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1 Introduction

Multiscale finite element methods (MsFEMS) have been widslyd when solving
elliptic PDEs with highly oscillating coefficients on mydte scales. Beyond their
application in the upscaling framework [7, 8, 9, 3], they aften utilized for the
construction of robust coarse spaces in the context of éwetloverlapping domain
decomposition preconditioners.

In [4, 2, 15] coarse basis functions are constructed by sgliacal generalized
eigenvalue problems. The scalar multiscale finite elemasishis used as a parti-
tion of unity to setup the spectral problems and allows theegision of the resulting
coarse space to be sufficiently low. The method guarantbestmess for various el-
liptic PDEs with respect to arbitrary coefficient variatso\nother recent approach
where generalized eigenvalue problems are solved in q@rig regions of local
subdomains is presented in [13]. It provides applicatiornsdtropic linear elasticity
problems with robustness properties similar to them in [4,5).

For scalar elliptic PDEs it is shown in [5, 6] that oscillatanultiscale finite
element coarse spaces ensure robustness for a large classffidient variations.
This includes variations in the interior of coarse elemgehtg allows coefficient
jumps also across coarse element boundaries when highasbnégions can be
characterized as a union of disjoint islands.

A first application of the multiscale finite element methodha(vector-valued)
linear boundary conditions to linear elasticity (see atedadaptive method in [11])
is given in [1]. If material jumps occur only in the interiof coarse grid ele-
ments, uniform condition number bounds which do not depenthe contrast in
the Young's modulus are obtained. However, the method failse robust when
stiff inclusions touch coarse element bondaries. This vatds the construction of
boundary conditions for the multiscale finite element basigch adapt to the het-
erogeneities in the PDE coefficients.

The outline of the paper is as follows. In Section 2 we staestjuations of linear
elasticity and briefly describe their discretization wittctor-valued piecewise lin-
ear finite elements. The abstract two-level additive Schwaathod is summarized
in Section 3. Section 4 contains the detailed introductibthe oscillatory multi-
scale finite element basis. Numerical results are presént8ection 5 and final
conclusions are given in Section 6.
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2 Finite Element Discretization in Linear Elasticity

Let Q c RY be a bounded, polyhedral & 3) or polygonal = 2) Lipschitz do-
main. The displacement field= (us,...,uq) " of a solid body inQ, deformed under
the action of a volume forcé and a traction forcg is governed by the mixed BVP

—divo(u) = f in Q, (1)
o(u)=C:g(u) in Q,

whereo is the stress tensag,is the strain tensor ar@(x) is the fourth order elas-
ticity tensor. The system in equation (1) is subject to thertalary conditions

u=0onlp, gun=tonly,

wheren is the unit outer normal vector ahQ = 'p U with meag/p) > 0.

Let % be a tetrahedrati(= 3) or triangular § = 2) mesh and lek,(Q) denote the
set of vertices if2. We introduce a finite element discretizatigyof displacements
uon the space" := spar{q&d’h : Q —»RY, % € 3,(Q), k=1,...,d} of continuous
piecewise linear vector-valued functions oR. Assuming enough regularity, the
discretization leads to a symmetric positive definite IImggstemAu = f (see e.g.
[10] for more details).

3 Overlapping Domain Decomposition Preconditioners

We are interested in constructing two-level overlappingem decomposition pre-
conditioners for the linear system which are robust w.rdsmparameters and varia-
tions in the PDE coefficients. They combine local solves @rlaypping subdomains
{Qi,i=1,...,N} (with overlap-widthd > 0) and a global solve on a coarse gfid.
Let 7° c 7{ be a coarse space defined.@i and let¥' = 7"(Q;) be the space of
vector-valued linear basis functions ¢ which are supported if;,i =1,...,N.
The action of the two-level additive Schwarz preconditide@efined implicitly by

N
Mg = RgAy'Ro+ _;Rwla,

whereR;, i =0,...,N is the restriction operator from" to 7' andA; = RAR! is
the corresponding submatrix 8f(cf. [14]). We assume here th&t; also consists
of tetrahedrad = 3) or triangles d = 2), each of which consists of a union of fine
elements € ;. For anyD C Q, we denote by (D) the set of nodes of in D
and.44 (D) is the corresponding index-set of coarse nodes.
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4 Multiscale Finite Elementsfor Linear Elasticity

