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1 A discontinuous Petrov-Galerkin method for a model Poisson
problem

Discontinuous Petrov-Galerkin (DPG) methods are new discontinuous Galerkin
methods [3, 4, 5, 6, 7, 8] with interesting properties. In this article we consider a
domain decomposition preconditioner for a DPG method for the Poisson problem.

Let Q be a polyhedral domain in R (d = 2,3), €, be a simplicial triangulation
of Q. Following the notation in [8], the model Poisson problem (in an ultraweak
formulation) is to find € U such that

b(u,v)=1(r) Vv ev,
where U = [Ly(Q)]9 x Lo(Q) x HE (9Q4) x H(9Q). V = H(div: @) x H' (2y),

b(ﬂi/,%):/ﬂo-.fdx_ Z /

udivtdx+ Z/ ut-nds

KG.Qh K KGQh oK
— Z /G-gradvdx—i— Z / v6,ds
Ke@, 'K KeQ, ' 9K

for# = (o,u,i,6,) €U and v = (1,v) € V,and [(») = [ fvdx.

Here Hé/z(&Qh) (resp. H1/2(9,)) is the subspace of [Txcq, H'/*(9K) (resp.
[Tkeo, H~'/2(9K)) consisting of the traces of functions in H] () (resp. traces
of the normal components of vector fields in H(div;Q)), and H(div;€;,) (resp.
H'(£,)) is the space of piecewise H(div) vector fields (resp. H' functions). The
inner product on V is given by

((Tl,vl),(fz,V2))V = Z /[Tl - Ty +divTidiv 7o + vivp 4 grad vy -gradvz} dx.
KeQy,

The DPG method for the Poisson problem computes %, € Uj, such that
bz, v) =1(7) Vv eV @)

Here the trial space Uy, (C U) is defined by
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Up= [T [Ba®)) x [] Pu(K) x Prs1 (9L24) X Pr(9),
KeQ, KeQ,

P,(K) is the space of polynomials of total degree < m on an element K, B, 1(9£2;,) =
Hé/z(&Qh) NTlkeq, Pni1(9K), where P11 (dK) is the restriction of P,y (K) to
9K, and P,,(0Qy) = H™'/2(02;) NTkeq, Pn(9K), where P, (9K) is the space of
piecewise polynomials on the faces of K with total degree < m.

Let V' = {(,v) € V : t|g € [Pni2(K)]%, V| € P.(K) VK € 2} for some r >
m—+d. The discrete trial-to-test map 7}, : U, — V" is defined by

(Than, v )y = b, v), N, €Uy, v €V’

and the test space Vj, is T, Uj,.
We can rewrite (1) as a;(%,,7) = [(T») for all » € Uy, where

ah(%,w) = bh((‘//,ThW) = (Th%,Th“//)V
is an SPD bilinear form on V}, X V},, and we define an operator Aj, : U, — U,’, by
(Apa vy = ap(,») Yu,r € U, 2)

Our goal is to develop a one-level additive Schwarz preconditioner for Ay, (cf. [9]).
To avoid the proliferation of constants, we will use the notation A < B (or B > A)
to represent the inequality A < (constant) x B, where the positive constant only
depends on the shape regularity of €, and the polynomial degrees m and r. The
notation A = B is equivalent to A < B and B < A.
A fundamental result in [8] is the equivalence

2 2 ) A 12
an(r, ) = 0130 + ) a0z 00 H IO 100 )

that holds for all # = (o,u,d, 6,) € Uy, where

Iall7 =Y lal; = inf  fwlg )
HY2(00) Ké)k HI2(9K) Ké)k weH! (K)wlog=i 1 (k)

~ 12 A 112 . 2

o | = 16 ll%,— = inf 5 igvrr- )
18ully- 1200 = L N6l vao) = X e, |0

Therefore the analysis of domain decomposition preconditioners for A; requires a
better understanding of the norms || - [|;1/2( ox) and |-l g /2(9k) On the discrete

spaces P, 1(dK) and P, (9K).

2 Explicit Expressions for the Norms on 2, | (dK) and P,,(dK)

Lemma 1. We have
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112 0m) = i (1812, 000+ X 1EBnr))  ¥E € Puna(9K),

FeXg
where hy is the diameter of K and Xk is the set of the faces of K.

