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We consider the solution of differential equations of the form Eq.(1) for a given
initial condition y(0) = y0 and suitable boundary conditions.

Mẏ = g(y, t) (1)

In Equation (1), g ∈C1(Ω ,Rn) , for Ω an open set in Rn×R∗ and M ∈ Rn×n. This
equation is called a linear differential-algebraic equation (DAE) if the matrix M is
singular. The time discretization of Eq. (1) via backward differentiation formulas
leads to solving a system of nonlinear equations f (y) = 0 for f : Rn→ Rn at each
time step. These equations are generally solved by Newton-like methods which re-
quire the solution of numerous linear systems of the form:

Jk∆xk =− f (xk) (2)

where Jk ∈ Rn×n is the Jacobian matrix of f at xk, or an approximation of it. In this
paper we deal with the solution of these linear systems by a parallel Krylov iterative
method. The condition number of the matrix Jk can be very large, hence, a good
preconditioner is required.

Preconditioners based on the additive Schwarz method are often used to precon-
dition sparse linear systems. The combination of a Newton method with a Krylov
method preconditioned by a Schwarz method is generally called Newton-Krylov-
Schwarz [5] and has widely be applied to CFD problems (see for example [6, 14, 7]).
In this paper we deal with the Restricted Additive Schwarz preconditioner [8]. Com-
puting and solving such linear systems is generally the most time consuming part of
ODE/DAE integration codes, even if there are usually only slight changes between
two consecutive linear systems. When the analytic Jacobian matrix is not available,
a finite difference scheme is commonly used to approximate it [12] or its matrix-
vector product [15]. Another way to avoid the computation of the Jacobian matrix
is to update it from one iteration to another using quasi-Newton methods [10] that
converge superlinearly [4]. Since Krylov methods are used to solve Equation (2),
providing a preconditioner is a critical point. A balance must be found between
the ability of the preconditioner to reduce the number of Krylov iterations, and its
computational cost. Then, one may want to update the preconditioner using the se-
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cant condition in order to improve its efficiency. This idea is not new, and has been
widely discussed in [3, 2]. The aim of this paper is to extend these techniques to do-
main decomposition based preconditioners such as the Restricted Additive Schwarz
preconditioner. First, we present the Broyden update and its application to general
preconditioners. Then we discuss the practical issues in applying this update to the
RAS preconditioner. The third part is devoted to numerical experiments on the CFD
problem of the lid-driven cavity.

1 The Update of the RAS Preconditioner

The preconditioned linear system of the Newton iterations can be written as:

GkJ(xk)∆xk =−Gk f (xk) (3)

or
J(xk)GkG−1

k ∆xk =− f (xk) (4)

depending on which side the preconditioner is applied.
For the sake of simplicity, we use the notations fk = f (xk) and ∆ fk = fk+1− fk

in the following. The quasi-Newton update of Gk, that satisfies the secant condition:

∆xk = Gk+1∆ fk (5)

is given by:

Gk+1 = Gk +(∆xk−Gk∆ fk)
vT

k
vT ∆ fk

for some vk (6)

Usually, vk is taken as ∆ fk or GT
k ∆xk:

• If vk = GT
k ∆xk, then Gk+1 minimizes ‖G−1

k+1−G−1
k ‖F .

• If vk = ∆ fk, then Gk+1 minimizes ‖Gk+1−Gk‖F .

In both cases, the proof can be derived in straightforward manner from the proof of
Theorem 4.1 in [10]. In general, it is not possible to give an estimation of the ef-
fect of the update of the preconditioner in terms of condition number. Nevertheless,
it is possible to give a lower bound of condition number of the updated precon-
ditioned linear system. Let {σk} and {τk} be the singular values of GkJ(xk+1) and
Gk+1J(xk+1)=GkJ(xk+1)+uwT for wT = vT J(xk+1). Then, the interlacing property
of the singular values [13, Theorem 6.1] gives:σ2 ≤ τ1,

σk+1 ≤ τk ≤ σk, 1 < k < n
0≤ τn ≤ σn−1,

(7)

Then,
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κ2(Gk+1J(xk+1)) =
τ1

τn
≥ σ2

σn−1
. (8)

The same results can be derived for right preconditioned linear systems, since a
rank-one update of the preconditioner linear system leads to a rank one modification
of the preconditioned operator. This lower bound gives a limitation of the updating
procedure: it will not be efficient if the preconditioned linear system has a large set
of very high, or very low singular values.