Multiscale basis functions with oscillatory boundary citizths are introduced for
scalar elliptic PDEs in [7] to reflect the heterogeneitiedhie PDE coefficients
also across coarse element boundaries. In this section esemrthe extension
to linear elasticity. We define the multiscale basis andothiice suitable coordi-
nate transformations that allow the derivation of the eiguatwhich govern the
boundary data of the oscillatory multiscale basis on gdmaeshes. On compos-
ites with isotropic constituents, we present the consoundh detail. We denote by
wp:={T € I : p€ A4(T)} the union of coarse elements which share the node
xP e 24(Q) . Foranyp € 44(Q) andme {1,...,d}, the oscillatory multiscale

basis functior’" 5 @h™*°: w, — RY, is defined such that foF C ay,
div(C: e(@?@M)) =0 inT,
ghM%=nRT  ondT, &)

where the oscillatory boundary daq&T : 0T — RY are continuous and compati-

ble,i.e.nd’ = nnﬂ’T, ondTNAT C Qfor T, T' € 4. We impose the vector-valued
nodal constraints

N2T (X) = Spgdi, X4 € A (T), ke {1,...,d} 3)
and show howph " = (n2',...,nP )T is derived in Section 4.2 and 4.3.

4.1 Coordinate Transformation

The boundary datq,%T in equation (2) are extracted by solving a restricted versio
of the PDE (1) to the coarse element boundary which impliasmﬂ‘Mso |oT IS in-
dependent of the coordinate in the direction normalTo To make the construction
applicable to edges and faceslo€ .7 which are not aligned with or perpendicular
to one of the coordinate axis, we apply a suitable coorditratesformation of the
Cartesian coordinate system with bagi, ..., e} to a (right handed) coordinate
system with orthonormal bas€*, ...,&%}. W.l.o.g., for any

edge&: we introduce the rotated coordinate system suchehist parallel to&
face.#: we introduce the rotated coordinate system such that thmadlwvectom
on.Z is parallel to one of the coordinate axis, i = n.

LetXy, ...,%y be the coordinates af= (xq,...,%q) " W.r.t. the transformed basis. The
coordinate transformation can be described by a linear@ap— RY, X = ©@xwith
6;=¢&-e,1<i,j <d. The elasticity coefficients of the stiffness tenSdransform
under the rotation of the coordinate systerg;fQ = z%’q’r’ﬁl 6ip Bjq B Bis Cpqrs (Cf.

[12]).
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4.2 Equations Governing the Oscillatory Boundary Data

Using the rotated coordinate system in Section 4.1, we e¢hie reduced problems
on afaceZ of T € Z for the system of anisotropic linear elasticity. The compo-
nents of the elasticity operator in equation (1) read

d
jZ ﬁJUIJ Zﬁj ( Z C|J'k| & (U)) (4)

Forcing thatgh™s° = AR T (%1,...,%4_1) is independent of{"on .Z and using the
symmetryciji = Gijik of the stiffness tensor, we obtain by usigg(l) = %(dkm +
0/ Ux) in the rotated coordinate system

déA - dflé “
jOijm ) = j Cijki & (m'
D 9iGij(An") J<kgl ik & (1] )>

sdt d-1
= aj (kz CIJkI €kl(n +Zz C”dekd(r]p ))

=1

d1

=% 0 (kzl Giju 5k|(ﬁr?{T)) 5)
1; d-1
Z 31(2 CIJkdaknmd) (6)

While equation (5) affects exclusively the first two compmm;eofﬁr%T, equation

(6) acts only on the third component of the oscillatory baanyddata on%. For

an anisotropic stiffness tensor, a reduced system needasdolbed onZ in which

the three components a?;fr’f;zT are coupled. Having a deeper look at the entries of
the stiffness tensor, the systems in (5) and (6) are fullpdpted for an orthotropic
material Whose symmetry axes are normad'to.”,&%. Particularly, the components
'7m1T andnm2 on.7 are then governed by a 2D system of linear elasticity (ség (5)
while the componerﬁ normal to.# is governed by a scalar second order elliptic
PDE (see (6)). Analogously, on an edgewe can deduce that the boundary data

ﬁr%T(f(l) are governed by scalar second order PDEs in each particuiapanent
which may, again, be coupled in the anisotopic case.

