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1 Introduction

In the paper we consider a second order elliptic problem with discontinuous aniso-
tropic coefficients defined on a polygonal region Ω . The problem is discretized by
a Discontinuous Galerkin (DG) finite element method with triangular elements and
piecewise linear functions. Our goal is to design and analyze an additive Schwarz
method (ASM), see the book by Toselli and Widlund [4], for solving the resulting
discrete problem with rate of convergence independent of the jumps of the coeffi-
cients. The method is two-level and without overlap of Ωl , the substructures into
which the original region Ω is partitioned. It is proved that the convergence of the
method is independent of the jumps of the coefficients appearing on triangles in-
side of Ωl , see [3]. It is the same for the jumps appearing on triangles which touch
∂Ωl under additional assumptions on the coefficients, like monotonicity or quasi-
monotonicity. The ASM discussed here is a generalization of method presented in
[1]. Numerical experiments confirm the theoretical results.

The paper is organized as follows. In Section 2, differential and discrete DG
problems are formulated. In Section 3, ASM for solving the discrete problem is
designed and analyzed. Numerical experiments are presented in Section 4.

2 Differential and discrete DG problems

We consider the following elliptic problem: find u∗ ∈ H1
0 (Ω) such that

a(u∗,v) = f (v), ∀v ∈ H1
0 (Ω) (1)

where
a(u,v) =

∫
Ω

ρ(x)∇u ·∇vdx, f (v) =
∫

Ω

f vdx,

ρ(x) =
(

ρ11(x) ρ12(x)
ρ21(x) ρ22(x)

)
.
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We assume that Ω is a polygonal region, f ∈ L2(Ω) and ρ(x), the diffusivity
tensor, is a symmetric matrix, uniformly positive definite with respect to x, and
ρi j ∈ L∞(Ω), i. j = 1,2. Under these assumptions problem (1) is well posed.

Let T h(Ω) be a triangulation of Ω with triangular elements Ki and the mesh
parameter h. We assume that T h(Ω) is shape regular and quasiuniform. Let Xi(Ki)
denote a space of linear functions on Ki and

Xh(Ω) = Π
N
i=1Xi(Ki), Ω̄ =

N⋃
i=1

Ki

be the space in which problem (1) is approximated. Note that Xh(Ω) 6⊂ H1(Ω) and
its elements do not vanish on ∂Ω , in general.

The discrete problem for (1) is of the form: find u∗h ∈ Xh(Ω) such that

âh(u∗h,vh) = f (vh), vh ∈ Xh(Ω), (2)

where for u,v ∈ Xh(Ω),u = {ui}N
i=1,ui ∈ Xi(Ki),

âh(u,v) =
N

∑
i=1

âi(u,v), f (v) =
N

∑
i=1

∫
Ki

f vi dx

and
ρ
(i) = ρ|Ki

, ρ
(i) = {ρ(i)

kl }
2
k,l=1,

and ρ
(i)
kl are constants on Ki which can always be assumed for linear elements. Here

âi(u,v) = ai(u,v)+ si(u,v)+ pi(u,v),

with symmetric forms

ai(u,v) =
∫

Ki

ρ
(i)

∇ui ·∇vi dx,

si(u,v) = ∑
Ei j⊂∂Ki

∫
Ei j

ωi[nT
i ρ

(i)
∇ui(v j− vi)+nT

i ρ
(i)

∇vi(u j−ui)]ds,

pi(u,v) = ∑
Ei j⊂∂Ki

σ

h

∫
Ei j

γi j(ui−u j)(vi− v j)ds

where Ei j = E ji = ∂Ki∩∂K j,Ei j ⊂ ∂Ki and E ji ⊂ ∂K j; ni = nEi j is the unit normal
vector to Ei j pointing from Ki to K j;

ωi ≡ ωEi j =
δ
( j)
ρn

δ
(i)
ρn +δ

( j)
ρn

, ω j ≡ ωE ji =
δ
(i)
ρn

δ
(i)
ρn +ρ

( j)
ρn

and
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δ
(i)
ρn = nT

i ρ
(i)ni, δ

( j)
ρn = nT

j ρ
( j)n j;