Let us now illustrate the effect of the Broyden update on a manufactured prob-
lem. −∆FD2 be the second order finite difference discrete 1D Laplacian operator
for homogeneous boundary conditions, associated to the eigenpairs {(Ui,λi)}1≤i≤n
such that λi > λi+1. We define the nonlinear function F(v) vanishing for v = 0 and
its Jacobian J(v) definite positive matrix, of eigenpairs {(ηiU1 +Ui,µi)}1≤i≤n, with
condition number κ2(J(v)) =

µ1
µn

:

F(v)
de f
= (v,v)U1UT

1 v︸ ︷︷ ︸
nonlinear

−∆FD2v︸ ︷︷ ︸
linear

(9)

J(v)h = 2(v,h)U1UT
1 v+(v,v)U1UT

1 h−∆FD2h (10)

µ1 = (2(v,U1)
2 +(v,v)+λ1),µi = λi,2≤ i≤ n, (11)

η1 = 0,ηi =
2(v,U1)(v,Ui)

µi−µ1
,2≤ i≤ n. (12)

For the sake of simplicity in calculus, starting from X0 = x0
1U1 and

G0 = J(X0)−1, Newton’s and Broyden’s iterates give the same X1 =
2(x0

1)
3

µ0
1

U1 and

the eigenvalue of G1J(X1) associated to U1 is given by:

(G1J(X1)U1 =
λ1

3 +6(x0
1)

2
λ1

2 +9λ1(x0
1)

4
+12(x0

1)
6

λ1
3 +7(x0

1)
2
λ1

2 +17λ1(x0
1)

4
+19(x0

1)
6 U1

These results suggest that Z1 is a good preconditioner for J(X1) if X0 is close to the
solution X = 0, (G1J(X1) have the same (n−1) eigenpairs (Ui,1),2≤ i≤ n).

2 Application to the RAS Preconditioner

The Restrictive Additive Schwarz preconditioner of the linear system J(x)∆x =
− f (x) decomposed in s overlapping subdomains, is given by:

M−1
RAS =

s

∑
i=1

R̃T
i Ji(x)−1Ri (13)



4 Laurent Berenguer and Damien Tromeur-Dervout

where Ri is the restriction operator of the ith subdomain including the overlap, and
R̃i is the restriction operator except that only interior nodes have a corresponding
nonzero line. The matrix Ji(x) is the submatrix of J(x) corresponding to the ith sub-
domain including the overlap. We propose to performing Broyden’s updates starting
from the RAS preconditioner G0 = M−1

RAS = ∑i R̃iJi(x)−1RT
i .

Algorithm 1 gives an overview of the method for (vk = ∆ fk) within a time-
stepper. Finding an optimal restarting criterion is out of the scope of this paper.
One should notice that the restart may not happen at each time step. Hence, two
simple strategies could be (1) to restart every r time steps, or (2) to restart when
a maximum number of Krylov iterations has been reached for the solution of the
previous linear system.

Algorithm 1 Time stepper with update of the RAS preconditioner
Require: restart parameter, initial guess x, k = 0
1: for each time step do
2: // Newton iterations:
3: repeat
4: if restart then
5: G0← ∑i R̃T

i Ji(x0)
−1Ri // Local LU factorizations

6: k← 0
7: end if
8: solve J(x)∆x =− f (x) with a Krylov method preconditioned by Gk.
9: x← x+∆x

10: Gk+1 = Gk +(∆xk−Gk∆ fk)
f T
k

f T
k ∆ fk

11: k← k+1
12: until convergence
13: end for

Therefore, even if G0 is a sparse matrix, Gk is not. Consequently, the ma-
trix Gk is never formed, we only compute its application to a vector. Let uk be
(∆xk−Gk∆ fk)/(vT ∆ fk) then the application of Gk to an arbitrary vector x depends
on the choice made for vk :

• For vk = ∆ fk the application of the preconditioner can be rewritten as:

Gk+1x = G0x+
k

∑
i=0

uivT
i x = G0x+[u0 · · ·uk][v0 · · ·vk]

T x (14)

Hence, the additional cost of the application of Gk compared to G0 is roughly
two matrix-vector products of n× k matrices. Furthermore, the computation of
uk involves one application of Gk. One should also notice that the local LU fac-
torizations can also be computed asynchronously, continuing Newton iterations
during the computation of the restarted preconditioner.

