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1 Introduction

Multiscale finite element methods (MsFEMs) have been widelyused when solving
elliptic PDEs with highly oscillating coefficients on multiple scales. Beyond their
application in the upscaling framework [7, 8, 9, 3], they areoften utilized for the
construction of robust coarse spaces in the context of two-level overlapping domain
decomposition preconditioners.

In [4, 2, 15] coarse basis functions are constructed by solving local generalized
eigenvalue problems. The scalar multiscale finite element basis is used as a parti-
tion of unity to setup the spectral problems and allows the dimension of the resulting
coarse space to be sufficiently low. The method guarantees robustness for various el-
liptic PDEs with respect to arbitrary coefficient variations. Another recent approach
where generalized eigenvalue problems are solved in overlapping regions of local
subdomains is presented in [13]. It provides applications to isotropic linear elasticity
problems with robustness properties similar to them in [4, 2, 15].

For scalar elliptic PDEs it is shown in [5, 6] that oscillatory multiscale finite
element coarse spaces ensure robustness for a large class ofcoefficient variations.
This includes variations in the interior of coarse elements, but allows coefficient
jumps also across coarse element boundaries when high contrast regions can be
characterized as a union of disjoint islands.

A first application of the multiscale finite element method with (vector-valued)
linear boundary conditions to linear elasticity (see also the adaptive method in [11])
is given in [1]. If material jumps occur only in the interior of coarse grid ele-
ments, uniform condition number bounds which do not depend on the contrast in
the Young’s modulus are obtained. However, the method failsto be robust when
stiff inclusions touch coarse element bondaries. This motivates the construction of
boundary conditions for the multiscale finite element basiswhich adapt to the het-
erogeneities in the PDE coefficients.

The outline of the paper is as follows. In Section 2 we state the equations of linear
elasticity and briefly describe their discretization with vector-valued piecewise lin-
ear finite elements. The abstract two-level additive Schwarz method is summarized
in Section 3. Section 4 contains the detailed introduction of the oscillatory multi-
scale finite element basis. Numerical results are presentedin Section 5 and final
conclusions are given in Section 6.
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2 Finite Element Discretization in Linear Elasticity

Let Ω ⊂ R
d be a bounded, polyhedral (d = 3) or polygonal (d = 2) Lipschitz do-

main. The displacement fieldu = (u1, . . . ,ud)
⊤ of a solid body inΩ , deformed under

the action of a volume forcef and a traction forcet, is governed by the mixed BVP

−divσ(u) = f in Ω , (1)

σ(u) = C : ε(u) in Ω ,

whereσ is the stress tensor,ε is the strain tensor andC(x) is the fourth order elas-
ticity tensor. The system in equation (1) is subject to the boundary conditions

u = 0 onΓD, σ(u)n = t onΓN ,

wheren is the unit outer normal vector on∂Ω = ΓD ∪Γ N with meas(ΓD) > 0.
Let Th be a tetrahedral (d = 3) or triangular (d = 2) mesh and letΣh(Ω̄) denote the
set of vertices inΩ̄ . We introduce a finite element discretizationuh of displacements
u on the spaceV h := span

{

ϕ j,h
k : Ω̄ →R

d , x j ∈Σh(Ω̄ ), k = 1, . . . ,d
}

of continuous
piecewise linear vector-valued functions onTh. Assuming enough regularity, the
discretization leads to a symmetric positive definite linear systemAu = f (see e.g.
[10] for more details).

3 Overlapping Domain Decomposition Preconditioners

We are interested in constructing two-level overlapping domain decomposition pre-
conditioners for the linear system which are robust w.r.t. mesh parameters and varia-
tions in the PDE coefficients. They combine local solves on overlapping subdomains
{Ωi, i = 1, . . . ,N} (with overlap-widthδ > 0) and a global solve on a coarse gridTH .
Let V 0 ⊂ V h

0 be a coarse space defined onTH and letV i = V h(Ωi) be the space of
vector-valued linear basis functions onTh which are supported inΩi, i = 1, . . . ,N.
The action of the two-level additive Schwarz preconditioner is defined implicitly by

M−1
AS = R⊤

0 A−1
0 R0 +

N

∑
i=1

R⊤
i A−1

i Ri,

whereRi, i = 0, . . . ,N is the restriction operator fromV h to V i andAi = RiAR⊤
i is

the corresponding submatrix ofA (cf. [14]). We assume here thatTH also consists
of tetrahedra (d = 3) or triangles (d = 2), each of which consists of a union of fine
elementsτ ∈ Th. For anyD ⊂ Ω̄ , we denote byΣH(D) the set of nodes ofTH in D
andNH(D) is the corresponding index-set of coarse nodes.



