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1 Introduction

For the simulation of flows in rivers, lakes, and coastal areas for the executive
arm of the Dutch Ministry of Infrastructure and the Environment the shallow-water
solver SIMONA is being used [1]. Applications range from operational forecasting
of flooding of the Dutch coast [3] and big lakes [7], to the assessment of primary
water defences (coast, rivers, and lakes). These applications require a robust and ef-
ficient modelling framework with extensive modelling flexibility and good parallel
performance.

About two decades ago, a parallel implementation of SIMONA was developed
[10, 11] based on domain decomposition with maximum overlap. In the same pe-
riod, non-overlapping domain decomposition with optimized coupling was consid-
ered for Delft3D-FLOW [2], a shallow-water solver that is numerically very similar
to SIMONA. More recently, ideas of the latter were adapted for incorporation in
SIMONA for enhanced modelling flexibility and parallel performance. This will be
the subject of the present paper.

The paper is organized as follows. The numerical approach for modelling shal-
low-water flow as implemented in SIMONA is outlined in section 2. In section 3
we show how domain decomposition has been incorporated and which refinements
have been made. The parallel performance of the modified method is illustrated in
section 4 for two practical flow problems from civil engineering.

2 ADI-type shallow-water solvers

The shallow-water equations consist of a depth-integratedcontinuity equation and
two horizontal momentum equations. Vertical momentum is replaced by the hydro-
static pressure assumption, i.e., the vertical variation of the pressure is assumed to
depend solely on hydrostatic forces as determined by the position of the free sur-
face. For the numerical solution of the shallow-water equations SIMONA applies
a so-called alternating direction implicit (ADI) method tointegrate the equations
numerically in time, using an orthogonal staggered grid with horizontal curvilinear
coordinatesξ andη [1].
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In the ADI method, each time step is split in two stages of halfa time step. In
the first stage, the water-level gradient is taken implicitly in theξ -momentum equa-
tion and explicitly in theη-momentum equation. The mass fluxes in the continuity
equation are taken implicitly/explicitly inξ - andη-direction as well, allowing the
implicit terms to be combined to uncoupled tridiagonal systems of equations inξ -
direction for the water level at the intermediate time level. In contrast, the evaluation
of the horizontal convection terms and viscosity terms are respectively explicit and
implicit in the ξ - andη-momentum equation. In the second stage of the time step,
the implicit and explicit discretisations are interchanged. For stability, derivatives in
vertical direction and the bottom friction term are always integrated implicitly.

The ADI method requires the use of fairly small time steps to avoid excessive
splitting errors:

u∆ t
∆xξ

≤ O(1) ,
v∆ t
∆xη

≤ O(1) ,

√
gh∆ t
∆xξ

≤ O(10) , and

√
gh∆ t
∆xη

≤ O(10) . (1)

Here,∆xξ , ∆xη are the grid sizes andu, v the velocities in the two horizontal curvi-
linear coordinate directionsξ andη , ∆ t is the time step,h the local water depth, and
g the acceleration due to gravity (

√
gh is the shallow-water wave celerity). Because

of the conditions (1), the discretized equations to be solved have a fairly high diago-
nal dominance horizontally. This enables the use of semi-explicit iterative methods
horizontally, such as red-black Jacobi to solve implicit convection and viscosity.
For the same reason, horizontal domain decomposition with explicit coupling, if de-
signed properly, can be very efficient. We remark that in the vertical direction grid
sizes≪ ∆xξ , ∆xη are used and the systems of equations are much stiffer. Vertical
derivatives are therefore always integrated implicitly intime.

