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1 Introduction

Contact problems are frequent in structural analysis. They are characterized by in-
equality constraints such as non-interpenetration conditions, sign condition on the
normal constraints, and an active contact, an area that is a priori unknown. Several
approaches exist for solving the non linear equations issued from the finite element
discretization of frictionless contact problems. Recently, many efficient error esti-
mates for solving frictionless contact problems have been proposed, see for example
[1] and with domain decomposition techniques combined with adapative finite ele-
ment methods, see [8, 5].

In this work, we consider a natural Neuman-Neumann domain decomposition
(NNDD) algorithm, in which each iterative step consists of a Dirichlet problem for
the one body, a contact problem for the other one and two Neumann problems to
coordinate contact stresses. Two main approximation errors are introduced by this
algorithm: a discretization error due to the finite element method (FEM) and an
algebraic error due to the NNDD algorithm.

In [5] an error estimator in the constitutive relation for contact problems solved
by a Neumann-Dirichlet domain decomposition algorithm has been proposed. The
objective of this paper is to extend this error estimator for a frictionless contact
problem, solved by a NNDD algorithm and to present two errors indicators which
allow us to estimate the part of the error due to the spatial discretization and the
part of the error due to the domain decomposition algorithm. Numerical results are
presented, showing the pratical efficiency of the proposed error estimators.
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laurent.gallimard@u-paris10.fr

1



2 Daniel Choı̈, Laurent Gallimard and Taoufik Sassi

2 A contact problem, notations and conventions

Two plane bounded domains Ω1 and Ω2 representing two linear elastic bodies are
considered. Their Lipschitz boundaries are composed of distinct parts Γ α

D , Γ α
N and

Γ α
C :

∂Ωα = Γ α
D ∪Γ α

N ∪Γ α
C α = 1,2.

The indices D, N, C of the boundary parts indicate respectively Dirichlet, Neumann
and contact imposed boundary conditions, see problem (2)–(5). For the sake of sim-
plicity, we suppose that Γ 1

C =Γ 2
C = ∂Ω1∩∂Ω2 =ΓC is a common part of ∂Ωα along

which the bodies Ωα are in unilateral contact. On the presumed contact boundary
ΓC, we define

n = n1 =−n2 and t = t1 =−t2,

where nα and tα denote, respectively, the unit external normal and tangential vectors
to ∂Ωα .

On each domain Ωα , α = 1,2, the stress tensor is σα and E (uα) is the linearized
strain tensor associated with the displacement uα . With the elasticity tensors Eα ,
characterizing the materials of Ωα , we have the linear strain-stress relation :

σα = EαE (uα). (1)

The bilinear energy forms, of linear elastic deformation, are then defined as

aα(uα ,u∗) =
∫

Ω α
σα : E (u∗).

The external loads (surfacic tractions of density Fα on Γ α
N ) are represented, in their

weak form, as the linear forms bα :

bα(u∗) =
∫

Γ α
N

Fα .u∗.

3 Unilateral Contact problem and ’Neumann-Neumann’ domain
decomposition algorithm (NNDD)

We consider a unilateral frictionless contact problem between Ω1 and With volu-
mic forces neglected and tractions of density Fα imposed on Γ α

N , the equilibrium
equations can be written for α = 1,2:

divσα = 0 in Ω α (2)
σα .nα = Fα on Γ α

N (3)
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with the kinematic boundary condition and unilateral frictionless contact condi-
tions :

uα = uα
D on Γ α

D (4)

(u1 −u2).n ≤ 0
σ1

T N = σ2
T N = 0

σ1
NN = σ2

NN = σN
σN ≤ 0
σN .(u1 −u2).n = 0

 on ΓC (5)

with

σα
NN = nα .σα nα (6)

σα
NT = tα .σα tα . (7)

We now define a Neumann-Neumann domain decomposition (NNDD) algorithm.
First, for any given normal displacement λp on ΓC, we define the functional spaces

V1 = {u ∈ H1(Ω 1);u|Γ 1
D
= u1

D}
U1

C(λp) = {u ∈ V1;u|Γ 1
C
.n = λp}

V2 = {u ∈ H2(Ω 2);u|ΓD = u2
D}

K2
C(λp) = {u ∈ V2;u|Γ 2

C
.n ≥ λp}.

