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1 Introduction

In the context of simulating flow and transport in porous radeig. for the assess-
ment of nuclear waste repository safety), two main challsngust be taken into
account : the heterogeneity of the medium with physical erogs ranging over
several orders of magnitude, and widely differing spaneetscales. Solving these
features accurately requires very fine meshes or well-adagmd highly noncon-
forming meshes. On the one hand, one possible approach s& team-overlapping
domain decomposition which leads to efficient parallel ethms with local adapta-
tion in both space and time. The Optimized Schwarz WavefoefaXation method
(OSWR) [3, 2] with the Discontinuous Galerkin (DG) schemeinnet [4] is a solu-
tion procedure which allows local time stepping. On the ptrend, the finite vol-
ume schemes of DDFV type (Discrete Duality Finite Volumes)diffusion prob-
lems [5] allow highly nonconforming meshes. Finally, [6gpents a strategy which
is well adapted to domain decomposition for coupling upwdigtretization of the
convection with diffusion in the context of a finite volume tined. In this paper, we
extend the OSWR method to the DDFV scheme for advectionsgidfuproblems,
using the strategy of [6]. The method is proven to be well dased we prove the
convergence of the iterative algorithm.

We consider the following transport equation in a porousiorad

Zc=wdc—0-(KOc—bc) = f, inQx(0,T), (1)
C(.,O) = Co, INQ,

where Q is an open bounded polygonal subsefR3f ¢ is the concentration (e.g.
of radionuclides) and the source term. Equation (1) is supplemented with ho-
mogeneous Dirichlet boundary conditions. We assume&hat decomposed into
non-overlapping subdomains. For the sake of simplicitypnesent the method in
the case of two polygonal subdomaif?s and Qg with interfacel” := 0Q  NJQR
(the method can be extended to the many subdomain case). s¥maghat the
possible discontinuities of the porosity coefficient the tangential component of
the advection velocity and the anisotropic diffusion matrkk are along™. In the
sequel, the subscripts and superscrip(sesp.R) refer toQ (resp.QR).
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The initial problem (1) is equivalent to a system of subpeois defined o2
and Qg with the following physical transmission conditions én [c]r = 0 and
[(KOc—bc) -njr =0, where[v]r denotes the jump of throughl” andn a normal
vector tol" . These interface conditions can also be written, throughifRinterface
operators’, and %R, under the equivalent form

[#Lc|r = [%re]r =0, )
with %A = (KOc— bC) ‘n+AL , PBr= (KDC—bC) ‘NR+ AR, 3)
wheren, (resp.nR) is the outward normal t@, (resp.Qgr) andA_ (resp.AR) a

strictly positive function in.®(I").
Then, an OSWR algorithm [3, 2] for solving problem (1) is:

™Yt in Q x(0T) (L=t in Qrx (0,T)
0= n o & 0=c in On “)
% c(LM) Zcg on Tx(0T) | Zrek"™ = Zrc’ on I x (0T)

whereA. andAg optimize the convergence factor of (4), see [2, 8, 9].
In Section 2, we present the DDFV scheme for the advectidiusitin problem
in the global domaim2. Then, in Section 3, we describe the multidomain DDFV
scheme. Section 4 is devoted to the OSWR algorithm for the DBdRéme. Finally
in Section 5, we present numerical results.

2 The DDFV schemefor advection-diffusion problems

In this part, we present the DDFV scheme for Problem (1). Shiseeme uses un-
knowns at the centers of the cells of a primal mesh and at tletices. These
vertices are considered as the centers of dual cells, @atdy joining the cen-
ters of the surrounding primal cells through the edge midlgoiThis construction
is sufficiently general to be able to treat non-conformingshes, see Fig. 1 (left)
where the primal (resp. dual) nodes are in black (resp. s T, (resp.P,) is
an example of primal (resp. dual) cell. Using these suppidamg vertex unknowns
is the price to pay to be able to use arbitrary meshes [5]. We (&T) into time
intervalsly := (tn_1,ty) and defineAt,, :=t, —t,_1. We denote b)ci”1 (resp.cﬂl) an
approximation ot at timet,, in the cellT;, (resp.R,). Restricting the presentation
to the lowest order DG scheme in time, equation (1) can beetized on each time
interval and on each primal célli, by

