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Abstract This paper develops an algebraic multigrid preconditioner for the graph
Laplacian. The proposed approach uses aggressive coarsening based on the aggrega-
tion framework in the setup phase and a polynomial smoother with sufficiently large
degree within a (nonlinear) Algebraic Multilevel Iteration as a preconditioner to the
flexible Conjugate Gradient iteration in the solve phase. We show that by combining
these techniques it is possible to design a simple and scalable algorithm. Results of
the algorithm applied to graph Laplacian systems arising from the standard linear
finite element discretization of the scalar Poisson problem are reported.

1 Introduction

This paper concerns the development of an algebraic multigrid (AMG) method for
solving the (graph) Laplacian problem. The corresponding linear system is defined
in terms of the following bilinear form:

(Au,v) = ∑
e∈E

weδeuδev+ ∑
i∈Sb

diuivi = ( f ,v), (1)

where G = (V ,E ) denotes an unweighted connected graph, V and E denote the
set of vertices and edges of G , respectively, and δeu = (ui− u j) for e = (i, j) ∈ E .
Note that the lower-order terms, diuivi, i ∈ Sb, are included to account for various
types of boundary conditions for problems originating from discretization of partial
differential equations (PDEs). If the lower-order terms are omitted and the wieghts
we = 1, then the variational problem reduces to the graph Laplacian for a graph G
that we focus on here. The graph Laplacian, A, is then a symmetric and positive
semi-definite matrix and its kernel is the space spanned by the constant vector.

The main aim of the paper is to study the use of polynomial smoothing to-
gether with aggressive unsmoothed aggregation-based algebraic multigrid (UA-
AMG) coarsening in developing an AMLI-cycle or k-cycle preconditioner [2] for
the graph Laplacian system. We consider the recently proposed polynomial based on
the best approximation to x−1 in the uniform norm [10] in formulating the proposed
UA-AMG algorithm. A multilevel smoothed aggregation (SA) AMG algorithm us-
ing polynomial smoothers based on Chebychev approximations and its V -cycle con-
vergence analysis are found in [13]. We note that, these results are also used in [10]

Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA
brannick@psu.edu

1



2 James Brannick

to derive an SA two-level preconditioner with polynomial smoothing for diffusion
problems. In both methods, the polynomial approximation is used to form (1) a
smoother for the interpolation operator and (2) a relaxation scheme for the solver.
These preconditioners yield uniformly convergent methods provided polynomials
of sufficiently large degree are used in both steps. Further development and analysis
of polynomial smoothers are found in [1] and [8, 3].

Here, we consider an approach in which the polynomial smoother is used as the
relaxation scheme in the AMG solver and interpolation is based on UA-AMG frame-
work. We show that using such plain aggregation based aggressive coarsening with
a polynomial smoother in a AMLI cycle or k-cycle leads to a uniformly convergent
method. Generally, the use of unsmoothed (or plain) aggregation to construct the
coarse space without the use of interpolation smoothing has been observed to result
in slow convergence of a V -cycle multilevel iterative solver. We note that recently
it has been shown that plain aggregation-based coarsening approaches can lead to
effective solvers for a variety of problems provided AMLI or k-cycles are used, e.g,
such approaches have been developed and analyzed for the graph Laplacian in [11],
for more general M matrices in [12, 7], and for problems in quantum dynamics
in [4]. Generally, the use of AMLI cycles and UA-AMG typically leads to low grid
and operator complexities, limited fill-in in the coarse level operators, and reduces
the arithmetic complexity in the setup phase substantially. The gains in the solve
phase are often less pronounced since AMLI- and NAMLI-cycles use additional
coarse-level corrections to accelerate convergence of the UA-AMG method.