Given a non-negative parameter θ and an initial arbitrary λ1, we define two se-
quences of displacements uα

p on each solid Ω α , α = 1,2. Each iteration p of the
NNDD algorithm is divided in two successive steps.

• Step 1 – Two independent elasticity problems (hence parallelizable) are solved
on Ω1 and Ω2:

1. In Ω1, the variational problem writes{
Find u1

p ∈ U1
C(λp) such that

a1(u1
p,u∗−u1

p) = b1(u∗−u1
p) ∀u∗ ∈ U1

C(λp)
(8)

2. In Ω2, with the given λp normal displacement defined on ΓC, we solve the fol-
lowing variational problem corresponding to a unilateral frictionless contact
problem on Γ 2

C :{
Find u2

p ∈ K2
C(λp) such that

a2(u2
p,u∗−u2

p)≥ b2(u∗−u2
p) ∀u∗ ∈ K2

C(λp)
(9)

From the respective unique solutions u1
p and u2

p of (8) and (9) we deduce r1
p

and r2
p, defined on the contact ΓC as
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r1
p = σ1

pn1

r2
p = σ2

pn2.

whereσ1
p and σ2

p are the stress tensor associated with the respective solutions
u1

p and of u2
p of problems (8) and (9).

• Step 2 – With r1
p and r2

p obtained in step 1, we solve two independent “Neumann
type” problems (hence the name NNDD):
In Ω1, we solve{

Find w1
p ∈ V1 such that

a1(w1
p,u∗−w1

p) =−
∫

ΓC
1
2 (r

1
p + r2

p).(u∗−w1
p) ∀u∗ ∈ V1.

(10)

In Ω2, we solve{
Find w2

p ∈ V2 such that
a2(w2

p,u∗−w2
p) =

∫
ΓC

1
2 (r

1
p + r2

p).(u∗−w2
p) ∀u∗ ∈ V2.

(11)

Let εt be the precision of the algorithm, we have the alternative :

1. If ετ is small enough, the algorithm stops.
2. Else, the normal displacement λp is updated :

λp+1 := λp +θ(w1
p −w2

p).n

and we return to step 1 for iteration p+1.

If r1
p + r2

p = 0, it means that the equilibrium is satisfied on the contact interface,
in other words the solutions u1

p and u2
p of step 1 constitute the unique solution of

the reference problem (2)–(5). The proof of convergence of the NNDD algorithm
(8)–(11) is given in [6] for any sufficiently small θ > 0:

Theorem 1. There is a θ0 > 0 such that for any 0 < θ ≤ θ0, the NNDD algorithm
for unilateral frictionless contact converges.

4 Error estimates

The NNDD algorithm introduces two error sources. The first one is introduced by
the solution of the FE problems (8)–(9). The second is introduced by the iterative
NNDD algorithm. The global error is defined as the difference between the solu-
tion of the weak form of the reference problem uα and the finite element solution
computed from the NNDD algorithm uα

h . Let

eh =

√
2

∑
α=1

‖uα −uα
h ‖2

u,Ω α where ‖u‖2
u,Ω α =

∫
Ω α

EαE (u) .E (u)dΩ α
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In the next section, we will define an a posteriori global error estimator, which is
an adaptation to the NNDD algorithm of the error estimator proposed in [5], [4].
Moreover, we propose here two error indicators that allow us to estimate separately
the part of the error due to the FE discretization and that due to the NNDD algorithm.

4.1 Global error estimator

The global error estimator is based on the concept of error in the constitutive relation
[7]. Let us consider kinematically admissible displacements, i.e those satisfying (4),
v̂=(v1,v2,vN) and statically admissible stress tensor fields ĉ=(τ1,τ2, tc), i.e. those
satisfying (5), where on Γc, with wα = vα |Γc :

wc = w1 −w2, and tc = τα nα .

