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1 Introduction

Discontinuous Galerkin (DG) methods offer an enormous flexibility regarding local
grid refinement and variation of polynomial degrees rendering such concepts pow-
erful discretization tools which have proven to be well-suited for a variety of differ-
ent problem classes. While initially the main focus has been on transport problems
like hyperbolic conservation laws, interest has meanwhileshifted towards diffusion
problems. Specifically, we focus here on the efficient solution of the linear systems
of equations that arise from the Symmetric Interior PenaltyDG method applied
to elliptic boundary value problems. [1] The principal objective is to develop ro-
bust preconditioners for the full “DG-flexibility” which means to obtain uniformly
bounded condition numbers for locally refined meshes and arbitrarily (subject to
mild grading conditions) varying polynomial degrees at theexpense of linearly scal-
ing computational work. A first step towards that goal has been made in [3] treating
the case of geometrically conforming meshes but arbitrarily large variable polyno-
mial degrees which already exposes major principal obstructions. In this paper we
complement this work by detailed studies of several issues arising in [3].

To our knowledge the only concept yielding full robustness with respect to poly-
nomial degrees is based onLegendre-Gauß-Lobatto(LGL) quadrature. Specifically,
in the framework ofauxiliary space methodslow order finite element discretiza-
tions on LGL-grids can be used to precondition high order polynomial discretiza-
tions. However, when dealing with variable degrees the possible non-matching of
such grids at element interfaces turns out to severely obstruct in general the de-
sign of efficient preconditioners. To overcome these difficulties we propose in [3] a
concatenation of auxiliary space preconditioners. In the first stage the spectral DG
formulation (SE-DG) is transferred to a spectral continuous Galerkin formulation
(SE-CG). In the second stage we proceed from here to a finite element formulation
on a specific dyadic grid (DFE-CG) which is associated with an LGL-grid but be-
longs to a nested hierarchy. The latter problem can then be tackled by a multilevel
wavelet preconditioner presented in forthcoming work. Theoverall path of our it-
erated auxiliary space preconditioner therfore isSE-DG→ SE-CG→ DFE-CG. It
should be noted that a natural alternative is to combine the first stage with a domain
decomposition substructuring preconditioner as proposedin [6] admitting a mild
growth of condition numbers with respect to the polynomial degree.
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We are content here for most part of the paper with brief pointers to the detailed
analysis in [3], [4] and [2] to an extent needed for the present discussion.

Section 2 introduces our model problem, the LGL technique isexplained in Sec-
tion 3. The auxiliary space method is detailed in Section 4, while Sections 5 and 6
consider stages 1 and 2 of our preconditioner. Finally in Section 7 we give some
numerical experiments that shed light on the constants thatarise in four basic in-
equalities used in the second stage.

2 Model problem and Discontinuous Galerkin formulation

Given a bounded Lipschitz domainΩ ⊂ Rd with piecewise smooth boundary we
consider as a simple model problem the weak formulation: findu ∈ H1

0(Ω) such
that

a(u,v) :=
∫

Ω
∇u·∇v dx= 〈 f ,v〉 , v∈ H1

0(Ω)

of Poisson’s equation−∆u= f onΩ with zero Dirichlet boundary conditionsu= 0
on ∂Ω . For simplicity, we assume that̄Ω is the union of a collectionR of finitely
many (hyper-)rectangles, which at most overlap with their boundaries. More com-
plex geometries can be handled by isoparametric mappings. By Fl (R) we denote
thel -dimensional facets of a (hyper-)rectangleRand byFl =∪R∈RFl (R) the union
of all these objects. LetHk(R) be the side length ofR in thek-th coordinate direction.

The polynomial degrees used in each cellRare defined asp= (pk)
d
k=1, wherepk

is the polynomial degree in thek-th coordinate direction. We introduce the piecewise
constant functionδ = (H, p) that collects thehp approximation parameters. Onδ
we impose mild grading conditions, see [3] for the details.

For the spectral discretization of our model problem, we choose the DG spectral
ansatz spaceVδ :=

{

v∈ L2(Ω) : v|R ∈Qp(R) for all R∈ R
}

, whereQp(R) is the
tensor space of all polynomials of degree at mostp on the (hyper-)rectangleR.

We employ the standard notation of DG methods for jumps and averages on the
mesh skeleton and on∂Ω . TheSymmetric Interior Penalty Discontinuous Galerkin
method (SIPG)aδ (u,v) = 〈 f ,v〉 for all v∈Vδ with the SIPG bilinear form

aδ (uδ ,vδ ) := ∑
R∈R

(∇uδ ,∇vδ )R+ ∑
F∈F

(−({∇uδ} , [vδ ])F − ([uδ ] ,{∇vδ})F)

+ ∑
F∈F

γωF([uδ ] , [vδ ])F = ( f ,vδ )Ω , vδ ∈Vδ

with ωF := max
{

ωF,R− ,ωF,R+

}

for internal facesF andωF,R± := pk(R
±)(pk(R

±)+1)
Hk(R±)

.

