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1 Introduction

Coarse spaces are at the heart of many domain decomposition algorithms. Building
on the foundation laid in [8], we have an ongoing interest in the development of
coarse spaces based on energy minimization concepts [1]. Several different areas
have been investigated recently, including compressible and almost compressible
elasticity [3, 4], subdomains with irregular shapes [2, 11], problems in H(curl) [6],
and problems in H(div) [12]. We also comment that there has been much recent
complementary work to address problems having multiple materials in individual
subdomains (see, e.g., [10, 9]).

The purpose of this study is to investigate a family of lower dimensional coarse
spaces for scalar elliptic and elasticity problems. The basic idea involves the use of
certain equivalence classes of nodes on subdomain boundaries. Coarse degrees of
freedom are then associated with these classes, and the coarse basis functions are
obtained from energy-minimizing extensions of subdomain boundary data into the
subdomain interiors. We note in the context of a cube, domain decomposed into
smaller cubical subdomains, that these classes are simply the subdomain vertices.

An analysis for scalar elliptic problems reveals that significant reductions in the
coarse space dimension can often be achieved without sacrificing the favorable con-
dition number estimates for larger coarse spaces. This can be important when the
the memory and computational requirements associated with larger coarse spaces
are prohibitive due to the use of large numbers of processors on a parallel computer.
A multi-level approach could be used in such cases, but this may not always be
possible or the best solution.

In the next section, we describe the nodal equivalence classes that are used in
the construction of the coarse spaces. We then present algorithms for generating the
coarse basis functions for different problem types in §3. An analysis for a scalar
elliptic equation is provided in §4, and numerical examples are presented in §5.
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2 Coarse Nodes

Consider a domain Ω partitioned into non-overlapping subdomains Ω1, . . . ,ΩN . The
set of all nodes common to two or more subdomains, excluding those with essential
boundary conditions, is denoted by Γn. Let Sn denote the index set of subdomains
containing node n. Two nodes n j,nk ∈ Γn are related if Sn j = Snk . As with FETI-
DP or BDDC methods, we partition Γn into nodal equivalence classes based on this
relation. Notice that for a decomposition of a cube into cubical subdomains that the
nodal equivalence classes consist of faces (groups of nodes shared by the same two
subdomains), edges (groups of nodes shared by the same four subdomains), and
vertices (individual nodes shared by eight subdomains). For economy of words, we
will henceforth use the abbreviation nec for nodal equivalence class.

Let SN denote the index set of subdomains for any node of nec N . A nec N j is
said to be a child of nec Nk if SN j ⊂SNk . Likewise, Nk is called a parent of N j in
this case. A nec is designated a coarse node if it is not the child of any other nec, and
its coordinates are chosen as the centroid of its constituent nodes. Let Mi denote the
set of all necs for Ωi. Notice that each nec in Mi is either a coarse node or the child
of at least one coarse node. Further, a coarse node c of Ωi is also a coarse node of
Ω j for all j ∈Sc.

Notice that for the example decomposition described in the first paragraph of this
section the coarse nodes are the subdomain vertices. If all necs are used as in [1],
then there are approximately (6/2 + 12/4 + 8/8)N = 7N necs associated with the
coarse space. Likewise, if only subdomain edges and vertices are used as in [4], then
there are approximately (12/4+8/8)N = 4N necs. In contrast, the coarse space of
this study is based on only about N coarse nodes.

3 Coarse Basis Functions

In this section, we describe how to construct coarse basis functions for scalar elliptic
and elasticity problems in three dimensions. These coarse basis functions are fully
continuous between adjacent subdomains, and we focus our attention on a single
subdomain Ωi. The support of a coarse basis function associated with coarse node c
is the interior of the union of all Ω̄ j with j ∈Sc.

The first step is to obtain a partition of unity for the nodes of Γi := ∂Ωi \∂Ω . Let
CN denote the set of parent coarse nodes for nec N . If N is itself a coarse node,
then we take CN = N . For the simplest case, the partition of unity associated with
node n ∈N and coarse node c ∈ CN is chosen as

pnc = 1/|CN |. (1)

One can easily confirm that ∑c∈CN
pnc = 1.