AR = = g |/|/ (xt)dxdt,  (5)

and on each inner dual céll, by

n n—1
a-c - 1

T

|Tl1| AjCTT;,
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Fig. 1 DDFV primal (solid lines), dual (dashed lines) and half-diamoniisgéilled triangles):
interior (left) and interface (right) cells.

n—1

Gy —C 1 1
Ta A — = / f(x,t)dxdt. (6)
Aty |H<1|A’ gapk Ja“:klja k1 Atn|H<1| In/Ry

Wy

In (6), the subscriptr € {1,2} refers to the local numberirig, i», andaw, is defined
by
|H(1|QA(1 |H<109L|%1+|H(109R|%1 (7)

In order to lighten the notations, we leave out the exponeirighis section.

For any primal edgé\j = [kik] and its associated dual edgls,, the fluxesr |
andF, j o are sums of a diffusive and a convective contribution. THiisive part
is evaluated as in [5] using a gradient defined by two diresti@on each triangle
kiigko =: Dj o (also called “half-diamond cell”), see Fig. 1 (left):

{ e |7 =Cg —Cig ®)
(On )'aJ k1k2 =Ck, — Ckl
whereo is the midpoint ofA;. Formulas (8) are equivalent to
1 ! !
(OnCiqj = Dial ((Ckz — Ci)[A] ¢ [Ny .o + (Co — Cig ) [A] \"ilj)a ©)

Wherenilj is the outward normal t, onA; andn;( .j.a the outward normal &, on

o+ The unknowre, is introduced both to deal with possibly discontinuous tesis
K and to be able to write a local discretization adapted to dom@composition,
as will be shown in Section 3. The gradigntyc);, j is used in the diffusive part of
F.j and in the diffusive part ofy, j o andF,; o. Let us denote bya]* and[a]~ the
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positive and negative part afsuch that = [a]~ + [a]*. The convective part of the
flux on the primal mesh is discretized with an upwind schemiekvis local to the
half-diamond celDj 4:

(be-n)i,j = [(b-n)i,j] i, +[(b-N)iyj]~Co. (10)

This upwinding usingcs ensures that the discretization of the convection flux is
local to a subdomain. This is the idea borrowed from [6]. Gndbal mesh, we use
a standard upwind scheme:

(be-N)iyj.a = bj.a M o) Oy + Bja M j.al Co- (11)

In (10), (b-n);,j is defined by (recall thdi- n is continuous through primal edges)
1
b~n--::—/b-n-- dé. 12
(b-n)ig A Ja, iqj(€)dE (12)

In (11),b; o is the mean-value dfoverA/m. The fluxes are then defined as follows:
Fiaj = [Kigj(OnCigj] -Nigj — (bC-M)iy j, (13)
Faja = [Kja(OnCigj] 'n;qj,a —(be-N )i a- (14)

In (13) and (14)Ki,; andKj o are the mean-values ‘K\Tia over Aj; and A'j’a,
respectively (we recall thd€ may be discontinuous through primal edgg3. In
order to complete the definition of the scheme, we still neegcuation for eachy,
and one equation for each boundary dual celtr s not ondQ, ¢, is eliminated
by requiring the flux conservation through the common iriegb Ti, N JTi,:

F,j+F,;=0. (15)

Formula (15) defines a uniqug that we replace in (9) and (10). For nodesndk
located on the Dirichlet boundary, we set

cc=c=0,VoedQ, K vkeodQ. (16)

Theorem 1. We suppose thdil-b > 0 and thatKis a bounded, uniformly defi-
nite positive matrix. Then, the discrete convection-diia problem in the global
domainQ, defined by formulas (5) to (16) is well-posed.

