)

The system has to be closed by appropriate initial conditions. Here, Re is the
Reynolds number, M and I the mass and inertia tensors, respectively; σ := 1

Re D[u]−
pI is the stress tensor, where D[·] is the deformation tensor D[u]i, j = ∂ jui +∂iu j. F
describes an external force acting on the particle like gravity, particle-particle (in
case of more than 1 particle) or particle-wall interaction. R[·] is the cross-product
operator.

2.2 Weak formulation

Following the idea and presentation in [9] a weak formulation of the system Eqs.
(1)-(6) is presented. This formulation is instrumental for deriving our numerical
method in the next section. Define

Hc(Ωc)=

{
(v,V,ξ )

∣∣v∈ (H1(Ωc)
)3
,V ∈R3, ξ ∈R3,v= 0 on ΓD, v=V +ξ×r in P(t)

}
.

(7)
Note that by the above definition the velocity v in Hc(Ωc) is defined on the combined
domain Ωc and is restricted to the rigid body velocity V +ξ × r inside the particle.
For a shorter notation we introduce the bi- and trilinear forms

m(u,v) =
∫

Ωc
u · vdx, (8)

s(u,v) = 1
2Re
∫

Ωc
D[u] : D[v] dx, (9)
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k(w;u,v) =
∫

Ωc
(w ·∇)u · vdx, (10)

b(q,v) =
∫

Ωc
q∇ · vdx, (11)

and the variable β = 1−α . Then Eqs. (1)–(6) can be compactly written as:

Find (u, p) with u(t) ∈ Hc(Ωc), p(t) ∈ L2
0(Ωc) such that for all (v,q) ∈(

Hc(Ωc)×L2
0(Ωc)

)
m(u̇,v)+ k(u;v,u)+ s(u,v)−b(p,v)+

βMU̇ ·V +β (Iω̇ +ω× (Iω)) ·ξ = F ·V , (12)
b(q,u) = 0, (13)

Ẋ = U, (14)
Θ̇ = R[ω]Θ . (15)

Eqs. (12) and (13) are called the combined Navier-Stokes equations. The time de-
pendence of Ω(t) and P(t) is now completely coded in the time dependent definition
of Hc(Ωc).

3 Numerical Method

The numerical scheme to solve the weak problem Eqs. (12)–(15) derived in the
previous section consists of the following six points:

1. splitting scheme to decouple the unknowns;
2. a pressure correction projection scheme based on a BDF2 method to efficiently

solve the combined Navier-Stokes equations;
3. subspace projection to incorporate the restrictions given by the function space

Hc(Ωc);
4. adaptivity in space;
5. preconditioning;
6. Barnes-Hut algorithm for particle-particle interaction.
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3.1 Splitting by time discretization

Predictor

Given Fk, Xk and Uk.

Xk+1 := Xk + τUk +
τ2

2βM
Fk, Uk+ 1

2 :=Uk +
τ

2βM
Fk. (16)

Fk+1 = F(tk+1,Xk+1), Ŭ :=Uk+ 1
2 +

τ

2βM
Fk+1. (17)

Combined Navier Stokes

Step 1 (Momentum equation)
Given uk, uk−1, pk, χk, χk−1, Ŭ , ωk.
Set u? = 2uk−uk−1, ω? = 2ωk−ωk−1.

Find uk+1 ∈ Hc(Ωc) such that for all v ∈ Hc(Ωc)

m(uk+1,v) +γk(u?;uk+1,v)+ γs(uk+1,v)+
2
3

βMUk+1 ·V + 2
3 β Iωk+1 ·ξ + γ

2 βω?×
(
Iωk+1

)
·ξ =

γb(pk,v) +m( 4
3 uk− 1

3 uk−1,v)+ γb( 4
3 χk− 1

3 χk−1,v)+
2
3

βMŬ ·V + 2
3 β Iωk ·ξ − γ

2 βωk×
(
Iωk
)
·ξ . (18)

Step 2 (Computation of pressure correction)

Find χk+1 ∈ H1(Ωc) such that for all Ψ ∈ H1(Ωc)

m(∇χ
k+1,∇Ψ) =

1
γ

b(Ψ ,uk+1). (19)

Step 3 (Pressure update in rotational form)

Find pk+1 ∈ L2
0(Ωc) such that for all q ∈ L2

0(Ωc)

m(pk+1,q) = m(pk +χ
k+1,q)−b(q,

2
Re

uk+1). (20)
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Corrector

Given Θ k, Xk, ωk, ωk+1, Uk and Uk+1.

