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1 A discontinuous Petrov-Galerkin method for a model Poisson
problem

Discontinuous Petrov-Galerkin (DPG) methods are new discontinuous Galerkin
methods [3, 4, 5, 6, 7, 8] with interesting properties. In this article we consider a
domain decomposition preconditioner for a DPG method for the Poisson problem.

Let Ω be a polyhedral domain in Rd (d = 2,3), Ωh be a simplicial triangulation
of Ω . Following the notation in [8], the model Poisson problem (in an ultraweak
formulation) is to find U ∈U such that

b(U ,V ) = l(V ) ∀V ∈V,

where U = [L2(Ω)]d×L2(Ω)×H
1
2

0 (∂Ωh)×H−
1
2 (∂Ωh), V =H(div;Ωh)×H1(Ωh),

b(U ,V ) =
∫

Ω

σ · τ dx− ∑
K∈Ωh

∫
K

udivτ dx+ ∑
K∈Ωh

∫
∂K

ûτ ·nds

− ∑
K∈Ωh

∫
K

σ ·grad vdx+ ∑
K∈Ωh

∫
∂K

v σ̂n ds

for U = (σ ,u, û, σ̂n) ∈U and V = (τ,v) ∈V , and l(V ) =
∫

Ω
f vdx.

Here H1/2
0 (∂Ωh) (resp. H−1/2(∂Ωh)) is the subspace of ∏K∈Ωh

H1/2(∂K) (resp.
∏K∈Ωh

H−1/2(∂K)) consisting of the traces of functions in H1
0 (Ω) (resp. traces

of the normal components of vector fields in H(div;Ω)), and H(div;Ωh) (resp.
H1(Ωh)) is the space of piecewise H(div) vector fields (resp. H1 functions). The
inner product on V is given by(

(τ1,v1),(τ2,v2)
)

V = ∑
K∈Ωh

∫
K
[τ1 · τ2 +divτ1divτ2 + v1v2 +gradv1 ·gradv2]dx.

The DPG method for the Poisson problem computes Uh ∈Uh such that

b(Uh,V ) = l(V ) ∀V ∈Vh. (1)

Here the trial space Uh (⊂U) is defined by
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Uh = ∏
K∈Ωh

[Pm(K)]d× ∏
K∈Ωh

Pm(K)× P̃m+1(∂Ωh)×Pm(∂Ωh),

Pm(K) is the space of polynomials of total degree≤m on an element K, P̃m+1(∂Ωh)=

H1/2
0 (∂Ωh)∩∏K∈Ωh

P̃m+1(∂K), where P̃m+1(∂K) is the restriction of Pm+1(K) to
∂K, and Pm(∂Ωh) = H−1/2(∂Ωh)∩∏K∈Ωh

Pm(∂K), where Pm(∂K) is the space of
piecewise polynomials on the faces of K with total degree ≤ m.

Let V r = {(τ,v) ∈ V : τ|K ∈ [Pm+2(K)]d ,v|K ∈ Pr(K) ∀K ∈ Ωh} for some r ≥
m+d. The discrete trial-to-test map Th : Uh −→V r is defined by

(ThUh,V )V = b(Uh,V ), ∀Uh ∈Uh, V ∈V r,

and the test space Vh is ThUh.
We can rewrite (1) as ah(Uh,W ) = l(ThW ) for all W ∈Uh, where

ah(U ,W ) = bh(U ,ThW ) = (ThU ,ThW )V

is an SPD bilinear form on Vh×Vh, and we define an operator Ah : Uh −→U ′h by

〈AhU ,W 〉= ah(U ,W ) ∀U ,W ∈Uh. (2)

Our goal is to develop a one-level additive Schwarz preconditioner for Ah (cf. [9]).
To avoid the proliferation of constants, we will use the notation A . B (or B & A)

to represent the inequality A ≤ (constant)× B, where the positive constant only
depends on the shape regularity of Ωh and the polynomial degrees m and r. The
notation A≈ B is equivalent to A . B and B . A.