3 The multidomain DDFV scheme

In this part we describe the local DDFV scheme in a subdonmgjether with the
discretization of the Robin conditions (2)—(3).
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The subdomain scheme is not modified for Erlmal cells : wewsti (5) and (13)
with the superscript (resp.R) for Q. (resp.Qr), cg" = 0 on the Dirichlet boundary
and (15) whero is not ondQ nor onl". Moreover, whero, midpoint of a primal
edgeA, is onl", we discretize the Robin conditions (2)—(3) Anby

R+ AL cL = —Fo" AL c", 17)

FRY 4 AR e = —F-" AR o5, (18)

12] 11]
whereAL j andAg j are discrete counterparts df andAr defined on each primal
edgeA;. In (17) and (18), we use the convention thais in Q, andi in Qr. We
remark that (17)—(18) are equivalentdd” = c5" andF"‘n FRJn =0.
On interior dual cells, the scheme is not mod|f|ed we std (8 with the super-

script® (resp.R) for Q. (resp.Qg). Moreoverck = 0if kis a node located on the
Dirichlet boundary. Finally, ifk; belongs to \ Q, then we denote b?kl (resp.

PkFi) the boundary dual cell i®2_ (resp.Qg) to whichk; is associated (see Fig. 1,
right). The ceIIPkL1 (resp.Plz) has two types of edges: the edg>é]§, that belong to
OB \I" (resp.dRZ\I") and the edges ofF;. NI~ (resp.dRE NI). Integrating (1)
on PkLl and overl, yields the approximation

Ck”— Iizn 1
i, [P | (1Atl> - Y |AalRga — 0P, NI [RT = [Rg 1", (19)
n Al 4 COPG

whereF,1- is an approximation ofm IR fapkler (KOc—bc)-n_andf"is
defined similarly tof,?l in (6) in which R, is replaced b;P&-l. In the same way, we
defineFRn and fFi”, and we obtain the following approximation of (1) aﬁl

CEn_ Il(?ml
G168 (S ) 5 Moo~ B

R
A’jvc,caPkl

Equations (19) and (20) introduce new flux unknoviil$ and R which are

related to the boundary unknowc[S‘ andc "by the following dual approximations
of the Robin boundary conditions (2)— (3)

RET + AL S = —FET + ALk oo, (21)
Fk +/\R|<1Ckl = Fk -‘r)\Rlekl (22)

whereAp y, and/\Rkl are discrete counterparts &f andAr defined on each dual
intersectionde nr = c?PR NI. We remark that (21) and (22) are equivalent

to ck = ck andFk'-”r + Fk 'F = 0. With these equalities for all time steps, adding

(19) and (20) and using (7) yields (6) & = P, URY, the inner dual cell of the
global domainQ.
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In order to study the well-posedness of the subdomain pnudleve restrict our-
selves to one subdomain, e@, . Recalling that(b-n);,; is defined by (12) and
defining(b- n) by

1

b-n e
(B = |ORE AT | JorL r

b-n.(§)d¢,

we can prove the following theorem

Theorem 2. Under the hypothesis of Theorem 1Aff; > (b n);,; for all j such

that Aj C I and if ALk, > 3(b-n)k  for all k such thato"Pk NI # 0, then the

discrete problem i, defmed by flormulas (5)-(6) and (13) to (16) with the super-

scriptt, formula (19) for boundary dual cells, and the Robin coratis
Fo'+ALjcg” = g™ (on primal edges AC I")

R + AL G = g'lgi” (on dual edge®Pg NI,

with gJL*” and d;i“ given real numbers, is well-posed.