Θ
k+1 =

(
I− τ

2
R
[
ω

k+1
])−1(

I+
τ

2
R
[
ω

k
])

Θ
k. (21)

Xk+1 = Xk +
τ

2

(
Uk +Uk+1

)
. (22)

The above technique is used to to solve the highly coupled, highly nonlinear
system of equations. The presented algorithm decouples the position and the ori-
entation of the particles (X and Θ ) from the combined Navier-Stokes equations
(u,U,ω and p). These are then further decoupled by a pressure correction projec-
tion method. Thus the philosophy here is to finally split the complex system into a
cascade of simple subproblems rather than using a (maybe more accurate but much
more expensive) monolithic approach.

To be more precise, in order to discretize in time, the time interval (0,T )
is subdivided by discrete time instants: 0 = t0 < t1 < .. . < tN = T . Denote by
τk+1 := tk+1 − tk. For simplicity a fixed time step size τ is used: τk = τ for all
k = 1, . . .N. Moreover, define γ = 2

3 τ .
Then in each time step Eqs. (12)–(15) are split into three substeps. The first is

a predictor step for the new particle position and velocity, Xk+1, Ŭ , respectively.
In the second step values for uk+1, Uk+1, ωk+1 and pk+1 are computed based on a
BDF2 scheme. The last step is a corrector for Xk+1, Θ k+1.

The predictor step is a Velocity Verlet method, which is of second order [21, 15]
and the common tool in particle dynamics.

The combined Navier Stokes equations are discretized by a projection method
in rotation form, see [11, 10]. To this end, the time derivative ∂tu is replaced by a
BDF2 scheme having good stability properties, while the equations for U̇ and ω̇ are
approximated by Crank-Nicolson differences, respectively.

The corrector uses the Crank-Nicolson scheme for time discretization.

3.2 Spatial discretization

The core problem in solving the time discretized system are the combined Navier
Stokes equations and in particular Eq. (18). The crucial point in the spatial dis-
cretization is to define a discrete counterpart of Hc(Ωc) and, moreover, the concrete
realization of this non–standard finite element space. A brief description of how to
solve this problem is given in the sequel, a more comprehensive presentation can be
found in [17].

Let T be a triangulation of Ω . Since we are using the Taylor–Hood element for
velocity and pressure, the basic finite element space for the velocity is given by the
space of piecewise quadratic elements:
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X(Ωc)=

{
(v,V,ξ ) |v∈

(
C0(Ω c)

)2
, v∈

(
Pk(T )

)2
∀T ∈T ,V ∈R2, ξ ∈R,v= 0 on ΓD

}
.

A discrete subspace of Hc(Ωc) is now given by

Xc(Ωc) =

{
(vc,V,ξ ) ∈ X(Ωc)| vc =V +ξ × r in P(t)

}
.

For a given time step k the linear Eq. (18) may be rewritten with the bilinear form a,
the corresponding operator A , and the cumulative right hand side g: find u∈Xc(Ωc)
such that for all v ∈ Xc(Ωc) it holds

a(u,v) =: (A u,v) = (g,v). (23)

To circumvent the explicit representation of Hc(Ωc), a subspace projection π : X →
Xc is used. With this operator (23) may be formulated in terms of the standard finite
element space X(Ωc): find ũ ∈ X(Ωc) such that for all v ∈ X(Ωc) it holds

(A π ũ,πv) = (g,πv). (24)

Note that the solution u is now easily found by taking u = π ũ, where ũ is a solution
of Eq. (24). The above system now leads to the linear system of equations for the
nodal vector Ũ of the form

Π
T AΠŨ = Π

T G, (25)

where A is the system matrix corresponding to operator A and Π is a matrix rep-
resentation of π . We call this method subspace projection method. Note that, when
using iterative solvers, one can bypass to explicitly compute the modified system
matrix Π T AΠ , but rather just needs to slightly modify the matrix vector product,
because one only has to take into account the action of Π T AΠ on a vector. Because
the matrix Π is quite simple, its not necessary to store it explicitly. Instead, a short
routine can perform the multiplication of Π and Π T with a vector v. The following
pseudo–code shows this computation.