3 Domain decomposition techniques for ADI-type shallow-water
solvers

About two decades ago, a parallel implementation of SIMONA was developed
[10, 11] using a multi-domain version of the ADI method with Dirichlet-Dirichlet
coupling and maximum overlap to ensure fast convergence. This approach is still
applied in the 2006 version of SIMONA. Later on, for modelling flexibility, the
possibility to use different grid resolutions per subdomain has been introduced. For
such a situation it is not that easy to deal with an overlap between subdomains.
Therefore, the overlap was removed. This concerns the overlap of the physical area
of the subdomains, i.e., the area containing the inner grid cells. For the implementa-
tion of boundary conditions and coupling conditions, virtual grid cells were added
outside the physical areas along boundaries and DD interfaces. So although the
subdomains do not overlap, the subdomain grids do. Unfortunately, a Dirichlet-
Dirichlet coupling with minimal overlap (only the virtual grid cells overlap) has
a very slow rate of convergence. See also panel (b) of Fig. 1. By re-using ideas
from a non-overlapping domain decomposition approach withoptimized coupling
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for Delft3D-FLOW [2], the good convergence behavior has been restored. This ap-
proach is implemented since 2010 in SIMONA.

To illustrate how convergence errors due to domain decomposition propagate
from one subdomain to another in a multi-domain ADI-type shallow-water solver,
we consider a uniform grid of size∆xξ , a uniform depthh, and assume a small
surface elevationζ and flow velocityu. The implicit systems in theξ -direction at
the first half time step fromtn to tn+1/2 are then of the form (discretized continuity
equation and momentum equation):

ζ n+1/2
i −ζ n

i

∆ t/2
+h

un+1/2
i+1/2 −un+1/2

i−1/2

∆xξ
= . . . ,

un+1/2
i+1/2 −un

i+1/2

∆ t/2
+g

ζ n+1/2
i+1 −ζ n+1/2

i

∆xξ
= . . . .

(2)
At the second half time step fromtn+1/2 to tn+1, equations inη-direction (j-index)

are obtained. By eliminatingun+1/2
i+1/2 , the two equations (2) can be combined to:

ζ n+1/2
i −CFL2

(

ζ n+1/2
i+1 −2ζ n+1/2

i +ζ n+1/2
i−1

)

= . . . , (3)

with CFL numberCFL =
√

gh∆ t/(2∆xξ ).
To study the behavior of (3) in a DD framework, we consider thehomogeneous

equation that is satisfied by the DD convergence errorδζ n+1/2,m
i = ζ n+1/2,m

i −
ζ n+1/2

i , with ζ n+1/2
i the solution that is sought andζ n+1/2,m

i its iteratively deter-
mined approximation at iterationm:

δζ n+1/2,m
i −CFL2

(

δζ n+1/2,m
i+1 −2δζ n+1/2,m

i +δζ n+1/2,m
i−1

)

= 0 . (4)

The inhomogeneous perturbation ofδζ n+1/2,m
i comes from the boundaries of the

subdomains where information is updated explicitly (Schwarz algorithm). Equation
(4) determines how that information spreads across a subdomain and reaches the
opposite subdomain boundary. This becomes clear from the solution of (4), which
is of the form:

δζ n+1/2,m
i = CLRλ i +CRLλ−i , (5)

with λ = (CFL2+1/2−
√

CFL2 +1/4)/CFL2. The solution consists of the super-
position of two modes: one decaying from left to right and onedecaying from right
to left. Panel (a) in Fig. 1 illustrates this for a subdomain of 8 grid cells atCFL = 2
(green),CFL = 5 (red), andCFL = 10 (blue). ForCFL ≪ 1, we haveλ ≈ 1/CFL2.
At such a high decay rate per grid cell, which is due to the large diagonal dominance
of (4), a Dirichlet-Dirichlet coupling is efficient. ForCFL ≫ 1, however, we have
λ ≈ 1−CFL−1 and hence a much lower decay rate. A Dirichlet-Dirichlet coupling
is then not efficient anymore, unless a large overlap is used to compensate for the
low decay rate. This is illustrated in panel (b) and (c) of Fig. 1.

