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Abstract In this paper, we will report our recent efforts to apply a@atomplement

method for nonlinear hyperbolic problems. We use the firleme method and an
implicit version of the Roe approximate Riemann solver.Wiite interface variable
introduced in [4] in the context of single phase flows, we dile 0 simulate two-

fluid models ([12]) with various schemes such as upwind, erect or Rusanov.
Moreover, we introduce a scaling strategy to improve thalimm number of both

the interface system and the local systems. Numericaltssfgullthe isentropic two-
fluid model and the compresible Navier-Stokes equationsaiious 2D and 3D

configurations and various schemes show that our methodist@nd efficient.

The scaling strategy considerably reduces the number of E®iierations in both
interface system and local system resolutions. Compagisbperformances with
classical distributed computing with up to 218 processoesaéso reported.
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1 Introduction

Computations of complex two-phase flows are required forstfety analysis of
nuclear reactors. These computations keep causing prelftanthe development
of best estimate computer codes dedicated to design anty safdies of nuclear
reactors. Moreover, we often need to find the long-term bieha? the system. In
these cases, implicit schemes are proven very efficienortinfately, for implicit
schemes, after the discretization, we need to solve a remlisystemezU = b.
This task is computationally expensive in particular sitiee matrix.<7 is usually
non-symmetric and very ill-conditioned. It is thereforeassary to find an efficient
preconditioner.

When the size of the system is large, the parallel resolutiomultiple processors is
essential to obtain reasonable computation times. Culyrierthe thermal hydraulic
code, FLICA-OVAP (see [7]), the matri¥’ and the right hand sideare stored on
multiple processors and the system is solved in paralléi wiKrylov solver with
a classical incomplete factorization preconditioner. ddnfnately, the parallel pre-
conditioners of FLICA-OVAP only perform well on a few prosess. In contrast,
if we want to increase the number of processors these pgpedieonditioners per-
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form poorly. Tests were run on different test cases and letb wonclude that it
is often better not to use these parallel preconditioneeaally for D problems

([2]). This strategy does not make an optimal use of the alokl computational
power. Hence, we seek for more efficient methods to disgiltiue computations.
We study and use a domain decomposition method as an aitertmthe classical
distribution.

2 Mathematical model

For the modeling of two-phase flows, several sets of equaiiave been worked
out. They range in complexity from the homogeneous equilibrmodel to two-
fluid models involving unequal pressure for each phase.ighpgaper, we consider
the well-known two-fluid model. This model is obtained by @aging the balance
equations for each separated phase, using space, timeesniglesaveraged quan-
tities (see [8] and [6]). The unknown physical quantities #re volume fraction
ax € [0,1], the densitypx > 0, and the velocityuk of each phase. The subscript
k stands forl if it is the liquid phase andj for the gas phase. The common aver-
aged pressure of the two phases is denotepl ity our model, pressure equilibrium
between the two phases is postulated. For the sake of sitgplie study the isen-
tropic two-fluid model. This model can be written as follows:

a(cg_;tpg) + O (agpgUg) —0,
7‘7(3’)') + 0 (apuy) =0, W
d(agpgug)
sl + 0
+ 0

AgPgUg @ Ug) + agp+ApOag — O- (agvgHug) =0,

w (apueu)+alp+Apda —O-(ogviOu)) =0,

with ag+ a; = 1, and the two equations of state(EQg)= pg(p) andp; = pi(p). In
our problem, we use the stiffened equation of state. Mgirethe viscosity of phase
k, andAp denotes the pressure defaplt- px between the bulk average pressure
and the interfacial average pressure.

By denotingmy = axpk, gk = akpkUx andU = (mg,qg7m,q|)t, we can write the
system (1) as follows:

%+F°°”V(U)+Fd”f(U):o, where )
D‘qg 0
(= - Dql Fdiff U) = 0
)= D-(qg®%)+agmp+ApDag ' (V)= —D-(agvgm%)

O (o @) + o 0p-+ApLay ~0- (avOd)
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3 Numerical Method

Most of the numerical methods used in two-phase flow compmgddes are based
upon semi-implicit finite difference schemes with stagdegeids and donor-cell
differencing. The main features of these schemes are ftfigiieacy and their ro-
bustness. However, these methods have a large amount ofrinahdissipation,
giving poor accuracy in smooth regions of the flow. Moreodescontinutities are
heavily smeared on coarse grids and oscillations appean wieegrid is refined.
Here, we propose to use an approximate Riemann solver teetlize and solve
the system (2). We decompose the computational domainNndgsjoint cellsC
with volumeyv;. Two neighboring cell€; andC; have a common boundagCi;
with areas;;. We denoteN(i) the set of neighbors of a given c&] andn;; the
exterior unit normal vector ofC;; . Integrating the system (2) ovey and setting
Ui(t) = Vlifq U (x,t)dx andU" = U;(nAt), the discretized equations can be written:

ou :
qﬁdxfz o™+ 5 o =0 ©)

JEN() jeN()

with @, cbiq”f denote the numerical flux of convection and diffusion on tbk c
Gi in direction of the neighbor ceg;.