γi j ≡ γEi j = 2δ
(i)
ρn δ

( j)
ρn /(δ

( j)
ρn +δ

(i)
ρn ); σ is a positive (sufficiently large, cf. Lemma 1)

penalty parameter, which ensures the ellipticity of âi(·, ·).
To analyze problem (2) we introduce some auxiliary bilinear forms and a broken

norm. Let the elliptic symmetric form dh(·, ·) be defined as

dh(u,v) =
N

∑
i=1

di(u,v), di(u,v) = ai(u,v)+ pi(u,v) (3)

and let the weighted broken norm in Xh(Ω) be defined by

‖ u ‖2
1,h≡ dh(u,u) =

N

∑
i=1

{
‖ (ρ(i))1/2

∇ui ‖2
L2(Ki)

+ ∑
Ei j⊂∂Ki

σ

h
γi j ‖ ui−u j ‖2

L2(Ei j)
}.

(4)

Lemma 1. There exists σ0 > 0 such that for σ ≥ σ0 there exist positive constants
C0 and C1 independent of ρ(i) and h such tha

C0di(u,u)≤ âi(u,u)≤C1di(u,u)

and
C0dh(u,u)≤ â(u,u)≤C1dh(u,u)

for all u ∈ Xh.

For the proof we refer for example to [1] for isotropic cases and [2] for anisotropic
cases.

Lemma 1 implies that the discrete problem (2) is well posed if the penalty pa-
rameter σ ≥ σ0. Below σ is fixed and assumed to satisfy the above condition.

The error bound is given by

Theorem 1. Let u∗ and u∗h be the solutions of (1) and (2). For u∗|Ki
∈ H2(Ki) holds

‖ u∗−u∗h ‖2
1,h≤Mh2

N

∑
i=1

λmax(ρ
(i))|u∗|2H2(Ki)

where M is independent of h,u∗ and ρi; λmax(ρ
(i)) is a maximum eigenvalue of ρ(i).

The proof follows from Lemma 1, for details see for example [2].

3 Additive Schwarz method

We design and analyze ASM for solving problem (2) following to the abstract theory
of ASMs, see for example, [4].



4 Maksymilian Dryja, Piotr Krzyżanowski, and Marcus Sarkis

3.1 Decomposition of Xh(Ω)

Let

Ω̄ =
L⋃

l=1

Ω̄l , Ωl ∩Ωm = { /0}, l 6= m

where Ω̄l is a union of triangulation elements Ki and Hl = diam(Ωl). The decom-
position of Xh(Ω) is

Xh(Ω) = X (0)(Ω)+X (1)(Ω)+ . . .+X (L)(Ω),

where for l = 1, . . . ,L

X (l)(Ω) = {v = {vi}N
i=1 ∈ Xh(Ω) : vi = 0 on Ki 6⊂Ωl}

and for l = 0
V (0)(Ω) = span{φ (l)}L

l=1

with φ (l) = 1 on Ω̄l and φ (l) = 0 otherwise.

3.2 Inexact local solvers

For u(l) = {u(l)i }N
i=1 ∈ X (l)(Ω) and v(l) = {v(l)i }N

i=1 ∈ X (l)(Ω), l = 1, . . . ,L, we define

bl(u(l),v(l)) = dh(u(l),v(l)).

The overlap between local subproblems is very small (only through the subdomain
interface), reducing communication cost to a level similar to substructuring meth-
ods. Instead of solving exact subproblems with form âh(·, ·) on subdomains, we
solve problems with simplified form dh(·, ·). Note that on X (l)(Ω)×X (l)(Ω)

dh(u(l),v(l))= ∑
Ki⊂Ω̄l

{(ρ(i)
∇u(l)i ,∇v(l)i )L2(Ki)

+ ∑
Ei j⊂∂Ki

σ

h
γi j(u

(l)
i −u(l)j ,v(l)i −v(l)j )L2(Ei j)

}.

For l = 0 and u(0) = {u(0)i }N
i=1 ∈ X (0)(Ω) and v(0) = {v(0)i }N

i=1 ∈ X (0)(Ω) we set

b0(u(0),v(0)) = dh(u(0),v(0))≡
L

∑
l=1

σ

h ∑
Ei j⊂∂Ωl

γi j(u
(0)
i −u(0)j ,v(0)i − v(0)j )L2(Ei j)

.

3.3 Operator equation

For l = 0, . . . ,L, let us define Tl : Xh(Ω)→ X (l)(Ω) by
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bl(Tlu,v) = âh(u,v), v ∈ X (l)(Ω).