In Section 2, we introduce a graph partitioning algorithm for constructing the
coarse space. Then, in Section 3, we establish an approximation property for such
piecewise constant coarse spaces, which together with the stability estimates for
such methods found in [7], gives a spectral equivalence result that holds for the
corresponding two-level method applied to graph Laplacian on general graphs. The
resulting estimate depends on the degree of the polynomial smoother and the coars-
ening ratio, i.e., the cardinality of the aggregates, and thus provides a way to adjust
the polynomial degree to compensate for aggressive coarsening. We note that the
result is a special case of the general result found in [10]. In the last section, we pro-
vide numerical experiments of the proposed multigrid approach applied to the graph
Laplacian and show that the coarsening can be quite aggressive and still only a low
degree polynomial is needed to obtain a scalable AMLI or k-cycle preconditioner.

2 Subspaces by graph partitioning and graph matching

We define a graph partitioning of G = (V ,E ) as a set of connected subgraphs Gi =
(Vi,Ei) such that ∪iVi = V , Vi∩V j = /0, i 6= j. In this paper, all subgraphs are
assumed to be non empty and connected. The simplest non trivial example of such
a graph partitioning is a matching, i.e, a collection (subset M ) of edges in E such
that no two edges in M are incident. For a given graph partitioning, subspaces of
V = R|V | are defined as
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VH = {v ∈V | v = constant on each Vi }. (2)

Note that each vertex in G corresponds to a connected subgraph Gi of G and every
vertex of G belongs to exactly one such component. The vectors from VH are con-
stants on these connected subgraphs. The `2 orthogonal projection on VH , which is
denoted by Q, is defined as follows:

(Qv)i =
1
|Vk| ∑

j∈Vk

v j, ∀i ∈ Vk. (3)

Given a graph partitioning, the coarse graph GH = {VH ,EH} is defined by assuming
that all vertices in a subgraph form an equivalence class and that VH and EH are the
quotient set of V and E under this equivalence relation. That is, any vertex in VH
corresponds to a subgraph in the partitioning, and the edge (i, j) exists in EH if and
only if the i-th and j-th subgraphs are connected in the graph G .

The algorithm we use in forming a graph partitioning is a variant of the approach
we developed and tested for graphics processing units in [5]. The procedure itera-
tively applies the following two steps:

(A) Construct a set S which contains coarse vertices by applying a maximal indepen-
dent set algorithm to the graph of Ak.

(B) Construct a subgraph for each vertex in S by collecting vertices and edges of the
neighbors of vertices in S.

3 Two-level preconditioner with polynomial smoothing for the
graph Laplacian

A variational two-level method with one post smoothing step is defined as follows.
Given an approximation w ∈ V to the solution u of the graph Laplacian system, an
update v ∈V is computed in two steps

1. y = w+PA†
HPT ( f −Aw), AH = PT AP.

2. v = y+R( f −Ay).

We use † to denote the pseudo inverse of a matrix. The corresponding error propa-
gation operator of the two-level method is given by

ET L = (I−RA)(I−πA), πA = PA†
HPT A.

Here, ET L is nonsymmetric and, thus, we consider the following symmetrization to
form the two-level preconditioner: B = (I−ET LE∗T L)A

†, with ∗ denoting the adjoint
with respect to the energy inner product (·, ·)A. We note that |ET L|2A = ρ(I−BA),
where ρ(X) is the spectral radius of the matrix X . Further, if R̄ satisfies (I− R̄A) =
(I−RA)2 so that R̄ = 2R−RAR, then using that πA is an A-orthogonal projection on
range(P), it follows by direct computation that B = R̄+(I−RA)PA†

HPT (I−AR) .
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In [10], a spectral equivalence result for the preconditioner B using a polynomial
smoother based on the best approximation to x−1 on a finite interval [λ0, λ1], 0 <
λ0 < λ1, in the uniform norm ( ‖·‖∞) is derived. Here, λ0 > 0 is any lower bound on
the spectrum of A and λ1 = ‖A‖`∞

is an approximation to ρ(A). The unique solution
to the minimization problem

qm(x) = argmin{‖1
x
− p‖∞,[λ0,λ1], p ∈Pm}, (4)

determines the polynomial approximation of degree m. For details on the three-term
recurrence used in its construction we refer to [10]. Define

