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1 Introduction

We focus on the solution of a general linear system Au = f by a Krylov type iterative
method, where A € R™*™ is non-singular, u, f € R™. The major drawback of the
GCR (Generalized Conjugate Residual) [7] and the GMRES (General Minimum
Residual) [8] methods is their convergence rate that depends on the conditioning
number k(A) = ||A]| A7

The convergence rate of these techniques decreases while x increases and the use
of such methods needs preconditioning. In the following we consider left precondi-
tioning. The goal is to solve M~ 'Au= M~ f with M~! such that k(M ~'A) < k(A).

Preconditioning can be enhanced by multilevel techniques. Multilevel techniques
are known to be robust for scalar elliptic Partial Differential Equations with standard
discretization and to enhance the scalability of domain decomposition method such
as Restricted Additive Schwarz preconditioning techniques. An issue is their appli-
cation to linear system encountered in industrial applications which can be derived
from non-elliptic PDEs. Moreover, the building of coarse levels algebraically be-
comes an issue since the only known information is contained in the operator to
inverse.

One can consider a coarse space as a space to represent an approximated solution
of a smaller dimension than the leading dimension of the system. It is possible to
build a coarse level based on a coarse representation of the solution. Drawing our
inspiration from the Aitken-SVD methodology [9] dedicated to Schwarz methods,
we proposed to construct an approximation space by computing the Singular Value
Decomposition of a set of iterated solutions of the Richardson process associated to
a given preconditioner.

From a preconditioner M~! associated to a Richardson process:

Wk = oM (ffAuk_l) with & € R (1
We propose to build a two-level additive preconditioner lelz
—1 ~1 ~1
My =M +M, 2

where for a basis U, € R"*%, M = U, (UTAU,)~'UJ.
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The plan of the paper is the following. Section 2 describes the methodology
to compute an algebraic coarse level from successive iterations of a Richardson
process. Numerical investigations with the RAS preconditioner built for real non-
symmetric indefinite operator, are performed in section 3. Section 4 concludes the
study.

2 Methodology

The idea is to compute a coarse representation of the solution. In [9] a fully alge-
braic computation of a coarse space is proposed to perform an Aitken acceleration
of vectorial sequence generated with an iterative domain decomposition method. In
[6] Aitken-SVD Schwarz algorithms were derived for the Aitken Restricted Addi-
tive Schwarz preconditioning technique [5].

The choice of constructing the coarse space with the SVD is based on the fol-
lowing properties. Let G € R"*! Assume that the values oy, 1 < k <[ are ordered
in decreasing order and there exists a g such that o, > 0 while o, + 1 = 0. Then G
can be decomposed in a dyadic decomposition:

G=oUiVi + olhbV5 +... +0,U, V. 3)

This means that SVD provides a way to find optimal lower dimensional approxi-
mations of a given series of data. More precisely, it produces an orthonormal base
for representing the data series in a certain least squares optimal sense. This can be
summarized by the theorem of Schmidt-Eckart-Young-Mirsky:

Theorem 1. A non-unique minimizer X, of the problem miny ,auix—q |G — X |2 =
0,4+1(G), provided that 6, > 6,1, is obtained by truncating the dyadic decompo-
sition of 3 to contain the first q terms: X, = o1U1 V| + ooV + ... + GquVq*

Moreover, the SVD of a matrix is well-conditioned with respect to perturbations of
its entries. Consider the matrix G, B € R™*/, the Fan inequalities write Oyts+1(G+
B) < 0441(G) + 0541(B) with ¢,s > 0, g+ s+ 1 < I. Considering the perturbation
matrix E such that ||E|| = O(¢), then |ox(G+E) — ok (G)| < 01(E) = ||E||2, Vk.
This property does not hold for eigenvalues decomposition where small perturba-
tions in the matrix entries can cause a large change in the eigenvalues.

These properties allow us to search an approximation of the solution in the base
linked to the SVD of a sequence of vectors obtained by iterating a linearly conver-
gent iterative process.

Here, we propose a general framework which enables to compute algebraically
a two-level additive preconditioner from any preconditioner that can be used in a
Richardson iterative process. Algorithm 1 shows the steps to compute M{LI that
way. In step 1, we compute the SVD of [ successive iterations stored in a matrix
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G € R™*! of a Richardson process (1) having a linear convergence, i.e. we com-
pute a dyadic decomposition of G, as G = [U,ZIVIT, with U; € R™<! £, ¢ R™*! and
V; € R™! In step 2, U, is made of the first q columns of U; with respect to the
decreasing of the singular values X; ;, such that U, is full rank. This selection is done
according to Theorem 1 where X, € R”*? is a non-unique minimizer of the prob-
lem miny ,uux—q |G — X||2 = 0441(G), such that X, = UquVg and rk(Uy,) = ¢,
with U, € R™*9, X, € R7*7 and V, € R"™*? . Once this basis of the coarse space is
defined, one can compute the coarse operator (step 3) and solve the coarse problem
(step 4).