Notice from (1) that pnc is the same for all n ∈N and c ∈ CN . This feature can
cause abrupt changes in the coarse basis functions near nec boundaries, typically
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resulting in a logarithmic factor log(Hi/hi) in estimates for the energy of the coarse
basis functions. Here, Hi is the diameter of Ωi and hi is the diameter of its smallest
element.

In an attempt to avoid the logarithmic factor, we also consider a partition of unity
originating from linear functions rather than constants. Define

a(n) :=
[

1 xn1 · · · xnd
]
,

where xn j is the j-coordinate of node n and d is the spatial dimension. Let the matrix
AN denote the row concatenation of a(n) for all coarse nodes in CN . Notice that
the number of rows of AN is the number of parent coarse nodes for N and that the
number of columns is d + 1. The origin is chosen as any one of the parent coarse
nodes. With reference to (1), pnc is now chosen as

pnc = a(n)A†
N ec, (2)

where † denotes the Moore-Penrose pseudo-inverse and ec is a row vector with a
single nonzero entry of 1 in the row of AN corresponding to the coarse node c. As
before, one can confirm that ∑c∈CN

pnc = 1. We note if a(n) is replaced by only its
first column, then (2) simplifies to (1).

The energy of Ωi is defined as Ei(ui) := uT
i Aiui, where ui is a vector of nodal

degrees of freedom (dofs) for Ωi and Ai is the stiffness matrix for Ωi. Let Rin select
the rows of ui for the dofs of node n ∈N . That is, Rinui is the vector of dofs for
node n. Let Nic denote the set of nodes on Γi which have c as a parent coarse node
and define

Ψic := ∑
n∈Nic

pncRT
inNnc,

where the matrix Nnc is specified later for different problem types.
Let RiΓ and RiI select the rows of ui for the nodal dofs on Γi and the interior of

Ωi, respectively, and define

AiΓ Γ := RiΓ AiRT
iΓ , AiIΓ := RiIAiRT

iΓ , AiII := RiIAiRT
iI , etc.

The coarse basis function associated with the coarse node c is given by

Φic = Ψic−RT
iIA
−1
iII AiIΓ (RiΓΨic).

We note that the first term on the right hand side of this expression is the boundary
data for the coarse basis function, while the second term is its energy-minimizing
extension into the interior of Ωi.

For scalar elliptic equations like the Poisson equation, we choose

Nnc =
[

1
]
.

Remark 1. The coarse space in [2] is obtained by choosing the subdomain vertices
and edges as the coarse nodes, and using the partition of unity given in (1). Similarly,
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the smaller coarse space of [5] is obtained by choosing only the subdomain vertices
as the coarse nodes and using the partition of unity given in (2).

For elasticity problems, Nnc is chosen as

Nnc =

1 0 0 0 xc
n3 −xc

n2
0 1 0 −xc

n3 0 xc
n1

0 0 1 xc
n2 −xc

n1 0

 ,

where xc
n j is the j-coordinate of node n with the origin at the coarse node c. The

first three columns of Nnc correspond to rigid body translations, while the final three
columns correspond to rigid body rotations about c. We note the expression for Nnc
can be adapted easily to accommodate finite element models with shell elements
simply by adding three more rows to Nnc.

4 Analysis

In this section, we develop estimates for the energy of a coarse interpolant of ui for
a scalar elliptic equation. The diffusion coefficient ρi > 0 is assumed constant in Ωi
(see §4.2 of [13] for additional details). We will use the symbol ui for both a finite
element function and its vector representation in terms of nodal values. Similarly,
φic is the finite element function counterpart of Φic.