Then problem (2) is replaced by

Tu∗h = gh, gh =
L

∑
l=0

gl , gl = Tlu∗h. (5)

with T = T0 + T1 + . . .+ TL. Note that in order to compute gl we do not need to
know u∗h. From the theorem below it follows that problems (2) and (5) have the
same unique solution.

3.4 Analysis

Let Ω̄ h
l denote a layer around ∂Ωl . It is a union of Ki ⊂ Ω̄l which touch ∂Ωl by

edge or/and vertex.
Let

ᾱl := max
Ki⊂Ω̄ h

l

λmax(ρ
(i)), α l := min

Ki⊂Ω̄ h
l

λmin(ρ
(i))

where λmax(ρ
(i)) and λmin(ρ

(i)) are maximum and minimum eigenvalues of ρ(i) on
Ki.

Theorem 2 (main result). For any u ∈ Xh(Ω) there holds

C2β
−1âh(u,u)≤ âh(Tu,u)≤C3âh(u,u) (6)

where

β = max
1≤l≤L

ᾱlH2
l

α lh2

and C2 and C3 are positive constants independent of ρ(i), ᾱl and α l for i = 1, . . . ,N
and l = 1, . . . ,L.

To prove Theorem 2 we need to check three key assumptions of the abstract
theory of ASMs, see Toselli and Widlund book [4]. The proof is omitted here due
to the limit of pages and will be published elsewhere.

Remark 1. Note that the convergence of the method is independent of the jumps of
ρ(i) on Ω̄l\Ω h

l for all l = 1, . . . ,L, i.e. of the jumps of ρ(i) on Ki which do not touch
∂Ωl .

Remark 2. Let us mention several specific cases when the above estimate can be
improved. When ρ is isotropic and subdomainwise constant, then we can prove that
β =maxl(Hl/h) in (6). When ᾱl and α l are the same order and α l ≤maxKi⊂Ω̄l

λmin(ρ
(i)),
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then β = maxl(Hl/h), i.e. the convergence is independent of the jumps of ρ(i). Es-
timate (6) can be also improved in the case when λmax(ρ

(i)) on Ki which touch ∂Ωl
by edges are monotonic or quasi-monotonic on ∂Ωl for l = 1, . . . ,L.

4 Numerical experiments

Let us choose the unit square as the domain Ω and for some prescribed integer m
divide it into L = 2m× 2m smaller squares Ωl (l = 1, . . . ,L) of equal size. This de-
composition of Ω is then further refined into a uniform triangulation T h(Ω) based
on a square 2M×2M grid (M≥m) with each square split into two triangles of identi-
cal shape. Hence, the fine mesh parameter h = 2−M , while the coarse grid parameter
is H = 2−m. We discretize system (1) on the fine triangulation using method (2) with
σ = 7.

In tables below we report the number of Preconditioned Conjugate Gradient it-
erations for operator T (defined in Section 3.3) which are required to reduce the
initial Euclidean norm of the residual by a factor of 106 and (in parentheses) the
condition number estimate for T . We consider two sets of test problems: with either
anisotropic or discontinuous coefficients matrix ρ . We will always choose a random
vector for the right hand side and a zero as the initial guess.

Discontinuous, elementwise constant isotropic coefficients. Let us consider
diffusion coefficient of the form

ρ(x) = ρ11(x) · I (7)

where ρ11 equals 1 on even numbered elements (of fine triangulation) and equals
10−2 on odd ones. Table 1 shows the dependence on the ratio between H and h in
this case.

Fine (M)→ 2 3 4 5 6
↓ Coarse (m)
2 33 (32) 82 (300) 133 (530) 164 (840) 237 (2000)
3 45 (41) 140 (370) 189 (700) 225 (1100)
4 48 (42) 155 (470) 186 (690)
5 41 (48) 155 (470)
6 49 (44)

Table 1 Dependence of the number of iterations and the condition number (in parentheses) on the
ratio H/h, where H = 2−m and h = 2−M . Isotropic, elementwise constant coefficient.

