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1 Introduction

Discontinuous Galerkin (DG) methods offer an enormousliiési regarding local
grid refinement and variation of polynomial degrees remagesuch concepts pow-
erful discretization tools which have proven to be welltsdifor a variety of differ-
ent problem classes. While initially the main focus has beetransport problems
like hyperbolic conservation laws, interest has meanwdtiiéed towards diffusion
problems. Specifically, we focus here on the efficient sofutf the linear systems
of equations that arise from the Symmetric Interior PenBI§ method applied
to elliptic boundary value problems. [1] The principal aofijee is to develop ro-
bust preconditioners for the full “DG-flexibility” which nams to obtain uniformly
bounded condition numbers for locally refined meshes anirarity (subject to
mild grading conditions) varying polynomial degrees at¢kpense of linearly scal-
ing computational work. A first step towards that goal hasibeade in [3] treating
the case of geometrically conforming meshes but arbiyréaiige variable polyno-
mial degrees which already exposes major principal obstng In this paper we
complement this work by detailed studies of several isstisigg in [3].

To our knowledge the only concept yielding full robustneghwespect to poly-
nomial degrees is based bagendre-Gaul3-Lobatit.GL) quadrature. Specifically,
in the framework ofauxiliary space method®w order finite element discretiza-
tions on LGL-grids can be used to precondition high ordeypoinial discretiza-
tions. However, when dealing with variable degrees theiplessaon-matching of
such grids at element interfaces turns out to severely wtisitn general the de-
sign of efficient preconditioners. To overcome these dilties we propose in [3] a
concatenation of auxiliary space preconditioners. In tte §tage the spectral DG
formulation SE-DG) is transferred to a spectral continuous Galerkin formaoihat
(SE-CG). In the second stage we proceed from here to a finite eleroantifation
on a specific dyadic griddFE-CG) which is associated with an LGL-grid but be-
longs to a nested hierarchy. The latter problem can thendbéethby a multilevel
wavelet preconditioner presented in forthcoming work. dlerall path of our it-
erated auxiliary space preconditioner therfor8iDG — SE-CG — DFE-CG. It
should be noted that a natural alternative is to combine tsiesfiage with a domain
decomposition substructuring preconditioner as propasdd] admitting a mild
growth of condition numbers with respect to the polynomedcte.
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We are content here for most part of the paper with brief pogto the detailed
analysis in [3], [4] and [2] to an extent needed for the préd@&tussion.

Section 2 introduces our model problem, the LGL technigexjgained in Sec-
tion 3. The auxiliary space method is detailed in SectionHilexSections 5 and 6
consider stages 1 and 2 of our preconditioner. Finally inti8ec we give some
numerical experiments that shed light on the constantsattise in four basic in-
equalities used in the second stage.

2 Model problem and Discontinuous Galerkin formulation

Given a bounded Lipschitz domai@ ¢ RY with piecewise smooth boundary we
consider as a simple model problem the weak formulation: dimdH2(Q) such
that

a(u,v) ::/ Ou-Ovdx=(f,v), veH;(Q)
Q

of Poisson’s equatiorAu= f on Q with zero Dirichlet boundary conditions= 0
on dQ. For simplicity, we assume tha& is the union of a collectiorZ of finitely
many (hyper-)rectangles, which at most overlap with theurudaries. More com-
plex geometries can be handled by isoparametric mappings#BR) we denote
thel-dimensional facets of a (hyper-)rectangland by.% = Urc %% (R) the union
of all these objects. Lédy(R) be the side length dRin thek-th coordinate direction.

The polynomial degrees used in each &&dlre defined ap = (pk)ﬂzl, wherepy
is the polynomial degree in theth coordinate direction. We introduce the piecewise
constant functio® = (H, p) that collects thénp approximation parameters. Gn
we impose mild grading conditions, see [3] for the details.

For the spectral discretization of our model problem, weoslkeahe DG spectral
ansatz spac¥s := {ve L%(Q) :V|r € Qp(R) for all Re %}, whereQp(R) is the
tensor space of all polynomials of degree at mmeh the (hyper-)rectangle.