4.3 Oscillatory Boundary Conditions for I sotropic Linear Elasticity

Given the formulation of the reduced problems in a suitablerdinate system, we
summarize the procedure of computing boundary Q&B on the faces and edges
of T, assuming that the stiffness tensor is isotropic. Its camepts are given by
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Ciji = A&j0a + U(GKdj + &1 jk), wherep > 0 andA > —%u are the Lamé coeffi-
cients of the material (see e.g. [10]) which we assume hdve fmecewise constant
in T € . Note that the material coefficients are not uniquely deieechondT,

a proper averaging (e.g. by taking their maximum valuesh@adjacent elements
T € % is required.

From (5) and (6), together withh" = A5 (%) along the edge?, the reduced
problem in rotated coordinates reads

[91((/\ +2u) 31ﬁr’f{1T) =0oné&,
o, (u 31;7;‘;{) —0oné, k=2,3. @)

It needs to be equipped with the boundary conditions defin€8)i Let us assume
that&” = &p,p, connects the two noded = xP, xP2 € 5, (Q), then we impose

iR’ (%) = O,
Ar%T()zpz) = (07 0, O)T (8)

In order to grasp immediately that the boundary data on a.faeee governed by a
reduced elasticity system in the first two components andlarselliptic problem in

the component normal t&, we state the equations governing the reduced problem
under the assumption that and u are piecewise constant ofi. This allows to
simplify the notation of the reduced system without affiegtits weak formulation.
According to equation (5) and (6), the reduced system reads

(O1AP + 2R ) + (A + ) (1A Sy + 012705 ) = 0 a.e. onZ,
H(Gu1Aly + 022105 ) + (A + 1) (BanfiBy +02iby ) = 0 ae.onZ,  (9)
u (511’7#1; + dzzﬁ,%;) =0 a.e.on%.
Let .# = Zp, p,p; CONtain the coarse noded, xP2 andxP. Then the three edges

Epipyr Eprps ANdEp,p, form the 2D boundary of the fac&. The system in (9) is
subject to the boundary conditions

P ~ P.Epyp
AR |y =1m " 1<k<I<3,

whereﬁﬁp“p‘ is the solution of the BVP in (7) and (8) on the edggp, in the

coordinate system w.r.t#Z and f]nﬂ’@ denotes the restriction OTnF%’T to 2 C 0T.
Note that the rotated coordinate systems differ for any fane edge. Once the
boundary data are computed on and edge or a face, they shetidrnsformed to
the original coordinate system.
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4.4 Propertiesof the Oscillatory Multiscale Basis

As shown in [1], the multiscale basis with vector-value@fnboundary datasL)

recovers all rigid body modes. If no material jumps occur le@ boundaries of
coarse elements, it can be shown tp&t"*° = @AM, Prescribing homogeneous
material parameters, both multiscale bases coincide Wwihvector-valued linear
coarse basis. Furthermore, the construction of the osmijlanultiscale basis guar-
antees that the rigid body translations are contained irctfase space. In gen-
eral, not all the rigid body rotations are preserved exaatiythe coarse element
boundaries. The complexity of computivpﬁ’Mso is of the same asymptotic order

O(d(*1)9) as forgh™*", with a small additional cost that is one ordertbtheaper.