Multiscale Finite Elements for Linear Elasticity: Oscillatory Boundary Conditions 3

4 Multiscale Finite Elements for Linear Elasticity

Multiscale basis functions with oscillatory boundary conditions are introduced for
scalar elliptic PDEs in [7] to reflect the heterogeneities inthe PDE coefficients
also across coarse element boundaries. In this section we present the extension
to linear elasticity. We define the multiscale basis and introduce suitable coordi-
nate transformations that allow the derivation of the equations which govern the
boundary data of the oscillatory multiscale basis on general meshes. On compos-
ites with isotropic constituents, we present the construction in detail. We denote by
ω̄p := {T ∈ TH : p ∈ NH(T )} the union of coarse elements which share the node
xp ∈ ΣH(Ω̄) . For anyp ∈ NH(Ω̄ ) andm ∈ {1, . . . ,d}, the oscillatory multiscale
basis functionV h ∋ φ p,MsO

m : ωp → R
d , is defined such that forT ⊂ ω̄p,

div(C : ε(φ p,MsO
m )) = 0 in T,

φ p,MsO
m = η p,T

m on ∂T, (2)

where the oscillatory boundary dataη p,T
m : ∂T → R

d are continuous and compati-

ble, i.e.η p,T
m = η p,T ′

m on∂T ∩∂T ′ ⊂ Ω̄ for T, T ′ ∈TH . We impose the vector-valued
nodal constraints

η p,T
mk (xq) = δpqδmk, xq ∈ NH(T ), k ∈ {1, . . . ,d} (3)

and show howη p,T
m = (η p,T

m1 , . . . ,η p,T
md )⊤ is derived in Section 4.2 and 4.3.

4.1 Coordinate Transformation

The boundary dataη p,T
m in equation (2) are extracted by solving a restricted version

of the PDE (1) to the coarse element boundary which implies that φ p,MsO
m |∂T is in-

dependent of the coordinate in the direction normal to∂T . To make the construction
applicable to edges and faces ofT ∈TH which are not aligned with or perpendicular
to one of the coordinate axis, we apply a suitable coordinatetransformation of the
Cartesian coordinate system with basis{e1, . . . ,ed} to a (right handed) coordinate
system with orthonormal basis{ê1, . . . , êd}. W.l.o.g., for any

edgeE : we introduce the rotated coordinate system such that ˆe1 is parallel toE
faceF : we introduce the rotated coordinate system such that the normal vectorn

onF is parallel to one of the coordinate axis, i.e. ˆe3 = n.

Let x̂1, . . . , x̂d be the coordinates ofx =(x1, . . . ,xd)
⊤ w.r.t. the transformed basis. The

coordinate transformation can be described by a linear mapΘ : T →R
d , x̂ =Θx with

θi j = êi ·e j, 1≤ i, j ≤ d. The elasticity coefficients of the stiffness tensorĈ transform
under the rotation of the coordinate system to ˆci jkl = ∑d

p,q,r,s=1 θip θ jq θkr θls cpqrs (cf.
[12]).
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4.2 Equations Governing the Oscillatory Boundary Data

Using the rotated coordinate system in Section 4.1, we derive the reduced problems
on a faceF of T ∈ TH for the system of anisotropic linear elasticity. The compo-
nents of the elasticity operator in equation (1) read

d

∑
j=1

∂ jσi j(u) =
d

∑
j=1

∂ j

( d

∑
k,l=1

ci jkl εkl(u)
)

. (4)

Forcing thatφ̂ p,MsO
m = η̂ p,T

m (x̂1, . . . , x̂d−1) is independent of ˆxd on F and using the
symmetry ˆci jkl = ĉi jlk of the stiffness tensor, we obtain by usingε̂kl(û) = 1

2(∂̂kûl +

∂̂l ûk) in the rotated coordinate system

d

∑
j=1

∂̂ jσ̂i j(η̂ p,T
m ) =

d−1

∑
j=1

∂̂ j

( d

∑
k,l=1

ĉi jkl ε̂kl(η̂ p,T
m )

)

=
d−1

∑
j=1

∂̂ j

( d−1

∑
k,l=1

ĉi jkl ε̂kl(η̂ p,T
m )+ 2

d−1

∑
k=1

ĉi jkd ε̂kd(η̂ p,T
m )

)

=
d−1

∑
j=1

∂̂ j

( d−1

∑
k,l=1

ĉi jkl ε̂kl(η̂ p,T
m )

)

(5)