A fundamental result in [8] is the equivalence

ah(U ,U )≈ ‖σ‖2
L2(Ω)+‖u‖

2
L2(Ω)+‖û‖

2
H1/2(∂Ωh)

+‖σ̂n‖2
H−1/2(∂Ωh)

(3)

that holds for all U = (σ ,u, û, σ̂n) ∈Uh, where

‖û‖2
H1/2(∂Ωh)

= ∑
K∈Ωh

‖û‖2
H1/2(∂K)

= ∑
K∈Ωh

inf
w∈H1(K),w|∂K=û

‖w‖2
H1(K), (4)

‖σ̂n‖2
H−1/2(∂Ωh)

= ∑
K∈Ωh

‖σ̂n‖2
H−1/2(∂K)

= ∑
K∈Ωh

inf
q∈H(div;K),q·n|∂K=σ̂n

‖q‖2
H(div;K). (5)

Therefore the analysis of domain decomposition preconditioners for Ah requires a
better understanding of the norms ‖ · ‖H1/2(∂K) and ‖ · ‖H−1/2(∂K) on the discrete
spaces P̃m+1(∂K) and Pm(∂K).

2 Explicit Expressions for the Norms on P̃m+1(∂K) and Pm(∂K)

Lemma 1. We have
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‖ζ̃‖2
H1/2(∂K)

≈ hK

(
‖ζ̃‖2

L2(∂K)+ ∑
F∈ΣK

|ζ̃ |2H1(F)

)
∀ ζ̃ ∈ P̃m+1(∂K),

where hK is the diameter of K and ΣK is the set of the faces of K.

Proof. Let N (K) be the set of nodal points of the Pm+1 Lagrange finite element
associated with K and N (∂K) be the set of points in N (K) that are on ∂K.

Given any ζ̃ ∈ P̃m+1(∂K), we define ζ̃∗ ∈ Pm+1(K) by

ζ̃∗(p) =

{
ζ̃ (p) if p ∈N (∂K),

ζ̃∂K if p ∈N (K)\N (∂K),
(6)

where ζ̃∂K is the mean value of ζ̃ over ∂K. Since ζ̃∗ = ζ̃ on ∂K, we have

‖ζ̃‖H1/2(∂K) = inf
w∈H1(K),w|∂K=ζ̃

‖w‖H1(K) ≤ ‖ζ̃∗‖H1(K). (7)

Suppose w ∈ H1(K) satisfies w = ζ̃ on ∂K. It follows from (6) and the trace
theorem with scaling that

‖ζ̃∗‖2
L2(K) . hK‖ζ̃‖2

L2(∂K) = hK‖w‖2
L2(∂K) . ‖w‖

2
H1(K), (8)

and, by standard estimates,

|ζ̃∗|2H1(K) = |ζ̃∗− ζ̃∂K |2H1(K) . h−1
K ‖ζ̃∗− ζ̃∂K‖2

L2(∂K)

= h−1
K ‖w−w∂K‖2

L2(∂K) . |w|
2
H1(K). (9)

Combining (7)–(9), we have ‖ζ̃‖2
H1/2(∂K)

≈ ‖ζ̃∗‖2
H1(K)

. The lemma then follows
from (6), the equivalence of norms on finite dimensional spaces and scaling. ut

Lemma 2. We have

‖ζ‖2
H−1/2(∂K)

≈ hK‖ζ‖2
L2(∂K)+h−d

K

(∫
∂K

ζ ds
)2

∀ζ ∈ Pm(∂K).

Proof. We begin with the reference simplex K̂. Let RTm(K̂) be the m-th order
Raviart-Thomas space (cf. [2]). Given any ζ ∈ Pm(∂ K̂), we introduce a (nonempty)
subspace RTm(K̂,ζ ) = {q∈RTm(K̂) : q ·n= ζ on ∂ K̂ and divq∈P0(K̂)} of RTm(K̂).