5 Numerical Results

In this section we present numerical examples on a binaryposite. We apply
different coarsening strategies for the two-level addit&chwarz preconditioner,
including a vector-valued linear coarse space as well asisoale coarse spaces
with linear and oscillatory boundary conditions. We peniathe simulations on a
domainQ = [0,1] x [0,1] x [0,L],L > 0, using regular fine and coarse triangular
meshes’, and.Zy of equal structure with uniform mesh sig@ndH, respectively.
Both meshes are constructed from an initial voxel geometrgdcomposing each
voxel into five tetrahedra. In the experiments we show camditumbers as well as
iteration numbers of the PCG algorithm. The stopping doteis set to reduce the
preconditioned initial residual by 6 orders of magnitude.

The medium consists of an isotropic matrix material withficients (Umnat = 1
Amat = 1) and contains inclusiongifc, Ainc) Which are positioned equally in each
coarse block of sizél x H x H as shown in Fig. 1. The distribution of the inclu-
sions as well as the boundaries of the coarse tetrahedra@na $n more detail in
Fig. 2. At each slice in the plane normalXe andX; the position of the inclusions
above and below this level are indicated in dark and shadgdespectively. Each
inclusion touches or crosses coarse element boundariés arfe inclusion in the
center is isolated in the interior of a coarse element. Tabdaows the condition

Fig. 1 Binary composite; ..-. - [ ] '
matrix material (grey) and (YL R LL
inclusions (red); discretization n = a
in 14x14x7 voxels (left); 2D- ‘ ‘

projection onto théXj, Xp)- a [ k [
plane with position of the () ‘ -‘
inclusion (right); each coarse o ‘ ‘ ]
block is decomposed in five e ]

tetrahedra;
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and iteration numbers for the three coarsening strategidsrithe variation of the
material contrasf\g := Uinc/ Hmat = Ainc/Amat FOr Ag > 1, condition and iteration
numbers for vector-valued linear and multiscale coarseespéth linear boundary
conditions grow with the contrast in the material coeffitgmvhere the latter does
not perform noticeably better than the linear coarse spgdmmultiscale coarse ba-
sis functions with oscillatory boundary conditions are hded in energy and show
coefficient-independent bounds of the condition number.ZAz0< 1, each coarse
space performs well.

Table1 Condition numberg and iteration numbers (#it) of precond. matrix fér= 7h, d = 2h

Ae Lin MsL MsO

107° 26 (28) 26 (28) 26(28)
106 26 (28) 26 (28) 26(28)
1073 26 (28) 26 (28) 26(28)
1P 25 (27) 25 (27) 25(27)
10° 426(91) 233(76) 25(27)
100 965(102) 955(104) 25(27)
10° 970(102) 955(104) 25(27)

6 Conclusions

In this study, we extended the oscillatory multiscale figitement method as in-
troduced in [7] to the PDE system of anisotropic linear ét#gt We derived the

reduced system which governs the oscillatory boundary idatageneral setting
which allows their construction on triangular, tetrahédyaadrilateral and hexahe-
dral coarse meshes. We applied the coarse basis in the tohtex-level additive

Schwarz domain decomposition preconditioners. Numeriesiilts are presented
on a tetrahedral mesh for isotropic composites where ifagstouch the coarse

) @ ®)
Fig. 2 2D-slices (atXs = A l
Ih, | €{1,...,6}) of a coarse a
block of 7x 7 x 7 voxels of the ‘ ‘
medium in Fig. 1 ; boundaries | B \ﬂ
of coarse tetrahedral elements @ ®) ©)
(black), matrix material (grey) ‘ ‘ Em\ ;!f }
and 1x1x1 inclusions (red); [ | | 1 |
inclusions touch the slice from } ! ‘
below (shaded red) or top X \/h
(dark red); inclusions touch L | |

X

coarse element boundaries
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element boundaries. We observed condition number bountteqgireconditioned
linear system which are independent of the contrast in thenys modulus in the
inclusions.

Itis easy to verify (see e.g. [1]) that the computation of dtiseale finite element
basis is more costly on quadrilateral and hexahedral caaeshes than on their
triangular and tetrahedral counterparts (by a facto% of 2D and a factor of 2 in
3D). However, we may point out that, especially for applmas in three spatial
dimensions, using hexahedral coarse meshes may be berfefidtae robustness
of the overall method as it reduces the amount of element demigs which are
introduced when tetrahedral coarse meshes are used.
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