! Multiplication (u,U,omega)=Pi*(v,V,xi)
subroutine Pmul(v,V,xi,u,U,omega)

! U, omega
do ii=1,npart ! Number of particles

U(:,ii) = V(:,ii)
omega(ii) = xi(ii)

end do

! u = rigid body motion in the particle
do i=1,nk ! Number of DOFs

if( isparticle(i) ) then
ii= numpart(i)
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r(:)= x(:,i) - xpart(:,ii)
u(1,i) = V(1,ii) - r(2)*xi(ii)
u(2,i) = V(2,ii) + r(1)*xi(ii)

else
u(:,i)= v(:,i)

end if
end do

end subroutine

3.3 Adaptivity

One of the most important issues in simulating particulate flow is the numerical
representation of the particle’s geometry.

In Hu [12] a remeshing technique was used to explicitly follow the geometry in
time, Wan and Turek [22] introduced a mesh deformation technique and Glowin-
ski et al. [9] used Lagrange multipliers. In contrast to these methods, we use time
dependent adaptively refined/coarsened grids based on the bisection method [1] to
sufficiently resolve the region around the particle.

Fig. 2 Adaptive refined mesh around a particle. For an accurate representation it is useful to refine
the mesh on the particle boundary.

The overall algorithm was implemented in the finite element flow solver NAVIER,
for more details see [2].

3.4 Preconditioning

In general, the matrix Π T AΠ (if the kernel would be factored out) is ill conditioned
so that preconditioning is mandatory for an efficient solution strategy.

We developed a preconditioner based on inexact factorization that gave rather
satisfying results, see [18].
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3.5 Particle interaction

Efficient evaluation of the particle-particle interactions in Eq. (17) is crucial. For a
large number of particles (more than, say, 1000) a naive implementation requiring
O(n2), n the number of dofs, would be prohibitive. Instead we use the Barnes-Hut
algorithm, which reduces the complexity to O(n log(n)) with an acceptable loss of
accuracy, see [3].

The idea of the algorithm is to merge the forces created by a group of neighboring
particles into a single force of one pseudo-particle.

In addition to the long range Coulomb forces we also add short range repulsive
forces in order to model particle collisions and avoid mutual penetration of particles.
A similar approach is used for near particle-wall collision.

4 Computational examples

In this section we present some applications of the method described above. Quan-
titative validations can be found in [17]. Here we present further numerical experi-
ments.

Fig. 3 Sedimentation of particles in 2D.

Fig. 3 shows a snapshot of a bunch of sedimenting particles (in 2D) under the
influence of gravity.

The next experiment considers the sedimentation of two spherical particles in a
cylindrical domaini in 3D. The particles are initially aligned on the center line, sep-
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arated by a small distance of a few particle diameters in the starting configuration.
When gravity starts acting one can observe the following situations.
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Fig. 4 Velocities of two particles traversing the phases of drafting – kissing – tumbling.

• Both particles start accelerating. There is no interaction between them.
• “Drafting”: after a while the slipstream of the first particle causes the second one

to accelerate a little more.
• “Kissing”: a near impact is inevitable as the second particle has a higher velocity

than the first one. The slower particle is pushed by the faster one (the force is
transferred by the viscous fluid).

• “Tumbling”: the above situation is unstable. To solve this conflict the slower
particle moves aside, so that the faster particle can pass it. This can be interpreted
as tumbling, when observed in relative coordinates.

These four phases described are displayed in Fig. 4.
The last example is a snapshot of the lid driven cavity in 3D with 1000 immersed

particles, Fig. 5.

5 Discussion and Conclusion

A novel finite element method for the simulation of particulate flows was presented.
Its key ingredients are: one domain approach, splitting in time, subspace projection
method to account for the rigid body motion within the particles and time dependent
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Fig. 5 Lid driven cavity 3D with 1000 particles.

adaptively refined meshes. The advantages of the method are its easy implementa-
tion and its efficiency. Only few modifications are needed to extend an existing
Navier-Stokes code to simulate particulate flows by this method.
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