We employ the standard notation of DG methods for jumps aedages on the
mesh skeleton and ahQ. The Symmetric Interior Penalty Discontinuous Galerkin
method (SIPGhs(u,v) = (f,v) for all v € Vs with the SIPG bilinear form

as(Us,Vs) := » (Ous,Ovs)r+ S (=({0us}, [Vsl)r — ([us], {OVs})F)
Rew Fer

+ Z@V@([Ué]»[vé])l: = (f.vs)a, Vs€Vs
Fe

with - := max{wer-, W g+ } for internal faces andawgg: = %@.

For boundary faceB C dQ we setwrR := W.
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3 Legendre-Gaul3-Lobatto (LGL) grids

Denoting by(éi)ip;f the zeros of the first derivative of theth Legendre polyno-
mial Lp, (in ascending order), and settigg = —1 andé, = 1, 9, = (& )o<i<p

is the Legendre-Gaul3-Lobatto (LGL) grid of degneen the reference interval

I =[-1,1], see e.g. [5]. In combination with appropriate LGL weigivis)o<i<p the

LGL points of orderp can be interpreted as quadrature points of a quadrature rule
of exactness @2— 1. In [4] we prove quasi-uniformity of the LGL-grid$%p) pen,

ie., hiﬁi—}ép remains uniformly bounded independentmfwhereh; = |& — &_1] for
1<i<p-1.
The particular relevance of tensor product LGL-grids foequnditioners for

spectral element discretizations lies in the two norm eajaivces (see [5])
[ ]lim = 17058 [iry Torall ¢ € Qp(R), i€{0,1}, 1

which hold uniformly for anyd-dimensional hypercube = X ﬂzl Ik whereJthp is
the piecewise multi-linear interpolant on the tensor poddiGL-grid. ’

4 Abstract theory: Auxiliary Space Method

The auxiliary space method (ASM) [9, 11, 10] is a powerful cept for the con-
struction of preconditioners that can be derived from fibBtious space lemma
[8,7,9]

Given a problema(u,v) = f(v) for all v €V on the linear spac¥ equipped
with a bilinear forma(-,-) : V xV — R, we seek arauxiliary spaceV with an
auxiliary forma(-,-) :V xV — R that is in some sense close to the original one but
easier to solve. Note that we neither requite V norV c V which is important
in the context of non-conforming discretizations. Therefon the sunV =V +V
we need in general another versiaf,”) : V xV — R as well as a second form
b(-,-) :V xV — R which dominates onV and plays the role of a smoother. The
required closeness of the spadesindV is described with the aid of two linear
operatorsQ : V — V andQ : V — V. Specifically, these operators have to satisfy
certain direct estimates involving the above bilinear ferffor the details on the
ASM conditions see [9].

Lemma 1 (Stable Splitting [9]). Under the assumptions of the ASM, we have the
following stable splitting

a(v,v) ~ inf (b(w,w) +&(V,V)) forallveV.
weVveV: v=w+QV

The main result of the ASM is given in the following theorenh.[9

Theorem 1 (Auxiliary Space Method).Let Cg and C; be symmetric precondi-

tioners forB and A, respectively. LeS be the representation of Q/ — V. Then
Ca =Cg+ SCAST is a symmetric preconditioner fagk. Moreover, there exists a



4 Kolja Brix, Claudio Canuto, and Wolfgang Dahmen
uniform constant C such that the spectral condition numbe&s QA satisfies
K(CaA) < Ck(CgB)k(CzA).

For a given practical application it remains to identify &abie auxiliary space
V, the bilinear forma*V xV — R andab:V xV — R, as well as the two linear
operatorsQ and @, such that ASM conditions are satisfied. In addition effitien
preconditioners for the “easier” auxiliary probleidg andCg need to be devised.
Of course, the rationale is that the complexity to applyandCg should be much
lower than solving the original problem.

Note that the operatdﬁ neednot be implemented but enters only the analysis.

5 Stage 1: ASM DG-SEM— CG-SEM

In the first stage, we choose the largest conforming subspaeeVs N H3(Q) of
V :=Vj as auxiliary space so th& can be taken as the canonical injection. The
definition of the operato® can be found in [3].

