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1 Introduction

Contact problems with elasto-plastic bodies can be solved for example by primal-
dual active set strategy, see e.g. [12]. In this paper, we propose a numerical method
that combines the semi-smooth Newton method with the Total-FETI (TFETI) do-
main decomposition method and SMALSE method [1].

We consider a frictionless contact boundary condition between two bodies de-
noted as Ω 1,Ω 2 ⊂ R3, see Fig. 1. We assume that the bodies are fixed on the parts
Γ 1

U ,Γ 2
U 6= /0 of the boundaries. The load is represented by surface (prescribed on

the boundaries parts Γ 1
N ,Γ 2

N ) and volume forces. The material of the bodies is de-
scribed by the elasto-plastic constitutive model with the von Mises yield criterion
and linear isotropic hardening [10]. For the sake of simplicity, we confine ourselves
on one-step problem formulated in displacement. It leads to a minimization of the
convex and smooth functional on a convex set. However the stress-strain relation is
not smooth.

Fig. 1 Scheme of the geometry and domain decomposition

The problem is approximated by the finite element method. The finite element
partition will be denoted as Th = T 1

h ∪T 2
h and consists of simplicial elements.

In particular, displacement fields are approximated by continuous, piecewise linear
functions and strain (stress) fields are approximated by piecewise constant functions.
We will not investigate in detail the influence of domain and load approximation.
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Since we will apply the TFETI domain decomposition method [2], we tear the
bodies from the part of the boundary with the Dirichlet boundary condition, de-
compose it into subdomains, assign each subdomain by a unique number, and in-
troduce new “gluing” conditions on the artificial intersubdomain boundaries and on
the boundaries with imposed Dirichlet condition. In particular, the domain Ω i

h ≡Ω i

is decomposed into a system of si disjoint polyhedral subdomains Ω i,p ⊂ Ω i,
p = 1,2, . . . ,si, i = 1,2, see Fig. 1. The partition is conforming with the finite el-
ement partition Th.

The discretized problem can be classified as an optimization problem with sim-
ple equality and inequality contraints. In Section 2, we introduce and describe an
algebraic formulation of the problem. We use the semi-smooth Newton method to
approximate a non-quadratic functional by a quadratic one, see Section 3. The cor-
responding problem of quadratic programming is solved by the Total-FETI domain
decomposition method in combination with SMALSE method, see Section 4. The
elasto-plastic problem with contact was implemented into the MatSol library [8]. We
illustrate the performance of our algorithm on a 3D benchmark problem in Section
5.

2 Algebraic formulation of the contact problem for elasto-plastic
bodies

Algebraic formulation of the problem will be related to the domain decomposition.
It means that a displacement vector v ∈ Rn has the following structure:

v =
(
vT

1,1,v
T
1,2, . . . ,v

T
1,s1

,vT
2,1, . . . ,v

T
2,s2

)T
,

where vi,p denotes the displacement vector on Ω i,p, i = 1,2. We define the space

V := {v ∈ Rn | BEv = o} , (1)

and the set of admissible displacement

K := {v ∈ Rn | BEv = o, BIv≤ cI} . (2)

Here the equality constraint matrix BE ∈ RmE×n represents the gluing conditions
among neighbouring subdomains and the Dirichlet boundary conditions. The in-
equality constraint matrix BI ∈ RmI×n represents the non-penetration condition on
the contact zones. Notice that K is convex and closed.

Let Ke ∈Rn×n be a block diagonal matrix consisting of the elastic stiffness matri-
ces Ki,p

e defined on each subdomain Ω i,p, i = 1,2, p = 1, . . . ,si. Due to the presence
of the Dirichlet boundary conditions on both subdomains and the Korn inequality,
we can define the energy norm on V :
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‖v‖e :=
√

vT Kev=

√√√√ 2

∑
i=1

si

∑
p=1

vT
i,pKi,p

e vi,p, v=
(
vT

1,1, . . . ,v
T
1,s1

,vT
2,1, . . . ,v

T
2,s2

)T ∈V .

Notice that the using of this norm is suitable from mechanical and mathematical
points of view since some of the below estimates (mainly (6)) are independent of
the domain decomposition and the discretization parameter h of the mesh.

The algebraic formulation of the contact elasto-plastic problem can be written as
the following optimization problem [1]:

Find u ∈K : J(u)≤ J(v) ∀v ∈K , (3)

where
J(v) :=Ψ(v)− fT v, v ∈ Rn. (4)

Here the vector f =
(

fT
1,1, . . . , f

T
1,s1

, fT
2,1, . . . , f

T
2,s2

)T
∈ Rn represents the load consist-

ing of the volume and surface forces, and the initial stress state. The functional Ψ

represents the inner energy and has the structure

Ψ(v) =
(
Ψ1,1(v1,1)

T , . . . ,Ψ1,s1(v1,s1)
T ,Ψ2,1(v2,1)

T , . . . ,Ψ2,s2(v2,s2)
T )T

.