Proof. Let A (K) be the set of nodal points of the P4 Lagrange finite element
associated with K and ./ (dK) be the set of points in .4 (K) that are on dK.
Given any € B, | (9K), we define &, € P,..1(K) by

" ¢(p) if pe A (9K),
&(p) = { = . (6)
Cox if pe N (K)\ A (IK),
where Z:fa k 1s the mean value of i:’ over dK. Since i:’* = Z:’ on dK, we have
11 g1/2(ax) :Wem(‘?ﬂbf IWllg iy < 116l m k- @)

Suppose w € H'(K) satisfies w = £ on dK. It follows from (6) and the trace
theorem with scaling that

H&H%Z(K) S hK||€||%2(aK) = hK||W||i2(aK) S HW||1211(K)» )]
and, by standard estimates,
|§*|%-11(K) = |§* - €8K|%.11(K) 5 h;1 ||E* - (fakH%z(aK)
=i w—waklByomy S Wy ©)

Combining (7)—(9), we have ||&|? HI2(9K) ||C*|| . The lemma then follows

from (6), the equivalence of norms on ﬁnlte dlmensmnal spaces and scaling. 0O

Lemma 2. We have
I ~ hellCIIE k) + P! ¢d ’ V{ € Py (dK)
H=12(aK) KNS iy 0K) T [ 59S m\OR ).

Proof. We begin with the reference simplex K. Let RT,,(K) be the m-th order

Raviart-Thomas space (cf. [2]). Given any { € B, (812 ), we introduce a (nonempty)

subspace RT,,(K,{) = {q € RT,(K) : g-n=_{ on dK and divq € Py(K)} of RT,,(K).
Let . € RT;,(K,{) be defined by

.= min o -
¢ qeRTm(K;)Hq”LZ(K)

Then the map S : P,,(dK) — RT,,(K ) that maps ¢ to C, is linear and one-to-one,
and we have (S¢)-n = { on 9K, div (S¢) € Py(K) and

181y ~ 1€ lyory Y € Pu(dK). (10)



4 A.T. Barker, S.C. Brenner, E.-H. Park and L.-Y. Sung

Let {i,...,Cy, be a basis of P,(dK) and 1 = ¢y,..., ¢y, € H'/>(IK) satisfy

det [[aK Ci(])jdf} eien # 0. We define the map Q : H(div; K) — P,,(dK) by
715.17 m

/ak(QAq)¢]d§: <q'n7¢j>l—]*1/2(ak>xl_]l/2(ak) for 1< ] <N,.

It follows from the definition of Q that ||Qq|| 108 S 4l paiv;z) for all g €
H(div; K), and Qg = { if ¢-n = ¢ € P,,(dK), in which case
1€, S 1€ 0u0%) = 1041, 08) S Il ()
Moreover, since ¢; = 1, we have
Jodiv$0)de= [ (@a)1ds= a1y 2o ynman = [, divads

and hence
1div (SOl 2) < Idivall,, &)- (12

Now we turn to a general simplex K. It follows from (10)-(12) and standard
properties of the Piola transform for H(div) (cf. [10]) that there exists a linear map
S: Py(dK) — RT,(K) with the following properties:

(i) (S¢) -n= & and hence

181l 5-17205) = lgllaiv.x) < 1SS a@iviey V& € Pu(dK),
qcH

inf
(div;K), gnlog=¢
(ii) for any ¢ € H(div; K) such that ¢g-n = {, we have
HSCHH(div;K) S HQ||H(div;K)7

(i) div (S¢) € Py(K) and hence

Jantsorar= [ gas or vl = ([ cas) Ik,

(iv) we have
_ —(d—1
e IISSIZ, e ~ e “VNCI2 ok

Properties (i)—(iv) then imply

2
2 ~ 2 ~ 2 —d
€120k = 1€ ey = el yom + 1 ([ Sas) - O
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3 A Domain Decomposition Preconditioner

Let Q be partitioned into overlapping subdomains 1,...,2; that are aligned with
Q.. The overlap among the subdomains is measured by 6 and we assume (cf. [11])
there is a partition of unity 6y,...,0; € C*(Q) that satisfies the usual properties:
0; >0, ):?:1 0j=1on 0, 0 =00n N\ Q;, and

IV6llu@ S8 VI<j<U (13)
We take the subdomain space tobe U; = {# € U,: # =00n 2\ Q;}. Let # =
(0,u,i1,6,) € Uy. Then # € Uj if and only if (i) o and u vanish on every K outside

Q; and (ii) 7 and 6, vanish on dK for every K outside ;. We define a;(-,-) to be
the restriction of @ (+,-) on Uj x U;. Let A; : U; — U] be defined by

(Ajw, ) = aj(z, 1) Va7 € Uj. (14)
It follows from (3) that
2 A 2
aj(4,%) = 10}l 0,) + 14l 0 181200, 16015120,y (9

where % = (0j,u},i},6, ;) € Uj, 2 is the triangulation of £; induced by £, and
the norms || - ||H1/2(a-Qj,h) and || - | H-12(90,,) A€ analogous to those in (4) and (5).