The main issue in this stage is the choice of the auxiliamnfof-, -). Using LGL-
guadrature combined with an inverse estimate for the paleidaatives in the form
a(-,-) we arrive at

d
buv):=3 5 u@)v(&)cgW, W= (kz WE’|2(> W .
=1

REZ Ecp(R)

Here the weights; ~ 1 are chosen as

o - B1(01+Vp1m:wFR/Wg) ¢ €9%(F,R), FeJ41(R), ReZ,
¢ Bic3, else

wherewg - is the LGL quadrature weight dh seen as a face & and the param-
etersf3, p; can be used to “tune” the scheme. The resulting m&rix diagonal so
that the application o€g := B~ requires only’(N) operations. It is shown in [3]
that all ASM conditions are satisfied for this choicé6f -). Numerical experiments
show that the parametefs andp; can by and large be optimized independently of
the polynomial degrees.

6 Stage 2: CG-SEM— CG-DFEM

The second stage involves three major ingredients, namely

(1) the choice of spaces of piecewise multi-linear finiteredats on hierarchies of
nestedanisotropic dyadic grids, to permit a subsequent apptioatf efficient
multilevel preconditioners,

(2) the construction of the operatd@sandQ, and

(3) the construction of the auxiliary bilinear forig-, -).



Robust Preconditioners for Spectral DG 5

As for (1), the non-matching of LGL-grids for different degisp at interfaces pre-
vents us from taking low order finite element spaces as auyipace for the high
order conforming problem resulting from the first stagetdad, with each LGL-
grid ¢, we associate a dyadic griép ,, which is roughly generated as follows:
starting with the boundary points-1,1} as initial guess we adaptively refine the
grid. A subinterval in the grid is bisected into two parts gtial size, if the small-
est of the overlapping LGL-subintervals is longer tlatimes its length. The pa-
rametera therefore controls the mesh size of the dyadic grid. Howeeerinput
LGL-grids of different polynomial degrees the resultingadic grids are not nec-
essarily nested yet. How to ensure nestedness while ke#péngrid size under
control is shown in [3]. The key quality of the associateddigayrids%p p is that
mutual low order piecewise multi-linear interpolationween the low order finite
element spaces 0#iy(R), % p(R) is uniformly H1-stable, see [3] for the proofs.
Denoting byVhp p(R) the space of piecewise multi-linear conforming finite ele-
ments orép p(R), we now takeV := Vs NH(Q) andV :=Vhp NH(Q), where
Vho ={veC(Q) : VREZ, VRr:=VRE Vhp,p(R)}.

Concerning (2), the operat@ is defined element-wise as follows. For a given
element vertexz € .%p(R) let p* denote the polynomial degree vector whidle
entry is the minimum of thieth entries of all degree vectors associated with elements
R sharingz as a vertex. Here a grading of the degrees is important®. et Q; (R)
the multi-linear shape function dR satisfying conditionsp,(y) = &, for all y €
Zo(R). Then, we define

7= I 5 (@R) EVhp (R and i =SF % eQp(R), (2

where /7, ., 5 are the dyadic piecewise multilinear and high order LGL-
interpolants on the respective grids. Summing-up over éngoes ofR, we define

ri= ) % eVppR and  Qrlri=Vri= ) V€QpR). (3)

ze.%(R) ze.70(R)

The operatof is defined analogously with the roles of dyadic and LGL-gegs
changed, see [3].

To finally address (3), for the structure of the fobfy, -) from the first stage the
direct estimates in the ASM conditions are no longer valichds to be suitably
relaxed along the following lines. We make an ansatz of thefo

d

bvw) = 5 S (Y bRstw+ Y bhsw), @)
REZK=1 " s k(R SETKR)

where %k (R) is the collection of those LGL-subcel, ¢ € Xﬁzl{l,..., p(R)}

with side Iength:hl([') in the LGL-grid%,,(R) that arestrongly anisotropi@ccording

to (max . hlw') ) /hl(fk) > Caspectfor a fixed constanCaspect> 0, while 77 «(R) is
comprised of the remaining “isotropic” cells. On the isgimcells in.7; k(R) we
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use an inverse estimate applied to piecewise multi-lin€lt-interpolants ofr and

w. On the remaining anisotropic cells we retain integralg tive variable involving
the partial derivative and use quadrature in the remairaniglsles. For this auxiliary
formb(-,-) and the above operato@sand@ we can verify all ASM conditions, see
[3]. Note that the GramiaB is no longer diagonal and we refer to [3] for efficient
realizations ofCg.