Further Ψ is a potential to the non-linear elasto-plastic operator F : Rn → Rn, i.e.
DΨ(v) = F(v), ∀v ∈Rn. The function F is generally nonsmooth but Lipschitz con-
tinuous. It enables us to define a generalized derivative K : Rn→ Rn×n of F in the
sense of Clark, i.e. K(v) ∈ ∂F(v), v ∈ Rn. Notice that K(v) is symmetric, block di-
agonal and sparse matrix. Moreover the following properties of F and K hold [11]:

1.

F(v+w)−F(v) =
∫ 1

0
K(v+θw)w dθ ∀v,w ∈ Rn. (5)

2. K(v) is uniformly positive definite and bounded with respect to v ∈ V :

∃ν ∈ (0,1) : ν‖w‖2
e ≤ wT K(v)w≤ ‖w‖2

e ∀v,w ∈ V . (6)

3. F is strongly semismooth [9] on V , which yields that for any v ∈ V and any of
sufficiently small w ∈ V :

F(v+w)−F(v)−K(v+w)w = O(‖w‖2
e). (7)

Notice that (5) and (6) yield that Ψ is coercive and strictly convex on V . Hence the
problem (4) has a unique solution and can be equivalently written as the following
variational inequality:

Find u ∈K : F(u)T (v−u)≥ fT (v−u) ∀v ∈K . (8)

The estimate (7) will be important for showing that the semi-smooth Newton method
defined in the next section has a local quadratic convergence.
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3 Semi-smooth Newton method for optimization problem

The investigated problem (3) contains two nonlinearities – the non-quadratic func-
tional J (due to Ψ ) and the non-penetration conditions including in the convex set
K . By the semismooth Newton method, we will approximate Ψ by a quadratic
functional similarly as in the Taylor expansion:

Ψ(u)≈Ψ(uk)+F(uk)T (u−uk)+
1
2
(u−uk)T K(uk)(u−uk),

for a given approximation uk ∈ K of the solution u to the problem (3). Let us
denote fk = f−F(uk), Kk = K(uk) and define:

Kk := K −uk =
{

v ∈ Rn ; BEv = o, BIv≤ cI,k, cI,k := cI−BIuk
}
,

Jk(v) :=
1
2

vT Kkv− fT
k v, v ∈Kk. (9)

Then the Newton step is following:

uk+1 = uk +δuk, uk+1 ∈K ,

where δuk ∈Kk is a unique minimum of Jk on Kk:

Jk(δuk)≤ Jk (v) ∀v ∈Kk, (10)

or equivalently δuk ∈Kk solves the following inequality:(
Kkδuk

)T
(v−δuk)≥ fT

k (v−δuk) ∀v ∈Kk. (11)

Notice that if we substitute v = uk+1 ∈K into (8) and v = u−uk ∈Kk into (11),
then by adding we obtain the inequality(

K(uk)δuk
)T

(u−uk+1)≥
(

F(u)−F(uk)
)T

(u−uk+1),

which can be arranged into the form

(uk+1−u)T K(uk)(uk+1−u)≤
(

F(uk)−F(u)−K(uk)(uk−u)
)T

(u−uk+1).

Hence one can simply derive local quadratic convergence of the semi-smooth New-
ton method by (6) and (7) provided that uk is sufficiently close to u.
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4 TFETI method for the inner problem

Notice that the structures and properties of the matrices Kk ∈ Rn×n, k = 0,1,2, . . .,
are very similar to the corresponding elastic matrix Ke as follows from Section 2.
Therefore we can solve the inner problem (10) in the same way as a contact problem
with elastic bodies, see e.g. [4, 5].

Here we use the TFETI domain decomposition method for solving (10). For more
detail see e.g. [3] and [1]. The method is based on enforcing all the constraints by
the Lagrange multipliers. In particular, we use two types of Lagrange multipliers,
namely λ I ∈RmI , λ I ≥ o related to the non-penetration condition, λ E ∈RmE related
to the “gluing” and Dirichlet conditions. To simplify the notation, we denote

λ =

[
λ E
λ I

]
, B =

[
BE
BI

]
, ck =

[
o

cI,k

]
,

and
Λ = {λ = (λ T

E ,λ
T
I )

T ∈ RmE+mI : λ I ≥ o}.