+
d−1

∑
j=1

∂̂ j

(d−1

∑
k=1

ĉi jkd ∂̂kη̂ p,T
md

)

. (6)

While equation (5) affects exclusively the first two components of η̂ p,T
m , equation

(6) acts only on the third component of the oscillatory boundary data onF . For
an anisotropic stiffness tensor, a reduced system needs to be solved onF in which
the three components of̂η p,T

m2 are coupled. Having a deeper look at the entries of
the stiffness tensor, the systems in (5) and (6) are fully decoupled for an orthotropic
material whose symmetry axes are normal to ˆe1, . . . , êd . Particularly, the components
η̂ p,T

m1 andη̂ p,T
m2 onF are then governed by a 2D system of linear elasticity (see (5)),

while the component̂η p,T
md normal toF is governed by a scalar second order elliptic

PDE (see (6)). Analogously, on an edgeE , we can deduce that the boundary data
η̂ p,T

m (x̂1) are governed by scalar second order PDEs in each particular component
which may, again, be coupled in the anisotopic case.

4.3 Oscillatory Boundary Conditions for Isotropic Linear Elasticity

Given the formulation of the reduced problems in a suitable coordinate system, we
summarize the procedure of computing boundary dataη p,T

m on the faces and edges
of T , assuming that the stiffness tensor is isotropic. Its components are given by
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ci jkl = λ δi jδkl + µ(δikδ jl +δilδ jk), whereµ > 0 andλ ≥− 2
3µ are the Lamé coeffi-

cients of the material (see e.g. [10]) which we assume here tobe piecewise constant
in τ ∈ Th. Note that the material coefficients are not uniquely determined on∂T ,
a proper averaging (e.g. by taking their maximum values) in the adjacent elements
τ ∈ Th is required.
From (5) and (6), together witĥη p,T

m = η̂ p,T
m (x̂1) along the edgeE , the reduced

problem in rotated coordinates reads

∂̂1

(

(λ +2µ) ∂̂1η̂ p,T
m1

)

= 0 onE ,

∂̂1

(

µ ∂̂1η̂ p,T
mk

)

= 0 onE , k = 2,3. (7)

It needs to be equipped with the boundary conditions defined in (3). Let us assume
thatE = Ep1p2 connects the two nodesxp1 = xp,xp2 ∈ ΣH(Ω̄), then we impose

η̂ p,T
m (x̂p1) = Θ em,

η̂ p,T
m (x̂p2) = (0,0,0)⊤. (8)

In order to grasp immediately that the boundary data on a faceF are governed by a
reduced elasticity system in the first two components and a scalar elliptic problem in
the component normal toF , we state the equations governing the reduced problem
under the assumption thatλ and µ are piecewise constant onF . This allows to
simplify the notation of the reduced system without affecting its weak formulation.
According to equation (5) and (6), the reduced system reads

µ (∂̂11η̂ p,T
m1 + ∂̂22η̂ p,T

m1 )+ (λ + µ)(∂̂11η̂ p,T
m1 + ∂̂12η̂ p,T

m2 ) = 0 a.e. onF ,

µ (∂̂11η̂ p,T
m2 + ∂̂22η̂ p,T

m2 )+ (λ + µ)(∂̂21η̂ p,T
m1 + ∂̂22η̂ p,T

m2 ) = 0 a.e. onF , (9)

µ (∂̂11η̂ p,T
m3 + ∂̂22η̂ p,T

m3 ) = 0 a.e. onF .

Let F = Fp1p2p3 contain the coarse nodesxp1,xp2 andxp3. Then the three edges
Ep1p2, Ep1p3 andEp2p3 form the 2D boundary of the faceF . The system in (9) is
subject to the boundary conditions

η̂ p,F
m |Epk pl

= η̂
p,Epk pl
m 1≤ k < l ≤ 3,

where η̂
Epk pl
m is the solution of the BVP in (7) and (8) on the edgeEpk pl in the

coordinate system w.r.t.F and η̂ p,D
m denotes the restriction of̂η p,T

m to D ⊂ ∂T .
Note that the rotated coordinate systems differ for any faceand edge. Once the
boundary data are computed on and edge or a face, they should be transformed to
the original coordinate system.
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4.4 Properties of the Oscillatory Multiscale Basis

As shown in [1], the multiscale basis with vector-valued linear boundary data (MsL)
recovers all rigid body modes. If no material jumps occur on the boundaries of
coarse elements, it can be shown thatφ p,MsO

m = φ p,MsL
m . Prescribing homogeneous

material parameters, both multiscale bases coincide with the vector-valued linear
coarse basis. Furthermore, the construction of the oscillatory multiscale basis guar-
antees that the rigid body translations are contained in thecoarse space. In gen-
eral, not all the rigid body rotations are preserved exactlyon the coarse element
boundaries. The complexity of computingφ p,MsO

m is of the same asymptotic order
O

(

d(H
h )d

)

as forφ p,MsL
m , with a small additional cost that is one order ofH

h cheaper.