7 Numerical experiments: Constants in the basic interpolabn
inequalities

A fundamental role in the proof of the ASM-conditions in tleesnd stag8E-CG —
DFE-CG is played by four basic interpolation estimates. In patégiknowing the
size of the constants arising in these inequalities and tlegiendence on the poly-
nomial degrees helps understanding the quantitativeteftdsserved in more com-
plex situations later on.

As before, let®, denote the affine shape function now on the reference interva
I =[~1,1] C R satisfying®,(x) = & for x,ze {~1,1}. By .7, we denote the poly-
nomial interpolation operator on the LGL-grig, for polynomial degree| and by
#nhp,q the piecewise affine interpolation operator on the dyadit 4  associated
with .

A major tool for proving the ASM conditions is given by thelfaking theorem.

Theorem 2. Assume that cg g < p for some fixed constante0. Then we have

| Za( @) iy S [Vl for allv e Qp(l), z€ {~1,1}, me {0,2},  (5)

and

|-%h,0,0(P9) [ymiy S [Vl|ymepy  forall Ve Vip p(l), z€ {-1,1}, me {0,1}. (6)

We determine nextumericallythe smallest constants that fulfill the inequalities
(5) and (6). This can be obtained by solving generalizedwiee problems for the
largest generalized eigenvalue. For all dyadic grids weostdhe grid generation
parametera = 1.2, which balances two effects: on the one hand, the generated
auxiliary space is rich enough for a good approximation ghbih the other hand, to
keep the solution of the auxiliary space feasible, the dygdd does not have too
many degrees of freedom. Figure 1 shows the dependence sindléest possible
constants on the polynomial degrgeandqin the range K p,q < 64.

We observe that the constants in (5) and (6) become large ferO when the
quotientp/q increases, but eventually stay bounded as longpes g < p for a
fixed c > 0. Form= 1 we find uniform moderate constants in (5) and (6) for ar-
bitrary choices ofp andg. While the nodes in the LGL-grids move gradually with
increasing degree the associated dyadic grids change roangtly which explains
the jumps in the graph in Figure 1(c).

We are particularly interested in the behavior of the caristavhen the quo-
tient of p andq is fixed, i.e., we restrict ourselves to a cross section tjncihe
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Fig. 1 Dependance of the constants in (5) and (6)pandq.

3-dimensional plots along a line in tiperplane. As an example, we chooge- 2q
representing strongly varying degrees on adjacent elan€hé smallest constants
in the inequalities for polynomial degregsip to 128 are displayed in Figure 2.
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Fig. 2 Constants in the basic interpolation inequalitiesger 2q (dashed line: (5), solid line: (6)).

While for m = 0 the constants quickly approach an asymptotic value fan bot
(5) and for (6), this is not true for (5) and = 1. In this case we observe a very
slow monotonic convergence to its asymptotic limit. Thusrfwderate polynomial
degrees one still observes a significant growth. Since stisiate is relevant for the
ASM conditions on the operat@ in the second stage, this leads to some growth
of the condition number of the preconditioned problem forderate polynomial
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degrees and significant inter-element jumps, althougheihally stays uniformly
bounded independent of the polynomial degiee

8 Summary and outlook

In this paper we sketch a preconditioner for the spectralnsgtric interior penalty
discontinuous Galerkin method that, under mild gradingd@tions, is robust in
variably arbitrarily large polynomial degrees, annougcitetailed results given in
[3]. The concept is based on the LGL-techniques for speatiethods combined
with judiciously chosen nested dyadic grids through arated application of the
auxiliary space method. A detailed exposition of a multialav preconditioner for
the dyadic grid problem, an extension to locally refined grdth hanging nodes,
strategies for parallel implementations, and the treatroéjumping coefficients
will be presented in forthcoming work.
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