A much larger DD convergence speed is obtained by only transfering from left to
right (right to left) the information that is moving in that direction. This is realized
by the coupling:
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(a)

(b)

(c)

(d)

Fig. 1 Behavior of convergence errorδζ n+1/2,m
i in subdomains consisting of 8 inner grid cells

(white) and 1, 2, or 3 added virtual grid cells (grey) that overlap with inner grid cells of neighbour-
ing subdomains: (a) inside a subdomain atCFL = 2 (green),CFL = 5 (red), andCFL = 10 (blue);
(b) across 3 subdomains atCFL = 5 with Dirichlet boundary condition left, Neumann boundary
condition right, and multiplicative Schwarz Dirichlet-Dirichlet coupling with minimal overlap in
between (red, blue, green indicate subsequent DD iterations);(c) enhancement of DD convergence
with Dirichlet-Dirichlet coupling when using a larger overlap (increasingly longer dotted lines
indicate error reduction for 1-, 2-, and 3-cell overlap); (d) across 3 subdomains with optimized
multiplicative Schwarz based on the decomposition of the convergence error (red lines) in its two
solution modes (blue and green lines), cf. (5). Note that in (b, c) the arrows indicate the transfer of
Dirichlet values from an inner grid cell to a virtual grid cell; in (d) the arrows indicate the transfer
of optimized coupling information from interface to interface.

(CFL+1/2)δζ n+1/2,m+1
iR

− (CFL−1/2)δζ n+1/2,m+1
iR+1

= (CFL+1/2)δζ n+1/2,m
iL−1 − (CFL−1/2)δζ n+1/2,m

iL
, (6)

with iR the index of the left virtual grid cell of the subdomain rightof the DD inter-
face under consideration, and withiL the index of the right virtual grid cell of the
subdomain left. Notice the explicit nature of the coupling:the solution of domainL
at previous iterationm determines the value (right-hand side of (6)) of the condition
to be imposed at the left boundary of domainR during next iterationm+1 (left-hand
side of (6)). An equivalent procedure is used for the transfer of coupling information
in the other direction, from domainR to domainL.
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Panel (d) of Fig. 1 illustrates the high DD convergence rate that can be obtained
with an optimized coupling; the convergence speed is about as high as would be
obtained with a Dirichlet-Dirichlet coupling with maximumoverlap (of half a sub-
domain, cf. panel (c)). However, because of the overlap, theamount of work per
iteration in the latter would be twice as large. Furthermore, as mentioned before, it
can not be combined easily with local grid refinements for which the grid cells in
the overlap do not coincide, contrary to the situation in panel (c).

The fast DD convergence speed that for diagonally dominant problems can be
obtained with an optimized explicit local DD coupling (optimized Schwarz), and
the link with absorbing boundary conditions, is well known [8, 5, 4, 9, 6]. Because
the splitting applied in the ADI method leads to independent1D problems, we have
the advantage that the optimized coupling can not only easily be determined for
constant∆xξ andh, as we did here, but also for the general case, by means of the
LU decomposition of the resulting tridiagonal systems thatare of the form (3), but
with space- and time-varying coefficients. The bidiagonal L-matrices describe the
decay of the solution in increasingi- (or j-) direction. Their last rows determine
the combinations of pairs ofζ ’s at the subdomain interface (oneζ in a virtual grid
cell, the otherζ in the adjacent inner grid cell) that do not specify this partof the
solution, and hence only specify solution modes decaying indecreasingi- (or j-)
direction. Transfering these combinations in decreasingi- (or j-) direction across
DD interfaces (the variable-coefficient generalization of(6)) therefore ensures max-
imum DD convergence speed. Likewise for the bidiagonal U-matrices and the ex-
change of coupling information in the other direction.

4 Applications

There are many application areas of SIMONA. Here we present two examples. First
we show the effect of the optimized coupling without overlapfor a schematic model
of the river Waal in the Netherlands. This schematic model has a simple geomet-
ric shape such that load balancing is straightforward. Second we show the parallel
performance of the approach for DSCM, a huge real-life hydrodynamic model in
which both load balancing and number of unknowns are an issue.