• For vk = GT
k ∆xk, the explicit computation of vk should be avoided because it

involves GT
k , so M−T

RAS which cannot be easily computed. Then Gk+1x is usually
rewritten as in Eq. (15).
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Gk+1x =

(
0

∏
i=k

(I−ui∆xi
T )

)
G0x (15)

Following an idea of Martı́nez [16], Bergamaschi et al. proved in [3, theorem 3.6]
that for G0 and x0 good enough initial guesses, the norm ‖I −GkJ(xk)‖ can be
made arbitrarily small. Since the preconditioner is also reused from one time step
to another, it slowly loses its efficiency and the algorithm must be restarted, which
means recomputing G0.

In terms of condition numbers, the preconditioner Gk is not expected to be more
efficient than the RAS preconditioner M−1

RAS of the current Jacobian matrix J(xk), but
it’s computational cost is less important: computing Gk+1 form Gk does not involves
LU factorizations unlike the computation of a new M−1

RAS.
The efficiency of the updated preconditioner is expected to decrease from one

time step to another, but this decrease should be slowed by the update. This decrease
can be roughly explained by the fact that the convergence of Broyden’s method is
slower than the convergence of Newton’s method. Thus, a restart of the algorithm is
needed. This restart (Algo.1, step 4) consists in the computation of a new G0 =M−1

RAS
(i.e. new local LU factorizations).

One of the main drawbacks of the method presented here is the increase of the
memory cost by two vectors per update. A few techniques can be used to reduce this
memory cost: the simplest one consists in restarting the algorithm when a maximum
number of updates is reached. One may also compress the updates using a truncated
SVD of [u0 · · ·uk][v0 · · ·vk]

T [18].
The parallelism of Equations (14) and (15) should also be discussed:

• The application of the preconditioner in Eq. (14) to a vector x involves global
communications since the matrices [u0 · · ·uk] and [v0 · · ·vk] are dense, and dis-
tributed over the processors. Then, depending on the implementation, Eq. (14)
requires an additional global reduction of k values, or k reductions where the
k−1 first are overlapped by computations.

• The parallel implementation of Eq. (15) requires k sequential collective reduc-
tions. Hence, one should not use vk = GT

k ∆xk for a parallel implementation on
distributed memory computers.

3 Numerical experiments

Let us first give a numerical illustration of the model problem F(v) = c where F is
from Eq. (9), c ∈ R100 an arbitrary vector, and starting from G0 = M−1

RAS(−∆FD2).
Then, the condition numbers are: κ2(J(X1)) = 1.8×109, κ2(G0J(X1)) = 1.7×108

and κ2(G1J(X1))= 1.2×103 when the preconditioner G0 is updated with Broyden’s
update. This suggests that the update of the preconditioner has efficiently reduced
the effect of the first eigenvalue of J(X1). We now consider the lid-driven cavity
problem on the unit square. The PETSc library [1] was used for the implementa-
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tion. In particular, the implementation of the following (u,v,ω,T )-formulation is
provided as a PETSc example [9]. The linear solver used in these experiments is a
BiCGstab [17] and Jacobian matrices are approximated by a coloring method.