Let ζ∗ ∈ RTm(K̂,ζ ) be defined by

ζ∗ = min
q∈RTm(K̂,ζ )

‖q‖L2(K̂).

Then the map Ŝ : Pm(∂ K̂) −→ RTm(K̂) that maps ζ to ζ∗ is linear and one-to-one,
and we have (Ŝζ ) ·n = ζ on ∂ K̂, div(Ŝζ ) ∈ P0(K̂) and

‖Ŝζ‖L2(K̂) ≈ ‖ζ‖L2(∂ K̂) ∀ζ ∈ Pm(∂ K̂). (10)
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Let ζ1, . . . ,ζNm be a basis of Pm(∂ K̂) and 1 = φ1, . . . ,φNm ∈ H1/2(∂ K̂) satisfy

det
[∫

∂ K̂ ζiφ j dŝ
]

1≤i, j≤Nm
6= 0. We define the map Q̂ : H(div; K̂)−→ Pm(∂ K̂) by

∫
∂ K̂

(Q̂q)φ j dŝ = 〈q ·n,φ j〉H−1/2(∂ K̂)×H1/2(∂ K̂) for 1≤ j ≤ Nm.

It follows from the definition of Q̂ that ‖Q̂q‖L2(∂ K̂) . ‖q‖H(div; K̂) for all q ∈
H(div; K̂), and Q̂q = ζ if q ·n = ζ ∈ Pm(∂ K̂), in which case

‖Ŝζ‖L2(K̂) . ‖ζ‖L2(∂ K̂) = ‖Q̂q‖L2(∂ K̂) . ‖q‖H(div; K̂). (11)

Moreover, since φ1 = 1, we have∫
K̂

div(Ŝζ )dx̂ =
∫

∂ K̂
(Q̂q)1dŝ = 〈q ·n,1〉H−1/2(∂ K̂)×H1/2(∂ K̂) =

∫
K̂

divqdx̂

and hence
‖div(Ŝζ )‖L2(K̂) . ‖divq‖L2(K̂). (12)

Now we turn to a general simplex K. It follows from (10)–(12) and standard
properties of the Piola transform for H(div) (cf. [10]) that there exists a linear map
S : Pm(∂K)−→ RTm(K) with the following properties:
(i) (Sζ ) ·n = ζ and hence

‖ζ‖H−1/2(∂K) = inf
q∈H(div;K),q·n|∂K=ζ

‖q‖H(div;K) ≤ ‖Sζ‖H(div;K) ∀ζ ∈ Pm(∂K),

(ii) for any q ∈ H(div; K) such that q ·n = ζ , we have

‖Sζ‖H(div;K) . ‖q‖H(div;K),

(iii) div(Sζ ) ∈ P0(K) and hence∫
K

div(Sζ )dx =
∫

∂K
ζ ds or ‖div(Sζ )‖2

L2(K) =
(∫

∂K
ζ ds

)2
/|K|,

(iv) we have
h−d

K ‖Sζ‖2
L2(K) ≈ h−(d−1)

K ‖ζ‖2
L2(∂K).

Properties (i)–(iv) then imply

‖ζ‖2
H−1/2(∂K)

≈ ‖Sζ‖2
H(div;K) ≈ hK‖ζ‖2

L2(∂K)+h−d
K

(∫
∂K

ζ ds
)2

. ut
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3 A Domain Decomposition Preconditioner

Let Ω be partitioned into overlapping subdomains Ω1, . . . ,ΩJ that are aligned with
Ωh. The overlap among the subdomains is measured by δ and we assume (cf. [11])
there is a partition of unity θ1, . . . ,θJ ∈ C∞(Ω̄) that satisfies the usual properties:
θ j ≥ 0, ∑