4 The Schwarz algorithm

Let Sdenote the superscribtor R The discrete Schwarz algorithm is defined as

follows: let (cf™,¢g™”,c5™") and (FS™, RS, FS™")) be given approxima-

tions, at steg#, of c at nodes, k,aand(KDc bc) -n at edged;;, 'Ja,deSﬁI'

Then we computgc>™ ™ M S and (F;] ESN(+1) stjfyﬂ) FkSrn(Hl))

as the solution of (5)-(6) and (13) to (16) with the supepatdﬂ(resp R), formula
(19) (resp. (20)) and the following Robin conditions forerface primal and dual
cells:

I:Ill_Jn (0+1) +/\ Ln(Z+1) _ F|21 +)\L] Co n(¢ )7
Ln(¢+1) Ln(e+1) _ ()

Fkll_ +A Ckl Fkll'( +AL lckl

FRn (0+1) +/\ JCcan(£+1) _ F +)\RJ Ca ()7

12] |1J

RN(4+1) R n(€+1)

For  TARKC, ",

Fkl I—< ) +)\Rklck1
Theorem 3. Under the hypothesis of Theorem 2 Aigx, — ALk, — (b-n)i - =0
for all k such thatdP- NI~ # 0 and if Ag j — A,j — (b-n)i,j = O for all j such that
Aj C I, then the discrete Schwarz algorithm converges to theisolof the discrete
convection-diffusion problem in the domdam defined by formulas (5) to (16).

Remark 1 Following [8, 9], the Robin parameters are chosen in the form
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ALj=(=(b-n)i;j+pLj)/2, Arj = ((b-Nn)i;j +Prj)/2, (23)
ALk = (—(b-Mi 1+ PLiw)/2 5 ARiq = ((B-N)i, 1 + PrK,)/2, (24)

wherep j, prj andpL,, Prk, are the primal and dual parameters which optimize
the convergence factor of the continuous algorithm (4)sTdptimization is per-
formed by a numerical minimization process. With the forvegiby (23)-(24), the
hypothesis in Theorem 3 reducesfo; = prj andpL k, = PRk, -

Remark 2The scheme we proposed here is different from the one deseliog1].
On the other hand, it is shown independently in [7], using ralysis of the con-
vergence factor at the discrete level, that our method lemdsfaster convergence
than the approach in [1]. In our simulations, we observetlikang the optimized
parameters at the discrete level does not improve significtire convergence.

5 Numerical Results

Here, the Robin parameter f@,  is taken as the mean value of a|l r; and
AL/RK, @nd is denotedlf/R. Moreoverb-n=0onl in our tests, thuﬂ[‘/R = p*, the
same value for all primal and dudl &ndR) interface cells. Its discrete counterpart
P, is obtainded in the same way but with an optimization of tisewdite convergence
factor, denotegh,. We assume thd€ = vl wherel is the identity matrix.

In the first test case, we tak®y = (0,2.5) x (0,5) andQr = (2.5,5) x (0,5), with
T=1w =wr=1b=0,v =0.06,andv o, = 1. The mesh size and time step
areh= %) andAt = 7—10 respectively. On Fig. 2 we show a section along the diagonal
(Wm, km) — (W, kv ) Of pr (top left), where(wm, wiw) X (km, k) is the frequencies
interval over whichpy, is optimized, withwim = , wv = £t, kn= £, kv = f, and
the error versus the number of iterations for the Schwararahgn (top right) with
p* andp;,. We simulate directly the error equatiorfs= 0 and use a random initial
guess so that all the frequency components are present. $&evelthat usingy, or
p* give similar results. We also observe the equioscillatiapprty [2] with p},.

In the second test case, we taRe = (0,0.5) x (0,1) andQr = (0.5,1) x (0,1),
with T =1, =02, wr =1, V|g_= 0.005, v, = 0.01, and a rotating velocity
fieldb = (—sin(ri(y — 2))cogm(x— 3)),cos(m(y — 3))sin(r(x — 3))). We takeh =
159 andAt = . On Fig. 2 we show the computed solution at titme 0.4 (bottom
left) and the error versus the number of iterations (bottigt) for different values
of the Robin parametep, taken constant along the interface. We tdke 0 and a
random initial guess. We observe thtis close to the optimal numerical value.
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Fig. 2 Top: Discrete convergence factor (left) and error versustitems (right), withp* and p.
Bottom: solution at time& = 0.4 (left) and error versus iterations (right) for differentues ofp.
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