For simplicity, we assume shape regular tetrahedral subdomains. In this case, the
coarse basis functions for Ωi based on (2) are identical to those for the standard
P1 linear tetrahedral element on Γi. Consequently, the coarse basis functions are
also identical to the standard shape functions throughout Ωi since a linear function
minimizes energy for boundary data given by a linear function. We have the standard
estimate

Ei(φic)≤CHiρi. (3)

Let ūi, ūF , ūE denote the mean of a finite element function u over the subdomain
Ωi, a subdomain face F , and a subdomain edge E , respectively. For a face F of
Ωi, it follows from the a trace theorem and a Poincaré inequality that

ρiHi|ūF − ūi|2 ≤CEi(ui). (4)

Similarly, for an edge E of Ωi, we find using a discrete Sobolev inequality (see, e.g.,
Lemma 4.16 of [13]) that

ρiHi|ūE − ūi|2 ≤C(1+ log(Hi/hi))Ei(ui). (5)

Assumption 1: Let c be any vertex of Ωi and Sc the index set of all subdomains
containing c. Pick jc ∈Sc such that ρ jc ≥ ρ j for all j ∈Sc. There exists a sequence
{i = j0

c , j1
c , ..., jp

c = jc} such that ρi≤Cρ j`c
and Ω j`−1

c
and Ω j`c

have a face in common
for all ` = 1, . . . , p and i = 1, . . . ,N.
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In other words, Assumption 1 means there is a face connected path between Ωi
and Ω jc such that the diffusion coefficient ρi is no greater than a constant times the
diffusion coefficient of any subdomain along the path. This assumption appears to
be essentially the same as the quasi-monotone assumption in [7].
Assumption 2: Using the same notation as in Assumption 1, there exists a sequence
{i = j0

c , j1
c , ..., jp

c = jc} such that ρi ≤ Cρ j`c
and Ω j`−1

c
and Ω j`c

have an edge in
common for all ` = 1, . . . , p and i = 1, . . . ,N.

Notice that Assumption 2 is weaker than Assumption 1 since we have more op-
tions to continue at every step in the construction of a path. Our coarse interpolant
of ui for Ωi is chosen as

uic = ∑
c∈Mic

ū jc φic, (6)

where Mic is the set of subdomain vertices for Ωi. Let Fi j denote the face common
to Ωi and Ω j. Since the coarse basis functions for Ωi can approximate constants
exactly on Γi and also minimize the energy, it follows from a Poincaré inequality
that

Ei( ∑
c∈Mic

ūiφic)≤CEi(ui). (7)

We next establish bounds for Ei(uic). Starting with

ūi− ū jc = (ūi− ūF
j0c j1c

)+
p−1

∑
`=1

(ūF
j`−1
c j`c
− ūF

j`c j`+1
c

)+(ūF
jp−1
c jp

c
− ū jc),

rewriting the term in the summation as

ūF
j`−1
c j`c
− ūF

j`c j`+1
c

= (ūF
j`c j`−1

c
− ū j`c

)− (ūF
j`c j`+1

c
− ū j`c

),

and using Assumption 1 and (4), we find

ρiHi|ūi− ū jc |2 ≤C ∑
j∈Sc

E j(u j).

It then follows from (3) that

Ei((ūi− ū jc)φic)≤C ∑
j∈Sc

E j(u j).

Finally, from (6), (7), and the triangle inequality, we obtain

Ei(uic)≤C ∑
j∈Mi

E j(u j),

where Mi is the index set of all subdomains adjacent to Ωi. Summing contributions
from all subdomains and noting that |Mi|< C, we see that the energy of our coarse
interpolant is uniformly bounded by the energy of u. That is, under Assumption 1,
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N

∑
i=1

Ei(uic)≤C
N

∑
i=1

Ei(ui). (8)

By using (5) instead of (4) in the previous development, we find under the less
restrictive Assumption 2 that

N

∑
i=1

Ei(uic)≤C(1+ log(H/h))
N

∑
i=1

Ei(ui), (9)

where H/h := maxi(Hi/hi).
If the coarse basis functions originate from (1) rather than (2), then it follows

from elementary estimates and Lemma 4.25 of [13] that an additional factor of 1+
log(Hi/hi) will appear on the right-hand-side of (3). Thus, this additional factor will
also be present in (8) and (9). The same also holds for hexahedral subdomains even
when (2) is used since a linear function cannot interpolate a function at all four
nodes of a quadrilateral planar face.