For boundary facesF ⊂ ∂Ω we setωF,R := pk(R)(pk(R)+1)
Hk(R)

.
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3 Legendre-Gauß-Lobatto (LGL) grids

Denoting by(ξi)
p−1
i=1 the zeros of the first derivative of thep-th Legendre polyno-

mial Lp, (in ascending order), and settingξ0 = −1 andξp = 1, Gp = (ξi)0≤i≤p

is the Legendre-Gauß-Lobatto (LGL) grid of degreep on the reference interval
Î = [−1,1], see e.g. [5]. In combination with appropriate LGL weights(wi)0≤i≤p the
LGL points of orderp can be interpreted as quadrature points of a quadrature rule
of exactness 2p− 1. In [4] we prove quasi-uniformity of the LGL-grids(Gp)p∈N,

i.e., hi+1,p
hi ,p

remains uniformly bounded independent ofp, wherehi = |ξi − ξi−1| for
1≤ i ≤ p−1.

The particular relevance of tensor product LGL-grids for preconditioners for
spectral element discretizations lies in the two norm equivalences (see [5])

∥

∥ϕ
∥

∥

H i(R) h
∥

∥I
R
h,pϕ

∥

∥

H i(R) for all ϕ ∈Qp(R), i ∈ {0,1}, (1)

which hold uniformly for anyd-dimensional hypercubeR=×d
k=1 Ik whereI R

h,p is
the piecewise multi-linear interpolant on the tensor product LGL-grid.

4 Abstract theory: Auxiliary Space Method

The auxiliary space method (ASM) [9, 11, 10] is a powerful concept for the con-
struction of preconditioners that can be derived from thefictitious space lemma
[8, 7, 9].

Given a problema(u,v) = f (v) for all v ∈ V on the linear spaceV equipped
with a bilinear forma(·, ·) : V ×V → R, we seek anauxiliary spaceṼ with an
auxiliary formã(·, ·) : Ṽ ×Ṽ → R that is in some sense close to the original one but
easier to solve. Note that we neither requireV ⊂ Ṽ nor Ṽ ⊂ V which is important
in the context of non-conforming discretizations. Therefore on the sum̂V =V + Ṽ
we need in general another version ˆa(·, ·) : V̂ × V̂ → R as well as a second form
b(·, ·) : V̂ × V̂ → R which dominatesa onV and plays the role of a smoother. The
required closeness of the spacesV andṼ is described with the aid of two linear
operatorsQ : Ṽ → V andQ̃ : V → Ṽ. Specifically, these operators have to satisfy
certain direct estimates involving the above bilinear forms. For the details on the
ASM conditions see [9].

Lemma 1 (Stable Splitting [9]). Under the assumptions of the ASM, we have the
following stable splitting

a(v,v)∼ inf
w∈V,ṽ∈Ṽ: v=w+Qṽ

(b(w,w)+ ã(ṽ, ṽ)) for all v ∈V.

The main result of the ASM is given in the following theorem [9].

Theorem 1 (Auxiliary Space Method).Let CB and CÃ be symmetric precondi-
tioners forB and Ã, respectively. LetS be the representation of Q: Ṽ → V. Then
CA := CB +SCÃST is a symmetric preconditioner forA. Moreover, there exists a



4 Kolja Brix, Claudio Canuto, and Wolfgang Dahmen

uniform constant C such that the spectral condition number of CAA satisfies

κ(CAA)≤Cκ(CBB)κ(CÃÃ).

For a given practical application it remains to identify a suitable auxiliary space
Ṽ, the bilinear forms ˜a : Ṽ ×Ṽ → R andâ,b : V̂ ×V̂ → R, as well as the two linear
operatorsQ and Q̃, such that ASM conditions are satisfied. In addition efficient
preconditioners for the “easier” auxiliary problemsCÃ andCB need to be devised.
Of course, the rationale is that the complexity to applyCÃ andCB should be much
lower than solving the original problem.

Note that the operator̃Q neednot be implemented but enters only the analysis.

5 Stage 1: ASM DG-SEM→ CG-SEM

In the first stage, we choose the largest conforming subspaceṼ := Vδ ∩H1
0(Ω) of

V := Vδ as auxiliary space so thatQ can be taken as the canonical injection. The
definition of the operator̃Q can be found in [3].