For the experiments we considered the following hardware:

• H4 linux-cluster at Deltares, nodes interconnected with Gigabit Ethernet, each
node contains 1 AMD dual-core Athlon X2 5200B processor with2.7 GHz per
core,

• H4+ linux-cluster at Deltares, nodes interconnected with Gigabit Ethernet, each
node contains 1 Intel quad-core i7-2600 processor with 3.4 GHz per core and
hyperthreading (so effectively 8 threads are used on 4 cores), and

• Lisa linux-cluster at SURFsara, nodes interconnected withInfiniband, each node
contains 2 Intel quad-core Xeon L5520 processors with 2.3 GHz per core.

On the H4 linux-cluster both the 2006 and 2010 version of SIMONA were used.
On the H4+ and Lisa linux-cluster the 2010 version of SIMONA was used. Recall
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(see section 3) that the 2006 version uses Dirichlet-Dirichlet coupling and maximum
overlap where the 2010 version uses optimized coupling without overlap.

4.1 Schematic model of river Waal
To study the effect of lowering the groynes on design flood level, in [12] a schema-
tised river reach was used that was based on characteristic dimensions of river Waal
in the Netherlands. Here, for the performance tests we will use the detailed model
of [12] in which the groynes are represented as bed topography (see Fig. 2).

The detailed model is a symmetrical compound channel of 30 kmlength includ-
ing floodplain (width of 1200 m) and main channel (width of 600m). We apply a
depth averaged version of SIMONA. The floodplain is schematised with grid cells
of 2 m x 4 m and the main channel with grid cells of 2 m x 2 m, resulting in more
than 9 million unknowns. A time step of 0.015 minutes is used,resulting in 12000
time steps for the 3 hour simulation that we consider here forthe performance tests.

From Fig. 2 it can be observed that, in general, SIMONA scaleswell. Further-
more, on the H4 linux-cluster the 2010 version of SIMONA is about 20-30 % faster
than the 2006 version. This additional work can be explainedfrom the overlap in
the 2006 version which is not in the 2010 version (see section3). The difference in
performance for the 2010 version of SIMONA on H4, Lisa, and H4+ linux-cluster
is because of the different hardware.

4.2 Next generation Dutch Continental Shelf Model (DCSM)
The current generation of nested SIMONA models used for predicting water levels
along the Dutch coast in an operational mode (see [3]) already require high per-
formance computing. At the Lisa linux-cluster parallel performance of the 2010
version of SIMONA was tested for a next generation version ofthe DCSM (North
Sea and adjacent region of the North Atlantic). This 3D (10 layer) higher resolution
model includes salinity and temperature stratification processes which are essential
for simulating among others the spread of the freshwater Rhine plume along the
Dutch coast. This new model requires a huge computational effort but simulation
times cannot increase for operational purposes. Although the North Sea model has
an irregular geometry which is not ideal for scalability, performance tests at Lisa
showed linear scalability up to 100 processors. The left panel of Fig. 3 shows the
partitioning of the domain in 96 subdomains of (about) the same number of grid
cells that is obtained by applying orthogonal recursive bisection (ORB). The right
panel shows the parallel performance on the Lisa linux-cluster as a function of the
number of subdomains and cores, for partitionings in stripsand by means of ORB.
The results show an optimal speed-up for the ORB partitioning and a small decay
in performance for the larger strip decompositions. The latter is due to the shape of
the strips. The strips become very thin with widths of less than a dozen grid cells
as the number of domains increases, which affects the validity of the applied local
coupling optimization.
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Fig. 2 Schematic model of river Waal: an excerpt of the model includingpart of the floodplain
(top), parallel performance for different versions of SIMONAand on different hardware (bottom).

Acknowledgements We thank SURFsara (www.surfsara.nl) for their support in using the Lisa
linux-cluster.
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Fig. 3 DCSM. Left: partitioning of computational domain in 96 subdomains using the orthogonal
recursive bisection (ORB) method. Right: parallel performanceon Lisa linux-cluster for partition-
ings in vertical strips and ORB partitionings.
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