J
j=1 θ j = 1 on Ω̄ , θ j = 0 on Ω \Ω j, and

‖∇θ j‖L∞(Ω) . δ
−1 ∀1≤ j ≤ J. (13)

We take the subdomain space to be U j = {U ∈Uh : U = 0 on Ω \Ω j}. Let U =
(σ ,u, û, σ̂n) ∈Uh. Then U ∈U j if and only if (i) σ and u vanish on every K outside
Ω j and (ii) û and σ̂n vanish on ∂K for every K outside Ω j. We define a j(·, ·) to be
the restriction of ah(·, ·) on U j×U j. Let A j : U j −→U ′j be defined by

〈A jUj,Wj〉= a j(Uj,Wj) ∀Uj,Wj ∈U j. (14)

It follows from (3) that

a j(Uj,Uj)≈ ‖σ j‖2
L2(Ω j)

+‖u j‖2
L2(Ω j)

+‖û j‖2
H1/2(∂Ω j,h)

+‖σ̂n, j‖2
H−1/2(∂Ω j,h)

, (15)

where Uj = (σ j,u j, û j, σ̂n, j) ∈U j, Ω j,h is the triangulation of Ω j induced by Ωh and
the norms ‖ · ‖H1/2(∂Ω j,h)

and ‖ · ‖H−1/2(∂Ω j,h)
are analogous to those in (4) and (5).

Let I j : U j −→Uh be the natural injection. The one-level additive Schwarz pre-
conditioner Bh : U ′h −→Uh is defined by

Bh =
J

∑
j=1

I jA−1
j It

j.

Lemma 3. We have
λmin(BhAh)& δ

2.

Proof. Let Ih,1, Ih,2, Ih,3 and Ih,4 be the nodal interpolation operators for the compo-
nents ∏K∈Ωh

[
Pm(K)

]d , ∏K∈Ωh
Pm(K), P̃m+1(∂Ωh) and Pm(∂Ωh) of Uh respectively.

Given any U = (σ ,u, û, σ̂n) ∈Uh, we define Uj ∈U j by

Uj =
(
Ih,1(θ jσ), Ih,2(θ ju), Ih,3(θ jû), Ih,4(θ jσ̂n)

)
.

Then we have U = ∑
J
j=1 Uj and, in view of (14) and (15),

〈A jUj,Uj〉 ≈ ‖Ih,1(θ jσ)‖2
L2(Ω j)

+‖Ih,2(θ ju)‖2
L2(Ω j)

+‖Ih,3(θ jû)‖2
H1/2(∂Ω j,h)

+‖Ih,4(θ jσ̂n)‖2
H−1/2(∂Ω j,h)

. (16)

The following bounds for the first two terms on the right-hand side of (16) are
straightforward:
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‖Ih,1(θ jσ)‖2
L2(Ω j)

. ‖σ‖2
L2(Ω j)

and ‖Ih,2(θ ju)‖2
L2(Ω j)

. ‖u‖2
L2(Ω j)

. (17)

We will use Lemma 1 and Lemma 2 to derive the following bounds

‖Ih,3(θ jû)‖2
H1/2(∂Ω j,h)

. δ
−2‖û‖2

H1/2(∂Ω j,h)
, (18)

‖Ih,4(θ jσ̂n)‖2
H−1/2(∂Ω j,h)

. δ
−2‖σ̂n‖2

H−1/2(∂Ω j,h)
. (19)

Let K ∈Ω j,h. It follows from Lemma 1, (13) and standard discrete estimates that

‖Ih,3(θ jû)‖2
H1/2(∂K)

≈ hK

(
‖Ih,3(θ jû)‖2

L2(∂K)+ ∑
F∈ΣK

|Ih,3(θ jû)|2H1(F)

)
. hK‖û‖2

L2(∂K)+hK ∑
F∈ΣK

(
‖∇θ j‖2

L∞(Ω)‖û‖
2
L2(F)+‖θ j‖2

L∞(Ω)|û|
2
H1(F)

)
. hK‖û‖2

L2(∂K)+hKδ
−2‖û‖2

L2(∂K)+hK ∑
F∈ΣK

|û|2H1(F) . δ
−2‖û‖2

H1/2(∂K)
.