With the estimates for our coarse interpolants in hand, we may now perform a
local analysis for an overlapping additive Schwarz algorithm using basically the
same approach as in [2] or [5]. This involves a partition of unity {ϑi}N

i=1 with 0 ≤
ϑi ≤ 1, |∇ϑi| ≤C/δi, and ϑi supported in the closure of the overlapping subdomain
Ω ′i . Here, δi is the thickness of the part of Ω ′i which is common to its neighbors.
Given an estimate of the form

N

∑
i=1

Ei(uic)≤C f (H/h)
N

∑
i=1

Ei(ui),

the resulting condition number estimate for the preconditioned operator is given by

κ(M−1A)≤C f (H/h)(1+H/δ ), (10)

where H/δ := maxi Hi/δi. Comparing (10) with (8) and (9), we that f (H/h) is 1
and 1+ log(H/h) under Assumptions 1 and 2, respectively.

5 Numerical Examples

We consider a unit cube domain decomposed into either smaller cubical subdomains
or irregular-shaped subdomains obtained from a mesh partitioner for a scalar elliptic
equation; an analysis and results for elasticity will appear in a forthcoming study.
The numbers of iterations and condition number estimates from the conjugate gra-
dient algorithm appear under the headings iter and cond in the tables. All results are
for homogeneous essential boundary conditions on one face of the cube, a random
right-hand-side vector, and a relative residual solver tolerance of 10−8.

The results in Table 1 are for 64 cubical subdomains and a fixed dimensionless
overlap H/δ . By plotting condition numbers versus log(H/h), it appears that the
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line segment slopes are bounded above by constants as H/h increases for both the
constant and checkerboard material properties. Moreover, these line segment slopes
for constant material properties and the linear partition of unity in (2) appear to de-
crease with increasing H/h, while those for (1) appear to approach a constant value.
These observations are consistent with the analysis. We note for a vertex coarse
space, as used in this example, a much less favorable condition number estimate of
C(H/h)(1+ log(H/h))2 holds for FETI-DP and BDDC algorithms (cf. Algorithm A
in §6.4.2 of [13]).

Table 1 Results for constant and checkerboard arrangements of subdomain material properties
(ρi = 1 or ρi = 104) for partitions of unity based on (1) and (2). The overlap H/δ ≈ 4 is held fixed
while H/h varies.

constant checkerboard
pnc (1) pnc (2) pnc (1) pnc (2)

H/h iter cond iter cond iter cond iter cond

8 40 29.0 37 25.2 37 39.9 35 29.7
12 43 33.3 38 27.7 40 46.4 37 32.5
16 45 36.4 39 29.3 40 50.9 38 34.4
20 45 38.8 39 30.5 41 54.1 38 35.7

For the final example, we consider a mesh of 483 elements decomposed into
different numbers of subdomains using a mesh partitioner. Results in Table 2 show
that the present coarse space dimensions are significantly smaller than those for
the richer coarse space in [1]. Smaller dimensional coarse spaces result in reduced
computational requirements for the coarse problem, and extend the range of problem
sizes that can be solved effectively using a two-level method.

Table 2 Results for constant coefficients and a mesh with 483 elements decomposed using a mesh
partitioner. The coarse space dimension is denoted by nc and the overlap is for two layers of
additional elements. The final row in the table is for a regular mesh decomposition into 64 identical
subdomains.

Ref. [1] pnc (1) pnc (2)
N nc iter cond nc iter cond nc iter cond

63 831 45 21.3 166 46 22.5 166 40 15.7
64 863 45 21.5 174 46 22.5 174 41 16.4
65 916 46 21.1 189 46 21.7 189 40 16.6
64? 279 40 24.9 27 43 33.3 27 38 27.7
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