The diffusion numerical fluxbﬂiff is approximated on structured meshes using the
formula:
diff Ui +U;j
o :D(%)(UJ*UO- (4)
Full details of the evaluation of diffusive flux terms aregjivin [16].
Due to theax[Op andA plag terms, the inviscid part of the two-phase flow cannot
be written in a conservative form. But this system can bet&riin the quasi-linear

form:
ou ou

ot +A(U) ox =0. (5)
Under some simplifying assumptions, the authors of [17]eraie to obtain a con-
servative form that allowed them to give a sense to discouasirsolutions. It was
also under those assumptions that they have been able ttoplereapproximate
Riemann solver of Roe-type for the system (5) providing altinearization of the
non-conservative terrag[p. We can also contruct other linearizations than that of
[17]. Here, we will not propose a specific linearization bggegeral method for the
construction of the Roe matrix once we have chosen a lirst#oiz. We then define
a local inviscid flux functiorF'“and a local Roe matriRree for this linearization.
The inviscid flux in the normal direction to the cell interéedC; j is given by:
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Floo(U) +F1°(U))
2
=F'°(U;).nij + A (Uj — Uy),

'*Uj

. ©)

)
.nij+@

conv __
(Di j =

whereZ is an upwinding matrixAree the Roe matrix ané* = %(ARoei D).
The choiceZ = 0 gives the centered scheme, whergas: |Aroe| gives the up-
wind scheme.

Newton scheme

Finally, sincey jeng FIOC(Ui).niJ‘ =0, using (6) and (4) the equation (3) of the
numerical scheme becomes:

upr-uyp
-4

A DA DU UL U =0 ()

jEN) Vi

The system (7) is nonlinear, hence we use the following Newterative method to
obtain the required solutions:

Sukrt Sj [ ae
T+ 7}[(A +D)(uik,u,-k)] (5U‘j<+176Uik+1)
jeN() ™
uk-up Si [/a- Ky 1k k ik
eyt Y [GaE I (VAVEI IV SV R C)

jen) Vi
wheredUKt! = UKtT — UK is the variation of thé-th iterate that approximates the
solution at timen+ 1. Defining the unknown vect@ = (Uy,...,Uy)!, each New-
ton iteration for the computation o at time stepn+ 1 requires the numerical
solution of the following linear system:

A(UNSU S =o(U",UY). 9)
Scaling strategy

The larger the time step, the worse the condition numbereofrthtrix.e7 in (9).

As a consequence, it is important to apply a preconditioeére solving the linear
system. The most popular choice is the Incomplete LU fagation (later named
ILU, see [1] for more details). The error made by the appr@tarfactorisation us-
ing an ILU preconditioner depends on the size of the off diej@oefficients of
the matrix. For a better performance of the preconditioies, desirable that off
diagonal entries of the matrix have small magnitudes.
Here, we use the Scaling strategy (see details in [3]) todwgthe condition num-
ber of the matrix. This strategy is a similarity transforrmat Combined with the
classical ILU preconditioner this strategy has reducediaantly the GMRES it-
erations for local systems and the computational time.
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4 Domain decomposition method

The object of the present work is to solve the compressibiésflioy a nonoverlap-
ping domain decomposition methods [13, 15, 11, 9], and mageigely by a Schur
complement method. A simple attempt is to adapt the prirajbithe domain de-
composition method for elliptic problems [14, 10] to our plems. As in the case
of elliptic problems, the principle is that we decompose ghebal problem into

independent subproblems which are solved by each procétsmever, the imple-

mentation of these ideas in hyperbolic problems raise satientcal difficulties

such as:

e The scheme must be conservative.

e In the finite volume formulation, there is no unknown definetha interface.

e The boundary condition of hyperbolic systems must depertd@oharacteristics
of the problem.

Those difficulties are solved in [5] for the Euler equatiogséplacing the interface
variables in the context of elliptic problems by the inteddluxes in the context
of hyperbolic problems. In this paper, we introduce a newrface variable which
make the Schur complement method easy to build and allows wedt diffusion
terms.

Implicit Coupling

We recall the linear system at each Newton iteration of thdiait scheme (8):

Suktt Sj [, K |1k k+1 k+1

T+ | _7[(A +D)(ui,uj)} (<5uj — 5Ut )
jeN() ™

_ uk—up Sj [ a- Kk K ok

- —J_E%(Uvi[(A +D) (Ul UY | (U - ub).