We define a global error estimator for any admissible ŝ = (ĉ, v̂) :

eCRE(ŝ) =

[
2

∑
α=1

‖τα −EαE (vα)‖2
τ,Ω α +2

∫
Γc

[φ(−wc)+φ ∗(tc)+wc.tc]dS

]1/2

,

with
‖τα‖2

τ,Ω α =
∫

Ω α
τα : (Eα)−1(τα),

and where φ and φ ∗ are the conjugate convex potentials introduced in [2] to model
the Coulomb’s contstitutive law in a frictionless case:

φ(v) =

{
0 if vN ≥ 0
+∞ otherwise

φ ∗(t) =
{

0 if tN ≤ 0 and tT = 0
+∞ otherwise,

where the indices N and T indicate respectively the normal and the tangential com-
ponent.
From [2, 3] the unilateral frictionless contact condition is equivalent to

φ(−wc)+φ ∗(tc)+wc.tc = 0 on ΓC. (12)

eCRE(ŝ) is the constitutive relation error estimator for the admissible solution ŝ. It is
equal to zero if and only if ŝ is the exact solution of the unilateral frictionless contact
problem (5)–(2). From [1], we have the upper bound,

eCRE(ŝ)≥ eh =

√
2

∑
α=1

‖uα
h −uα‖2

u,Ω α .
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4.2 Error indicators

The discretization error is estimated through a discretization error indicator com-
puted for a second reference problem defined by (8)–(9) for a given λp. The only
approximation used to solve this problem is the Finite Element approximation.

Let ŝp = (ûp, ĉp) be an admissible pair for this new reference problem, then the
discretization error indicator is defined by

ηdis
h,p = eCRE(ŝp).

To define an algorithm error indicator, we consider a third reference problem ob-
tained with the Finite Element discretization of equations (2)–(5) (It is also nec-
essary to introduce a discretized contact constitutive relations), the only approxi-
mation used to solve this problem is the Neuman-Neuman domain decomposition
algorithm. Let ŝh = (ûh, ĉh) be an admissible pair for this third reference problem,
then the algorithm error indicator is defined by

ηNNDD
h = eCRE(ŝh)

To build the admissible fields ŝp and ŝh, we use an adaptation of the techniques
developed in [5].

5 Numerical results

We consider a test problem illustrating the reference problem (2)–(5). The domain
Ω 1 is subject to a non-zero imposed displacement on a part Γ 1

D of its boundary and
to a rigid frictionless contact on another part Γ 1

D′ . The domain Ω 2 has zero displace-
ment imposed on Γ 2

D . Some surface forces FN are imposed on Γ 1
N to illustrate some

loss of contact at the interface, see Figure 1. The two domains are in contact on ΓC.

Fig. 1 A test problem for
NNDD algorithm: frictionless
unilateral contact between 2
elastic bodies.

ΓD

1

F
1

N

Γ
C

Ω

Ω

1

2

ΓD’

1

ΓD

2

N

1

Γ



A posteriori error estimates for a NNDD algorithm applied to contact problems 7

In our implementation of the NNDD Algorithm, we define the precision of the
algorithm εt as

ετ =
2maxΓC |r1

p + r2
p|

maxΓC |r1
p|+maxΓC |r2

p|

where r1
p and r2

p are obtained from step 1 of the NNDD algorithm at iteration p.
We first test the a posteriori error estimates of the NNDD algorithm (8)–(11) for

different values of θ , and two meshes, one coarse mesh with 380 nodes and one finer
mesh with 5994 nordes, see Figure 2. For both meshes, we notice an apparently
optimal value near 0.4 ≤ θ ≤ 0.5 after 3 iterations of the NNDD algorithm. We
also remark that the algorithm errors are very similar for both the fine and coarse
meshes. The discretisation errors are naturally greater for the coarse mesh, but it
doesn’t change much with θ .
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Fig. 2 NN error indicators for different values of θ , coarse 380 nodes mesh (up) and finer 5994
nodes mesh (down) after 3 iterations.
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In Figure 3, we show the evolution of the algorithm error and the precision εt for
an increasing number of iterations for a fixed value θ = 0.4 and a fixed coarse mesh
(380 nodes). While both decrease towards zero, the slopes of each appear very dif-
ferent. It means that the precision εt may not be a very good stopping criterion and
can be deceiving as it appears much smaller than the algorithm error, which con-
stitutes the largest part of the global error when using finer mesh, see the previuos
figure 2.

Fig. 3 Algorithm error and
precision εt on fixed coarse
mesh per number of iterations,
with θ = 0.4
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