The main issue in this stage is the choice of the auxiliary form b(·, ·). Using LGL-
quadrature combined with an inverse estimate for the partial derivatives in the form
a(·, ·) we arrive at

b(u,v) := ∑
R∈R

∑
ξ∈Gp(R)

u(ξ )v(ξ )cξWξ , Wξ :=

(

d

∑
k=1

w−2
ξ ,k

)

wξ ,k.

Here the weightscξ ∼ 1 are chosen as

cξ :=

{

β1(c2
1+ γρ1ωFwF,R/Wξ ), ξ ∈ Gp(F,R), F ∈ Fd−1(R), R∈ R,

β1c2
1, else,

wherewF,R± is the LGL quadrature weight onF seen as a face ofR± and the param-
etersβ ,ρ1 can be used to “tune” the scheme. The resulting matrixB is diagonal so
that the application ofCB := B−1 requires onlyO(N) operations. It is shown in [3]
that all ASM conditions are satisfied for this choice ofb(·, ·). Numerical experiments
show that the parametersβ1 andρ1 can by and large be optimized independently of
the polynomial degrees.

6 Stage 2: CG-SEM→ CG-DFEM

The second stage involves three major ingredients, namely

(1) the choice of spaces of piecewise multi-linear finite elements on hierarchies of
nestedanisotropic dyadic grids, to permit a subsequent application of efficient
multilevel preconditioners,

(2) the construction of the operatorsQ andQ̃, and
(3) the construction of the auxiliary bilinear formb(·, ·).
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As for (1), the non-matching of LGL-grids for different degreesp at interfaces pre-
vents us from taking low order finite element spaces as auxiliary space for the high
order conforming problem resulting from the first stage. Instead, with each LGL-
grid Gp we associate a dyadic gridGD,p, which is roughly generated as follows:
starting with the boundary points{−1,1} as initial guess we adaptively refine the
grid. A subinterval in the grid is bisected into two parts of equal size, if the small-
est of the overlapping LGL-subintervals is longer thanα times its length. The pa-
rameterα therefore controls the mesh size of the dyadic grid. However, for input
LGL-grids of different polynomial degrees the resulting dyadic grids are not nec-
essarily nested yet. How to ensure nestedness while keepingthe grid size under
control is shown in [3]. The key quality of the associated dyadic gridsGD,p is that
mutual low order piecewise multi-linear interpolation between the low order finite
element spaces onGp(R),GD,p(R) is uniformly H1-stable, see [3] for the proofs.
Denoting byVh,D,p(R) the space of piecewise multi-linear conforming finite ele-
ments onGD,p(R), we now takeV := Vδ ∩H1

0(Ω) andṼ := Vh,D ∩H1
0(Ω), where

Vh,D = {v∈C0(Ω) : ∀R∈ R , v|R := vR ∈Vh,D,p(R)}.
Concerning (2), the operatorQ is defined element-wise as follows. For a given

element vertexz∈ F0(R) let p∗ denote the polynomial degree vector whosekth
entry is the minimum of thekth entries of all degree vectors associated with elements
R′ sharingzas a vertex. Here a grading of the degrees is important. LetΦz ∈Q1(R)
the multi-linear shape function onR satisfying conditionsΦz(y) = δy,z for all y ∈
F0(R). Then, we define

ṽ∗z := I
R
h,D,p∗z

(ΦzṽR) ∈Vh,D,p∗z(R) and v∗z = I
R
p∗z

ṽ∗z ∈Qp∗z(R) , (2)

where I R
h,D,p∗z

,I R
p∗z

are the dyadic piecewise multilinear and high order LGL-
interpolants on the respective grids. Summing-up over the vertices ofR, we define

ṽ∗R := ∑
z∈F0(R)

ṽ∗z ∈Vh,D,p(R) and QRṽR := v∗R := ∑
z∈F0(R)

v∗z ∈Qp(R) . (3)

The operatorQ̃ is defined analogously with the roles of dyadic and LGL-gridsex-
changed, see [3].

To finally address (3), for the structure of the formb(·, ·) from the first stage the
direct estimates in the ASM conditions are no longer valid. It has to be suitably
relaxed along the following lines. We make an ansatz of the form

b(v,w) := ∑
R∈R

d

∑
k=1

(

∑
Sℓ∈T0,k(R)

b0
R,k,Sℓ

(v,w)+ ∑
Sℓ∈T1,k(R)

b1
R,k,Sℓ

(v,w)
)

, (4)

whereT0,k(R) is the collection of those LGL-subcellsSℓ, ℓ ∈×d
k=1{1, . . . , pk(R)}

with side lengthsh(ℓl )
l in the LGL-gridGp(R) that arestrongly anisotropicaccording

to (maxl 6=k h(ℓl )
l )/h(ℓk)

k > Caspect for a fixed constantCaspect> 0, while T1,k(R) is
comprised of the remaining “isotropic” cells. On the isotropic cells inT1,k(R) we
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use an inverse estimate applied to piecewise multi-linear LGL-interpolants ofv and
w. On the remaining anisotropic cells we retain integrals over the variable involving
the partial derivative and use quadrature in the remaining variables. For this auxiliary
form b(·, ·) and the above operatorsQ andQ̃ we can verify all ASM conditions, see
[3]. Note that the GramianB is no longer diagonal and we refer to [3] for efficient
realizations ofCB.