−∆(u)−∇y(ω) = 0
−∆(v)+∇x(ω) = 0
ω̇−∆(ω)+∇ · ([u×ω,v×ω])−∇x(T ) = 0
Ṫ −∆(T )+∇ · ([u×T,v×T ]) = 0

(16)

Where u and v are the two components of the velocity field, ω =−∇yu+∇xv is the
vorticity and T the temperature. The space discretization is performed on a regular
grid with a five-point stencil and the time discretization is a backward Euler scheme.
The lid-velocity u(x,0) is a nonzero constant, the other boundary conditions satisfy
u = v = 0, T = 0 on the left wall, and T = 1 on the right wall, ∂T/∂y = 0 on the
top and the bottom. A fixed time step length has been used for the simulation, ex-
cepted for the very first time steps. The initial solution is zero everywhere excepted
on the walls, and the solution at the previous time step is used as the initial guess
for the current time step. In the following results, the linear systems are right pre-
conditioned and G0 is the RAS preconditioner of the current approximation of the
Jacobian matrix, and the overlapping size is one. The reason is that when the left pre-
conditioning technique is used, the natural stopping criterion of the Kyrlov method
is based on the norm of the preconditioned residual. Hence, in order to compare two
different preconditioners, one should use a stopping criterion based on the norm of
true residual. The Newton iterations are stopped (i.e. the time step is accepted) when
the absolute norm of the residual is lower than 10−6.

Table 1 Comparison of the updated and the frozen preconditioner for a 512×512 grid decomposed
in 8×8 subdomains. The lid velocity is u(x,0) = 500 and the time step length is 10−3. 1000 time
steps are performed, and the sum of all the BiCGstab iterations is given. The algorithm is restarted
every fr time steps, and the walltimes are given in seconds.

With update Without update Saved Saved
fr BiCGstab it. Walltime BiCGstab it. Walltime iterations (%) walltime (%)
1 34483 4729 34882 4744 1.144 0.309
5 34572 3820 35230 3850 1.868 0.779
40 35165 3609 35946 3649 2.173 1.085
60 35785 3619 36249 3625 1.280 0.159
80 36110 3653 36693 3670 1.589 0.461

Table 1 compares the total number of BiCGstab iterations with and without the
rank-one update, for different frequencies of restarting. A frequency of restarting fr
of 10 means that 100 local LU factorizations have been computed on each proces-
sors during the 1000 time steps. There is actually between one and three Newton
iterations per time steps. This results show that the total number of Krylov iterations
is slightly reduced by the updating method. If we take into account only the 580
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time steps for which three Newton iterations have been performed, then 3.79% of
the Krylov iterations have been saved. the additional cost of the application of the
preconditioner is the reason why the proportion of Krylov iterations that are saved
is greater than the proportion of saved computational time.

Table 2 Number BiCGstab iterations for the updated and the frozen preconditioner. The grid de-
composition is regular, using the same number of subdomains in each direction. 1000 time steps
of length 10−3 are performed. The algorithm is restarted every 40 time steps.

Processors Grid size Lid velocity With update Without update Saved .it (%)
8 1282 100 9009 9474 4.908
8 1282 300 16358 16748 2.329
16 1282 100 12724 13275 4.150
16 1282 300 17961 18345 2.093
16 2562 300 20011 20805 3.816
64 2562 300 28408 30114 5.665
64 2562 500 32599 32889 0.882

Table 2 compares the number of BiCGstab iterations for different sizes of grid
and lid velocities. This results show that the Broyden update of the preconditioner
may leads to a significant reduction of the number of Krylov iterations. For a restart-
ing frequency of 40, the percentage of saved iterations generally decreases when the
lid velocity is increased. This suggests that a more appropriate restarting algorithm
should be designed in order to preserve the efficiency of the update. It should be no-
ticed that the results presented above are obtained for a fixed time step length. The
efficiency of the update is expected to change if an adaptive time stepping algorithm
is used since the step length is present on the diagonal of the Jacobian matrix.

4 Conclusions

We presented a very simple procedure to update the RAS preconditioner without
loss of parallelism. This update leads to a decrease of the number of Krylov it-
erations, especially for the time steps that requires the largest number of New-
ton iterations. However, further developments are needed to achieve an efficient
method. This quasi-Newton update of the preconditioner should be used with a
well-parametrized restarting procedure, since the efficiency of the preconditioner
decreases from one iteration to another. A natural extension of this work is to use
higher-rank updates, like the multisecant update [11]. Techniques such as partial
updates, or relaxed updates should also be investigated since they are expected to
significantly improve the numerical efficiency of the updated preconditioner.
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