Em := max
x∈[λ0,λ1]

|1− xqm(x)|= max
x∈[λ0,λ1]

x ·
∣∣∣∣1
x
−qm(x)

∣∣∣∣ .
Then, since λ1 is a point of Chebyshev alternance from [10, Theorem 2.1 and Equa-
tion (2.2)] for the error of approximation Em we have

Em = λ1

∣∣∣∣ 1
λ1
−qm(λ1)

∣∣∣∣= [
2λ1

λ1−λ0

]
·
[

δ m

a2−1

]
=

2κδ m

(κ−1)(a2−1)
.

Here, we have denoted κ = λ1
λ0
, δ =

√
κ−1√
κ+1 , and a = κ+1

κ−1 . Computing the error Em

then gives

Em =
δ m(κ−1)

2
.

A restriction on the degree m is given by the requirement that qm(λ1) > 0. A suf-
ficient condition for the positivity of this polynomial (and also necessary condition
in many cases) is that 1

λ1
−Em > 0. Thus, we need to find the smallest m such that

both Em < ρ and qm(λ1)> 0. We then have that the polynomial is positive if

δ m(κ−1)
2

≤ 1
λ1

⇒ δ
m ≤ 2

λ1(κ−1)
.

We note that from this it follows that R= qm(A) and hence R̄ are symmetric and posi-
tive definite, implying that the smoother in convergent in A-norm. Also, to guarantee
a damping factor less than ρ on the interval [λ0,λ1], we have

δ m(κ−1)
2

≤ ρ ⇒ δ
m ≤ 2ρ

κ−1
.

Thus, the minimal m that guarantees both properties are satisfied is given by

m≥ 1
| logδ |

max
{∣∣∣∣log

2ρ

κ−1

∣∣∣∣ , ∣∣∣∣log
2

λ1(κ−1)

∣∣∣∣} . (5)

The spectral equivalence result that we adopt to analyze a two-level method based
on plain aggregation with this polynomial smoother follows from this smoothing es-
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timate and the assumptions of stability and an approximation property of the coarse
space VH : for any v ∈Vh,

c−1
p ‖v−Qv‖2 + |v−Qv|2A ≤ c1|v|2A, (6)

where | · |A denotes the A semi norm. Recall that in this paper Q is the `2 projection
on the span of {1l}nH

l=1 (p.w. constant projection) and, thus, this inequality holds also
in the case that v is in the kernel of A, since then, all the terms are equal to zero.

Assume that VH is such that the above approximation and stability assumptions
hold and the polynomial qm is chosen such that (5) holds for a fixed value λ0. Then,
the following spectral equivalence holds

vT Av≤ vT B†v≤ KT G vT Av, KT G = 8+8c1
[
cnz cpcs +1

]
. (7)

This result is a special case of Theorem 4.6 in [10], refined for unsmoothed aggre-
gation applied to the graph Laplacian. Here, cnz is a constant that depends on the
number of nonzeros per row of A, the constant c1 involves the stability of Q in A-
norm and the constant cp arises from the weak approximation property, and as we
show below, depends on the cardinality and the diameter of the subgraphs in the
graph partitioning. The constant cs =

ln2 m
m2 , where m is the degree of the polynomial.

Thus, given a partitioning of the fine-level graph into subgraphs, G = ∪nH
l=1Gl , it is

possible to choose the degree of the polynomial m sufficiently large to control the
constant cp and hence KT G in the above spectral equivalence estimate. This result is
derived from the following estimate (see Corollary 4.4 in [10])

vT B†v≤ 4 inf
vh∈VH

[
|vH |2A +λcs‖v− vH‖2 + |v− vH |2A

]
. (8)

A similar result for smoothed aggregation based on Chebyshev polynomial approx-
imations is found in [8].