Then the Lagrangian associated with problem (10) reads as

Lk(v,λ ) =
1
2

vT Kkv− fT
k v+λ

T (Bv− ck), v ∈ Rn, λ ∈Λ . (12)

Using the convexity of the cost function and constraints, we can use the classical
duality theory to reformulate problem (10) to get

Jk(δuk) = min
v∈Kk

Jk(v) = min
v∈Rn

sup
λ∈Λ

Lk(v,λ ) = max
λ∈Λ

inf
v∈Rn

Lk(v,λ ) = max
λ∈Λ

{−Θ k(λ )},

(13)
with

Θ k(λ ) =

{
1
2 λ

T BK†
kBT λ −λ

T (BK†
kfk− ck), RT

k (fk−BT λ ) = o,
+∞, otherwise,

where K†
k is a pseudoinverse matrix to Kk and Rk ∈ Rn×l represents the null space

of Kk. More details to implementation of BK†
kBT can be found in [6]. Thus the

corresponding dual problem has the form:

find λ
k ∈Λ : Θ k(λ

k)≤Θ k(λ ) ∀λ ∈Λ . (14)

We solve the dual problem by algorithm SMALSE-M [3]. The algorithm is based
on active set strategy and it combines three steps: CG with preconditioning based
on orthogonal projectors, expansion, and proportioning.

Once the solution λ
k of (14) is known, the solution of (10) can be evaluated in

this way:

δuk = K†
k(f−BT

λ
k)+Rkαk, αk = (RT

k BT BRk)
−1RT

k BT
(ck−BK†

k(fk−BT
λ

k)),
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where the matrix B and the vector ck are formed by the rows of B and ck corre-
sponding to all equality constraints and all active inequality constraints.

Notice that we use in fact the inexact Newton method with respect to computing
of δuk.

5 Numerical experiments

In this section we illustrate the strong parallel scalability and the performance of
numerical scalability of our approach on a numerical example. The geometry of the
problem is depicted in Figure 1. The sizes of the bodies are 3000× 1000× 1000.
We use regular meshes generated in MatSol [8]. The Young modulus, the Poisson
ratio, the initial yield stress for the von Mises criterion, and the hardening modulus
are E i = 210000, ν i = 0.29, σ i

y = 450, and H i
m = 10000, i = 1,2, respectively. The

indicated traction force prescribed in the vertical direction is g(x) = 150, x ∈ Γ 2
N .

The initial stress (or plastic strain) state is equal to zero.
The proposed algorithms were parallelized using Matlab Distributed Computing

Server and Matlab Parallel Toolbox. For all computations we use 28 cores with 2GB
memory per core of the HP Blade system, model BLc7000. The stopping criterion
of the Newton method is ‖uk+1−uk‖e

‖uk+1‖e+‖uk‖e
< 10−4 (see e.g. [7] or [11]). The stopping

criterion for the SMALSE-M algorithm is described in [3]. We use the tolerance
10−7 for SMALSE-M.

The strong parallel scalability is depicted in Table 1. Here we consider the mesh
with 174902 nodes and 162000 hexahedrons. The bodies are decomposed into 162
subdomains by MatSol. The number of primal variables is 646866 and the number
of dual variables is 130189.

Number of cores 3 7 14 28
Number of plastic elems. 151 300 151 300 151 300 151 300
Number of Newton iters. 6 6 6 6
Total number of SMALSE-M iters. 67 67 67 67
Total number of multi. by Hessian 3 726 3 726 3 726 3 726
Time for last Newton iter. 6 976 1 259 778 537
Total time [sec] 26 828 6 481 4 091 2 926

Table 1 Strong paralel scalability.

In Table 2 we report ”the numerical scalability” for different mesh levels. The
most important is row with total number of multiplication by Hessian, where we
can see, that the number of iterations grows only moderately. The total times are not
mutually comparable since we could not keep a constant number of subdomain per
one core due to the limitation on maximal number of the core.

Distribution of the von Mises stress and the total displacement for the finest mesh
are depicted in Figures 2 and 3.
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Mesh level 1 2 3 4
Mesh nodes 7 502 53 802 174 902 406 802
Mesh elements 6 000 48 000 162 000 384 000
Number of subdomains 6 48 162 384
Number of cores 4 25 28 28
Primal variables 23 958 191 664 646 866 1 533 312
Dual variables 2 453 33 933 130 189 326 969
Number of plastic elems. 6 624 48 141 151 300 356 384
Number of Newton iters. 6 6 6 6
Total number of SMALSE-M iters. 153 88 67 67
Total number of multi. by Hessian 1 951 3 106 3 726 5 375
Time for last Newton iter. 41 141 537 1 758
Total time [sec] 287 683 2 926 9 318

Table 2 Performance of ”the numerical scalability”.

Fig. 2 von Mises stress distribution Fig. 3 total displacement

6 Conclusion

In this paper, we proposed a numerical method for solving contact elasto-plastic
problems based on TFETI method and demonstrate its parallel and numerical scala-
bility on a numerical example. The numerical realization and implementation of the
problem were newly included into the MatSol library. In fact, the proposed method
can be used or can be as a part of other contact inelastic problems than the consid-
ered frictionless contact problem of von Mises’ elasto-plastic bodies with isotropic
hardening.
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