Summing up this estimate over all the simplexes in Ω j,h yields (18).
Similarly, it follows from Lemma 2 and (13) that

‖Ih,4(θ jσ̂n)‖2
H−1/2(∂ K̂)

≈ hK‖Ih,4(θ jσ̂n)‖2
L2(∂K)+h−d

K

(∫
∂K

Ih,4(θ jσ̂n)ds
)2

. hK‖σ̂n‖2
L2(∂K)+h−d

K

(∫
∂K

Ih,4
[
(θ j−θ

K
j )σ̂n

]
ds
)2

+h−d
K (θ K

j )
2
(∫

∂K
σ̂n ds

)2

. hK‖σ̂n‖2
L2(∂K)+hKδ

−2‖σ̂n‖2
L2(∂K)+h−d

K

(∫
∂K

σ̂n ds
)2

. δ
−2‖σ̂n‖2

H−1/2(∂K)
,

where θ K
j is the mean value of σ j over K. Summing up this estimate over all the

simplexes in Ω j,h gives us (19).
Putting (2), (3) and (16)–(19) together we find ∑

J
j=1〈A jUj,Uj〉 . δ−2〈AhU ,U 〉,

which implies λmin(BhAh)& δ 2 by the standard theory of additive Schwarz precon-
ditioners [11]. ut

Combining Lemma 3 with the standard estimate λmax(BhAh). 1, we obtain the
following theorem.
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Theorem 1. We have

κ(BhAh) =
λmax(BhAh)

λmin(BhAh)
≤Cδ

−2,

where the positive constant C depends only on the shape regularity of Ωh and the
polynomial degrees m and r.

Remark 1. Theorem 1 is also valid for DPG methods based on tensor product finite
elements.

4 Numerical results

We solve the Poisson problem on the square (0,1)2 with exact solution u =
sin(πx1)sin(πx2) and uniform square meshes. The trial space is based on Q1 poly-
nomials for σ and u, P2 polynomials for û, and P1 polynomials for σ̂n. We use
bicubic polynomials for the space V r in the construction of the trial-to-test map Th.

The number of conjugate gradient iterations required to reduce the residual by
1010 are given in Table 1 for four overlapping subdomains. The linear growth of
the number of iterations for the unpreconditioned system is consistent with the con-
dition number estimate κ(Ah) . h−2 in [8]. Note that in this case the boundary of
every subdomain has a nonempty intersection with ∂Ω and it is not difficult to use a
discrete Poincaré inequality to show that the estimate in Theorem 1 can be improved
to κ(BhAh). | lnh|δ−1. This is consistent with the observed growth of the number
of iterations for the preconditioned system as δ decreases.

Table 1 Number of iterations for the Schwarz preconditioner with subdomain size H = 1/2.

h δ unpreconditioned preconditioned

2−2 2−2 496 14
2−3 2−3 1556 17

2−2 14
2−4 2−4 3865 20

2−3 17
2−2 14

2−5 2−5 8793 27
2−4 20
2−3 18

In Table 2 we display the results for h = 2−5 and various subdomain sizes H with
δ =H/2. The estimate κ(BhAh). δ−2 ≈H−2 is consistent with the observed linear
growth of the number of iterations for the preconditioned system as H decreases.
Such a condition number estimate for the one-level additive Schwarz preconditioner
is known to be sharp for standard finite element methods [1].
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Table 2 Number of iterations with h = 2−5 and various subdomain sizes H with δ = H/2.

h H unpreconditioned preconditioned

2−5 2−1 8793 15
2−2 25
2−3 45
2−4 89
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