Next, we establish the approximation property for the p.w. constant coarse space
VH as defined in (2) for the graph Laplacian. Suppose that V = {1, . . . ,n} is par-
titioned into nonoverlapping subsets: V = ∪nH

l=1Vl ,nl = |Vl |. Each set of vertices
defines a subgraph G` whose vertex set is Vl and whose edges El are a subset of E ,
where (i, j) ∈ El if and only if both i and j are in Vl . Denote the graph Laplacian as-
sociated with the subgraph Gl by Al . Let 1 denote the constant vector on V and 1l the
constant vector on Vl extended by 0 outside Vl . Let λl be the smallest positive eigen-

value of the graph Laplacian on Gl , namely, λl is defined as λl = min
v: (v,1l)=0

(Alv,v)
‖v‖2 .

Here, the minimum is taken over all v ∈Rnl . Given v ∈Rn define ‖v‖2
Gl
= ∑ j∈V l v2

j ,
which is the `2 norm on the subgraph Gl . Now, since ((v−Qv),1l) = 0, we have
‖v−Qv‖2

Gl
≤ λ

−1
l ∑e∈El

(δev)2. Thus,

‖v−Qv‖2 =
nc

∑
l=1
‖v−Qv‖2

Gl
≤

nc

∑
l=1

λ
−1
l ∑

e∈El

(δev)2 ≤ cp ∑
e∈E

(δev)2 = cp(Av,v). (9)
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The last step follows from the definition of cp and the observation that since ∪lE` ⊂
E ,we have that for any v ∈ Rn, ∑

nH
l=1 ∑e∈El

(δev)2 ≤ ∑e∈E (δev)2 = (Av,v). Note that
this latter result holds since the second sum is over a larger set. For shape regular
subgraphs, Gl , the local constants λ

−1
l can be bounded in terms of |Vl | · diam(Gl)

using Cheeger’s inequality [9]. Here, diam(Gl) denotes the diameter of the longest
path in the lth subgraph. A similar technique is considered in [12], in which the
constants λ

−1
` are computed by solving local eigenvalue problems.

In [6], commuting relations involving a certain projection, Π , the p.w. constant
projection Q, the discrete gradient operator, B, and BT on the graph, G , are intro-
duced and are then used to derive a stability estimate of the form

|Q|2A = sup
v: (v,1)=0

|Qv|2A
|v|2A

≤ ‖Π‖2 ≤ c0 ,

where c0 is a constant that depends on the shape and alignment of the subgraphs,
but not on the dimension, |V |, of the graph Laplacian, A. It is noteworthy that this
bound holds for general graphs with few assumptions and, further, that, since Π is
constructed one row at a time, this estimate allows local energy estimates that can be
used in forming the graph partitioning. A similar approach was considered in [11].

Given the above approximation and stability estimates and using that |vH |A ≤
c0|v|A, vH = Qv, it follows that the inequality in (6) holds with c1 = 2c0 + 3 and
cp given in (9). This, in turn, implies the spectral equivalence of the two-level pre-
conditioner based on a p.w. constant coarse space VH for the graph Laplacian. We
remark that the Galerkin coarse-level operator AH = PT AP is generally a weighted
graph Laplacian of the form AH = BT

HDBH , where D is a diagonal weight matrix
with strictly positive entries and BH is the discrete gradient operator defined on the
coarse graph GH(VH ,EH). Similar stability and approximation properties of piece-
wise constant coarse spaces can be established in this more general setting as well
and, then, a similar proof of the spectral equivalence result follows with minor mod-
ifications. Alternatively, it is possible to replace the weighted graph Laplacian with
an unweighted one on the same graph and derive a spectral equivalence result be-
tween the two. The latter result, in turn, again can be used to establish a spectral
equivalence result for this modified two-level method.