Next, let us fix the number of subdomains and the fine mesh size so that M = 3
and m = 5 and thus H/h = 4. Table 2 shows the dependence of the convergence rate
and the condition number as we vary the value of ρ11 on odd-numbered triangles;
on even triangles it remains equal to 1 as previously.
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ρ11 100 10−1 10−2 10−3 10−4 10−5 10−6

iter (cond) 61 (80) 72 (102) 167 (6 ·102) 335 (5 ·103) 485 (5 ·104) 613 (5 ·105) 743 (5 ·106)

Table 2 Dependence of the number of iterations and the condition number (in parentheses) on the
discontinuity in the isotropic, elementwise constant coefficient. Fixed H/h = 4.

Indeed, the condition number estimates agree well with our theory regarding the
dependence on the discontinuity of the coefficient. In our testcase the increase in the
condition number is rather linear than quadratic in H/h, as reported in Table 1. This
behaviour is in agreement with our Remark 2. Let us also explain that low iteration
numbers in Table 2 are due to a very rapid residual in the residual during the initial
phase of the iteration.

Discontinuous, domainwise constant isotropic coefficients. Here we consider
ρ as in (7), with discontinuities aligned with an auxiliary partitioning of Ω into
4× 4 squares. Precisely, we introduce a red–black checkerboard coloring of this
partitioning and set ρ = 1 in red regions, and the value of ρ11 reported in Table 3
in black ones. In this way, our decomposition of the domain with M = 5 and m = 3
will always be aligned with the discontinuites and Table 3 shows the dependence on
ρ11 in this case.

ρ11 100 10−1 10−2 10−3 10−4 10−5 10−6

iter (cond) 61 (80) 60 (70) 58 (67) 58 (68) 62 (68) 64 (68) 67 (68)

Table 3 Dependence of the number of iterations and the condition number (in parentheses) on the
discontinuity when the coefficient is isotropic and constant inside subdomains. Red–black 4× 4
distribution of ρ , aligned with domain decomposition. Fixed H/h = 4.

As predicted in Remark 2, there is no dependence on the discontinuity in the
coefficients in this case until the coefficient remains continuous (constant) inside
subdomain. This behaviour is not observed when the red–black partitioning is not
aligned with the subdomains Ωl : corresponding numbers for a 3×3 partitioning are
shown in Table 4.

ρ11 100 10−1 10−2 10−3 10−4 10−5 10−6

iter (cond) 62 (80) 68 (130) 85 (710) 96 (7 ·103) 113 (7 ·104) 126 (7 ·105) 140 (7 ·106)

Table 4 Dependence of the number of iterations and the condition number (in parentheses) on
the discontinuity when the coefficient is isotropic and discontinuous across subdomain boundaries.
Red–black 3×3 distribution of ρ , not aligned with the domain decomposition. Fixed H/h = 4.

Anisotropic, discontinuous coefficients. Let us continue with the 4× 4 red–
black partitioning and let us set the coefficient matrix ρ equal to ρR in red regions
and ρB in black ones, where

ρ
R(x) =

(
10+ρ22 0

0 ρ22,

)
ρ

B(x) =
(

ρ22 0
0 10+ρ22

)
,
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with constant ρ22 as specified in Table 5. In this way ρ is constant in both red and
black regions, but it suffers from discontinuity across the partitioning borders; the
jump is always equal to 10, while the anisotropy ratio is 1+10/ρ22. The condition
numbers grow linearly with the growth of ρ22, which agrees with Theorem 2.

ρ22 100 10−1 10−2 10−3 10−4 10−5 10−6

iter (cond) 60 (82) 94 (210) 222 (103) 463 (104) 680 (105) 782 (106) 897 (107)

Table 5 Dependence on the anisotropy for discontinuous, piecewise constant coefficient. Fixed
H/h = 4.

Anisotropic, constant coefficients. Finally, let us consider

ρ(x) =
(

1 0
0 ρ22

)
with ρ22 constant throughout entire Ω , assuming values specified in Table 6.

ρ22 100 101 102 103 104 105 106

iter (cond) 60 (82) 74 (102) 159 (6 ·102) 159 (6 ·102) 144 (6 ·102) 143 (6 ·102) 124 (7 ·102)

Table 6 Dependence on the anisotropy. Fixed H/h = 4. Continuous, constant coefficient.

It turns out that after initial linear increase in the condition number for moderate
ρ22, the condition number is insensitive to further growth of the anisotropy ratio ρ22.
This observation can also be explained on the ground of our theory; the details will
be provided elsewhere.
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