7 Numerical experiments: Constants in the basic interpolation
inequalities

A fundamental role in the proof of the ASM-conditions in the second stageSE-CG→
DFE-CG is played by four basic interpolation estimates. In particular, knowing the
size of the constants arising in these inequalities and their dependence on the poly-
nomial degrees helps understanding the quantitative effects observed in more com-
plex situations later on.

As before, letΦz denote the affine shape function now on the reference interval
Î = [−1,1]⊂R satisfyingΦz(x) = δx,z for x,z∈ {−1,1}. By Iq we denote the poly-
nomial interpolation operator on the LGL-gridGq for polynomial degreeq and by
Ih,D,q the piecewise affine interpolation operator on the dyadic grid GD,q associated
with Gq.

A major tool for proving the ASM conditions is given by the following theorem.

Theorem 2.Assume that cp≤ q≤ p for some fixed constant c> 0. Then we have

|Iq(Φzv)|Hm(Î) . ‖v‖Hm(Î) for all v ∈Qp(Î), z∈ {−1,1}, m∈ {0,1}, (5)

and

|Ih,D,q(Φzṽ)|Hm(Î) . ‖ṽ‖Hm(Î) for all ṽ∈Vh,D,p(Î), z∈ {−1,1}, m∈ {0,1}. (6)

We determine nextnumericallythe smallest constants that fulfill the inequalities
(5) and (6). This can be obtained by solving generalized eigenvalue problems for the
largest generalized eigenvalue. For all dyadic grids we choose the grid generation
parameterα = 1.2, which balances two effects: on the one hand, the generated
auxiliary space is rich enough for a good approximation while on the other hand, to
keep the solution of the auxiliary space feasible, the dyadic grid does not have too
many degrees of freedom. Figure 1 shows the dependence of thesmallest possible
constants on the polynomial degreesp andq in the range 1≤ p,q≤ 64.

We observe that the constants in (5) and (6) become large form= 0 when the
quotient p/q increases, but eventually stay bounded as long ascp≤ q ≤ p for a
fixed c > 0. For m= 1 we find uniform moderate constants in (5) and (6) for ar-
bitrary choices ofp andq. While the nodes in the LGL-grids move gradually with
increasing degree the associated dyadic grids change more abruptly which explains
the jumps in the graph in Figure 1(c).

We are particularly interested in the behavior of the constants when the quo-
tient of p andq is fixed, i.e., we restrict ourselves to a cross section through the
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Fig. 1 Dependance of the constants in (5) and (6) onp andq.

3-dimensional plots along a line in thepq-plane. As an example, we choosep= 2q
representing strongly varying degrees on adjacent elements. The smallest constants
in the inequalities for polynomial degreesq up to 128 are displayed in Figure 2.
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Fig. 2 Constants in the basic interpolation inequalities forp= 2q (dashed line: (5), solid line: (6)).

While for m= 0 the constants quickly approach an asymptotic value for both
(5) and for (6), this is not true for (5) andm= 1. In this case we observe a very
slow monotonic convergence to its asymptotic limit. Thus for moderate polynomial
degrees one still observes a significant growth. Since this estimate is relevant for the
ASM conditions on the operator̃Q in the second stage, this leads to some growth
of the condition number of the preconditioned problem for moderate polynomial
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degrees and significant inter-element jumps, although it eventually stays uniformly
bounded independent of the polynomial degreeq.

8 Summary and outlook

In this paper we sketch a preconditioner for the spectral symmetric interior penalty
discontinuous Galerkin method that, under mild grading conditions, is robust in
variably arbitrarily large polynomial degrees, announcing detailed results given in
[3]. The concept is based on the LGL-techniques for spectralmethods combined
with judiciously chosen nested dyadic grids through an iterated application of the
auxiliary space method. A detailed exposition of a multiwavelet preconditioner for
the dyadic grid problem, an extension to locally refined grids with hanging nodes,
strategies for parallel implementations, and the treatment of jumping coefficients
will be presented in forthcoming work.
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