4 Numerical results

We apply the proposed aggregation based preconditioner to graph Laplacians result-
ing from finite element discretizations of the scalar Laplace problem. We consider
both stationary AMLI-cycle and N-AMLI-cycle (k-cycle) preconditioners. For de-
tails on the theory and the implementation of the AMLI and N-AMLI methods we
refer to [2]. In the AMLI approach, we use the polynomial based on the best ap-
proximation to x−1 in the uniform norm to form a the preconditioner between any
two successive levels of the multilevel hierarchy, see [10]. In the N-AMLI-cycle,
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a nonlinear PCG (NPCG) method is applied recursively to solve the coarse-level
equations. The AMLI-cycle is used as a preconditioner for the CG method on the
finest level and the N-AMLI-cycle is applied as a preconditioner to the NPCG itera-
tion. To limit the memory requirements of the nonlinear scheme we restart the outer
fine-level NPCG method every five iterations.

In all tests, the maximal independent set algorithm used in the aggregation pro-
cess for constructing the coarse spaces is applied to the graph of A4, yielding a
coarsening factor of roughly n/nH = 30 between any two successive levels. The
problem is coarsened until the size of the coarsest level is less than 100. As the
relaxation method in the multilevel solver we use the polynomial smoother based
on the best approximation to x−1 on the interval [λ0, λ1], where the estimate of the
largest eigenvalue is computed as λ1 = ‖A‖`∞

and we set λ0 = λ1/10. Thus, taking
the degree as m = 4 in the polynomial smoother ensures the inequality (5) holds. We
test W -cycle AMLI and N-AMLI preconditioners with such smoother. The stopping
criteria for the flexible preconditioned conjugate gradient iteration is set to a 10−8

reduction in the relative A norm of the error and the number of iterations needed to
reach this tolerance in the different tests are reported.

In Table 4, we report results of the proposed method for graph Laplacians aris-
ing from discretizing the Poisson problem on structured and unstructured meshes.
We compare the performance of a stationary AMLI with a N-AMLI, both using the
same multilevel hierarchy obtained by applying the aggregation algorithm to the
same Poisson problem with Neumann boundary conditions discretized using stan-
dard linear Finite Elements. For the structured meshes we consider a 2d unit square
domain with n2 unknowns (left) and a 3d unit cube domain with n3 unknowns (mid-
dle). Results for more general graphs (right), coming from unstructured meshes re-
sulting from triangulations of the 3d unit cube, are also included. The unstructured
mesh is formed by adding a random vector of length h/2, where h is the grid length,
to each vertex of a structured triangulation, followed by a Delaunay triangulation.
The (AMLI) N-AMLI method yields a (nearly) scalable solver with low grid and

operator complexities – in all tests the grid complexities
∑

J
j=0 n j

n0
were less than 1.03

and the operator complexities
∑

J
j=0 nnz(A j)

nnnz(A0)
were less than 1.04.

2d struct. 3d struct. 3d unstruct.
n AMLI N-AMLI

5122 20 19
10242 22 20
20482 23 21
40962 24 21

n AMLI N-AMLI
323 22 20
643 23 22
1283 23 22
2563 25 22

n AMLI N-AMLI
323 24 21
643 25 23
1283 27 24
2563 28 24

Table 1 Results of W (1,1) AMLI and nonlinear AMLI preconditioners with degree m = 4 poly-
nomial smoother for the Poisson problem.
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5 Conclusion

An algebraic graph partitioning algorithm for aggressive coarsening is developed
and a two-level convergence theory of the resulting solver with polynomial smoother
is developed. It is shown numerically that the resulting N-AMLI approach with
polynomial smoother yields an efficient solver for graph Laplacian problems com-
ing from Finite Element discretizations of the Poisson problem. The graph partition-
ing algorithm, intended for unweighted graphs, is designed to select shape regular
aggregates of arbitrary size and, thus, can be used to obtain predefined coarsen-
ing factors. The use of an unsmoothed aggregation form of aggressive coarsening
results in low overall grid and operator complexities and limited fill-in in the coarse-
level operators. It further significantly simplifies the triple matrix product to simple
summations of entries of the fine-level matrix.
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