5 Numerical Results

In this section we present numerical examples on a binary composite. We apply
different coarsening strategies for the two-level additive Schwarz preconditioner,
including a vector-valued linear coarse space as well as multiscale coarse spaces
with linear and oscillatory boundary conditions. We perform the simulations on a
domainΩ̄ = [0,1]× [0,1]× [0,L],L > 0, using regular fine and coarse triangular
meshesTh andTH of equal structure with uniform mesh sizeh andH, respectively.
Both meshes are constructed from an initial voxel geometry by decomposing each
voxel into five tetrahedra. In the experiments we show condition numbers as well as
iteration numbers of the PCG algorithm. The stopping criterion is set to reduce the
preconditioned initial residual by 6 orders of magnitude.

The medium consists of an isotropic matrix material with coefficients (µmat = 1,
λmat = 1) and contains inclusions (µinc,λinc) which are positioned equally in each
coarse block of sizeH ×H ×H as shown in Fig. 1. The distribution of the inclu-
sions as well as the boundaries of the coarse tetrahedra are shown in more detail in
Fig. 2. At each slice in the plane normal toX1 andX2 the position of the inclusions
above and below this level are indicated in dark and shaded red, respectively. Each
inclusion touches or crosses coarse element boundaries while one inclusion in the
center is isolated in the interior of a coarse element. Table1 shows the condition

Fig. 1 Binary composite;
matrix material (grey) and
inclusions (red); discretization
in 14x14x7 voxels (left); 2D-
projection onto the(X1,X2)-
plane with position of the
inclusion (right); each coarse
block is decomposed in five
tetrahedra;
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and iteration numbers for the three coarsening strategies under the variation of the
material contrast∆E := µinc/µmat = λinc/λmat. For∆E > 1, condition and iteration
numbers for vector-valued linear and multiscale coarse space with linear boundary
conditions grow with the contrast in the material coefficients, where the latter does
not perform noticeably better than the linear coarse space.The multiscale coarse ba-
sis functions with oscillatory boundary conditions are bounded in energy and show
coefficient-independent bounds of the condition number. For ∆E < 1, each coarse
space performs well.

Table 1 Condition numbersκ and iteration numbers (#it) of precond. matrix forH = 7h, δ = 2h

∆E Lin MsL MsO

10−9 26 (28) 26 (28) 26(28)
10−6 26 (28) 26 (28) 26(28)
10−3 26 (28) 26 (28) 26(28)
100 25 (27) 25 (27) 25(27)
103 426(91) 233(76) 25(27)
106 965(102) 955(104) 25(27)
109 970(102) 955(104) 25(27)

6 Conclusions

In this study, we extended the oscillatory multiscale finiteelement method as in-
troduced in [7] to the PDE system of anisotropic linear elasticity. We derived the
reduced system which governs the oscillatory boundary datain a general setting
which allows their construction on triangular, tetrahedral, quadrilateral and hexahe-
dral coarse meshes. We applied the coarse basis in the context of two-level additive
Schwarz domain decomposition preconditioners. Numericalresults are presented
on a tetrahedral mesh for isotropic composites where inclusions touch the coarse

Fig. 2 2D-slices (atX3 =
l h, l ∈ {1, . . . ,6}) of a coarse
block of 7×7×7 voxels of the
medium in Fig. 1 ; boundaries
of coarse tetrahedral elements
(black), matrix material (grey)
and 1x1x1 inclusions (red);
inclusions touch the slice from
below (shaded red) or top
(dark red); inclusions touch
coarse element boundaries
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element boundaries. We observed condition number bounds ofthe preconditioned
linear system which are independent of the contrast in the Young’s modulus in the
inclusions.

It is easy to verify (see e.g. [1]) that the computation of a multiscale finite element
basis is more costly on quadrilateral and hexahedral coarsemeshes than on their
triangular and tetrahedral counterparts (by a factor of4

3 in 2D and a factor of 2 in
3D). However, we may point out that, especially for applications in three spatial
dimensions, using hexahedral coarse meshes may be beneficial for the robustness
of the overall method as it reduces the amount of element boundaries which are
introduced when tetrahedral coarse meshes are used.
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