Let I; : U; — Uy, be the natural injection. The one-level additive Schwarz pre-
conditioner By, : U, — Uy, is defined by

J
B, =Y LA;'I,.
j=1

Lemma 3. We have
Amin (BrAy) 2 87
Proof. Letly 1, Iy, I 3 and I 4 be the nodal interpolation operators for the compo-

nents [geq, [Pn(K)] " Tkea, Pu(K), Bui1(92) and P,,(9€2,) of Uy respectively.
Given any # = (o,u,i1,6,) € Uy, we define % € U; by

% = (In,1(0;0).112(8ju), In3(6;1),I,4(6;6,) ).

Then we have # = Zle 2 and, in view of (14) and (15),

(A5, ) = 101 (8,0) )+ I112(052) 3
+||1h3<eu>||H1/zaQ Mo I 1200, (16)

The following bounds for the first two terms on the right-hand side of (16) are
straightforward:
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2 2 2 2
118,010y S I01B, 0, and [G2(001E o) S Il (D)

We will use Lemma 1 and Lemma 2 to derive the following bounds

||Ih,3(ejﬁ)||?.]1/2(3_leh) 5 5_2||ﬁ|‘i]l/2(a_(2j,h)v (18)
N 21 A 112
||1h,4(9j6ﬂ)HHfl/Z(a_(Zj,h) 5 o HO_nHH—l/Z(an‘h)- (19)

Let K € Q; ;. It follows from Lemma 1, (13) and standard discrete estimates that

1 3(8j) 1717255, ~ hx(||1h73(91ﬁ)\\i2(31<> +FZZ ‘Ih,3(9jﬁ)|?-11(F))
€lg

S hillallz, ox) +he Y, (IVOi17_ o) lallZ, ) + 1617 )l ()
FeXg

5 hK”ﬁH%z(aK) +hK672||ﬁ”1242(91() +hk Z |’2‘12-11(1:) 5 672”’2”?{1/2(6[()-
FeXg

Summing up this estimate over all the simplexes in £; j, yields (18).
Similarly, it follows from Lemma 2 and (13) that

g 2
(8181 2oy Pl (8,60 o)+ i ([ 1o (6563 )
2 2
S hell8ull o)+ 1 ([ 1a[(0,—08)6,] )+ (0P ( [ 8uds)
2
gh,(HcAaniz(aK)+h,<6‘2\|6n||%2(3,<)+h;d(/aK6nds) < 87216ullf 120k

where Gf is the mean value of ¢; over K. Summing up this estimate over all the
simplexes in £; ; gives us (19).

Putting (2), (3) and (16)—(19) together we find 25:1<Aj%j,/?/j> S8 Ay, %),
which implies Anin (BjAy) = 82 by the standard theory of additive Schwarz precon-
ditioners [11]. O

Combining Lemma 3 with the standard estimate A« (ByA,) < 1, we obtain the
following theorem.
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Theorem 1. We have

K(ByAp) = M <C672,

Amin (BrAp)
where the positive constant C depends only on the shape regularity of 5, and the
polynomial degrees m and r.

Remark 1. Theorem 1 is also valid for DPG methods based on tensor product finite
elements.

4 Numerical results

We solve the Poisson problem on the square (0,1)> with exact solution u =
sin(7x;) sin(7x;) and uniform square meshes. The trial space is based on Q poly-
nomials for ¢ and u, P, polynomials for i, and P; polynomials for 6,,. We use
bicubic polynomials for the space V" in the construction of the trial-to-test map 7j,.

The number of conjugate gradient iterations required to reduce the residual by
109 are given in Table 1 for four overlapping subdomains. The linear growth of
the number of iterations for the unpreconditioned system is consistent with the con-
dition number estimate k(A;) < h~2 in [8]. Note that in this case the boundary of
every subdomain has a nonempty intersection with 0 and it is not difficult to use a
discrete Poincaré inequality to show that the estimate in Theorem 1 can be improved
to k(BjAy) < |Inh|§~!. This is consistent with the observed growth of the number
of iterations for the preconditioned system as § decreases.

Table 1 Number of iterations for the Schwarz preconditioner with subdomain size H = 1/2.

h 6 |unpreconditi0ned preconditioned

272 272|496 14
273 2731556 17
272 14
274 2743865 20
273 17
272 14
275 2758793 27
24 20
273 18

In Table 2 we display the results for # = 27> and various subdomain sizes H with
8 = H /2. The estimate k(Bj,A;) < 82 ~ H~? is consistent with the observed linear
growth of the number of iterations for the preconditioned system as H decreases.
Such a condition number estimate for the one-level additive Schwarz preconditioner
is known to be sharp for standard finite element methods [1].
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Table 2 Number of iterations with # = 2> and various subdomain sizes H with § = H /2.

h  H |unpreconditioned preconditioned

27527118793 15
272 25
273 45
2-4 89
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