We would like to solve (8) oMN processors and each processor work on one sub-
domain. We see that it Iack‘iiJ‘j‘+l to the computational unit of the subdomaiif

the cellj belongs to another subdomain, and it is not calculable bgykeem since
6U'j‘+1 is to be calculated. Then the procesksoeeds from the processbthe value

6U‘J-<+1 which is not yet available. Conversely, the proces‘emeedsSUF*l from the
processot.

A new interface variable

In order to include diffusion terms in the model and to uséoter schemes and
various systems, we introduce a new interface flux varidigie (see [4]) at the
domain interface between two neighboring c&lls&ndC; which belong to different
subdomains:

5([“ = 5Uj —oUy; (20)
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In the case where the céllof the subdomain is at the boundary and has to
communicate with the neighboring subdomains, we can rewlrg system (8) as:

5u!(+l S
- [(A +D)(UI‘,U")} (5u'j‘+l—5u:‘+1)
Jel,JeN()
k n
S s S py(uk U] (U uby
jeN()
sj
-y L[ +pyuku) gt
jel, JeENG) !

We defineU; = (Uy,...,Un)! the unknown vector of the subdomdin

0@ = (3Qj)ier,jed,jeN(i)s (11)
< the local Neumann matrix of the subdoméajrand
R =Yjia.jeni) [ ~(Ukeoe) +D(U'(§i”)] , we can write the linear system as:
oA (U)SUIT = b (U, UN) — R oq (12)

By taking into account equations (10), (11) and (12),andotlieg 6® = (@),
I =1...Nwe can build an extended system that distinguishes thengltenknowns
from the interface ones:

o 0 ... ... P oUq b1
0 @ 0 ...|P oU, by
0 0 ... P oUn bn
My ... ... MN|H oo beo

where.w is the matrix that couples the unknowns associated withinatecells of

Q, whereadV, links dU; to d® through (10). Then, in our methol|, comprises
only O or+1.

The internal unknowns in (13) can be eliminated in favor @& ifiterface ones to
yield the following interface system:

SOP = bg, (14)

with (S6®) =@ + 5N M .4 'Rd@ and(be) = SN ;M A 1.

The computation of the matnSls so costly as we have to inverse the local matrix
< . Fortunately, we do not have to compute explicitly the cogffits ofS. All we
need is to design the operatdrd — Sd®. Then the equation (14) can be solved
by, e.g., GMRES, BICGStab, or the Richardson methods. Omcealved the in-
terface system, we kno&® and then we can solve the internal unknowns on each
processor using the equation (12).
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5 Numerical Results

We have implemented our method for the compressible N&tigkes equations
and the isentropic two-fluid model and compared the resbitaived using single
and multiple domains. After this validation, we compare toenputation time of
the ILU preconditioner, our method and our method with sggtScaling ([3]).

Fig. 1 presents the computational time required to perfortima step of a fixed
global problem of one million cells using upwind scheme. Wmpare the compu-
tational time required using the classical distributediradt(red curve), the domain
decomposition method (blue curve) and the domain decorigoshethod with
scaling (green curve). We vary the number of processors ip8oOne can see that
the domain decomposition method is comparable with clakdistributed method
and using scaling ([3]) is better.

Fig 3 shows the computational time required to perform tle¥ipus test but using

Time of computation Time of computation
450
500 ——* DDM +—+—+ DDM
——+* DDM with scaling 400+ +——* DDM with scaling
[r—=—= Distributed 3501 +—»—= Distributed

Time (in seconds)
Time (in seconds)

100+
507
M

o 20 40 60 80 100 120 140 o 20 40 60 80 100 120 140
Number of Procs Number of Procs

Fig. 1 Upwind scheme, single-phase flow, Fig. 2 Upwind scheme, two-phase flow,
global mesh = 9& 96 x 96, CFL 20 global mesh = 96x96x96, CFL 20

centered scheme. We can see only two curves. This is becatlsis, case the clas-
sical distributed method does not converge like we use thieced scheme. Domain
decomposition is the only one method that converges.

Similarly, Figs 2 and 4 show the computational time requiegerform a time
step in the case of the two-phase flow for the upwind and ceditgchemes.

Conclusion

We have presented a new interface variable which allowshertiteatment of
diffusion terms and the use of various numerical schemesvoiphase flows. We
also introduced the Scaling strategy to improve the coomi#ti number of the matrix
and reduce the computational time. We compared the sa@jaifibur method with
the classical distributed computations. Numerical resshiowed that our method is
more robust and efficient.
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Fig. 3 Centered scheme, single-phase flow,
global mesh = 96 96 x 96, CFL 10 Fig. 4 Centered scheme, two-phase flow,

global mesh = 9& 96 x 96, CFL 20
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