Algorithm 1 Computation of M2_L1 with SVD of solutions of a Richardson process

Require: (u)o<</—1, ! successive iterates satisfaying "1 —u™ = (I — aM~'A) (uf —u™) start-
ing from any initial guess u°
1: Compute the Singular Value Decomposition of the snapshots G = [uo, cout *l] = U;ZIVIT
2: Set the index ¢ such that ¢ = maxo<;<;—1{Z(i,i) > rol}, to define the full rank matrix U, =
[Uo, Ut ..., Uy {ex.: tol = 10712}
3: Define the coarse operator A, € R9*9 such that A, = TUgATUq
4: Define the two-level additive preconditioner M5,' = M~! + U, A" Ug

It is possible to see this approach as a way to approximate a Krylov subspace.
Basically, the solution of the linear system Au = f defined in Section 1 con-
sists on minimizing F(u*) = (f —Au*, f — Au*) on a Krylov space K; (A,r°) =
{0, A0, ... A=10) = {d° ... d!~'}, where from an arbitrary initial solution
wWeRm 0= f—AuO.

Let choose u® = 0. Each iterate u* of the Richardson process can be written in a
Krylov subspace:

uk =

Bi (MflA)iMflf’ Bi#0

-

i=0

Following Algorithm 1, we can write that
span (UO7 el Uq,l) Cspan(Uy, ..., U_1)

Then the solution of the coarse problem is an approximation of a solution in
span(Kj(M~'A, M~ f)).

This link enable us to choose a good initial guess for the Krylov method pre-
conditioned by this two-level preconditioning approach by computing the solution
uc € RY of the coarse linear system: Acqu, = f,, with f. =U,f.

Then we can set the initial guess for the Krylov method such that,

u’ = U,u,
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3 Numerical experiments

In this section we propose to apply the methodology for a RAS preconditioner for
the solution of CFD problems. The considered matrices A are real, non-symmetric,
indefinite and possibly not positive.

The Additive Schwarz (AS) preconditioning is built from the adjacency graph
G = (W,E) of A, where W = {1,2,....m} and E = {(i, ) : a;j # 0} are the edges
and vertices of G. Starting with a non-overlapping partition W = Uf’:lW,-@ and
0 > 0 given, the overlapping partition {W, s} is obtained defining p partitions
W, 5 O W; 5_1 by including all the immediate neighbouring vertices of the vertices in
the partition W, 5—1. Then the restriction operator R; 5 : W — W, 5 defines the local
operator Ai 5= Rl-75ARl.T5,A,-75 € R™i3*™Mi5 on W; 5. The AS preconditioning writes:

M, S 5= ZR A; lR, s- Introducing R, s the restriction matrix on a non-overlapping

subdomam Wi o, the Restricted Additive Schwarz (RAS) iterative process [2] writes:
i = Ml g (A with Mg 5 = Z1é,.T,3Al.—,511e,}(S “
=1

When the number of subdomains increases the convergence rate of RAS decreases.
When it is applied to linear problems, the RAS has a pure linear rate of convergence.

First we study the robustness and scalability of the preconditioner on a 2D driven
cavity problem. Second we propose a test of the quality of our coarse space on an
2D industrial problem.

3.1 Robustness

Here, we want to study the numerical scalability of the method for the domain de-
composition preconditioner chosen. We fix the number of Richardson iteration to
perform while decreasing the convergence rate of the preconditioner, i.e. we set a
coarse space size / and increases the number of partitions p.

We consider a test case called e30r2000 coming from modeling 2D fluid flow in
a driven cavity proposed in the Matrix Market data collection [3] referenced under
the name DRIVCAV. The flow is modeled using the incompressible Navier Stokes
equations discretized using Finite Element Method and linearized using Newton’s
method. The unit square on what the problem is solved is dicretized by 30 elements
on the edges. The Reynolds number is set to 2000.

The matrix A is real, non-symmetric and indefinite of size m = 9661 and has
306356 entries. The estimated condition number given by the condest function of
MATLAB is K(A) =6.77e+ 11.
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We partition the operator with the METIS software for partitioning graphs with
a multilevel recursive-bisection algorithm, in p = {4, 8, 12} partitions. We compute
I = 60 iterations of a RAS iterative process starting from an initial guess u° = 0, and
perform the SVD of the corresponding sequence of vectors.

Figure 1 (top) shows the singular values profile. When p increases the spectrum
coverage decreases which implies a decreasing of the quality of the solution on the
coarse space.

Figure 1 (bottom) shows the convergence to the solution of a GCR method pre-
conditioned by a RAS preconditioning technique on the left and enhanced by the
given algebraic two-level approach with initialisation of the Krylov method by the
solution of the coarse system written on R™. The convergence rate of the RAS
method is reduced for each choice of partitioning. For p =4 and p = 8 the ini-
tialization by the coarse solution is efficient and we observe an enhancement about
8 and 2 orders of convergence at the initialization respectively. For all partitioning
the accuracy is better than for the RAS, i.e. the GCR reaches greater convergences
and, although there is still a plateau due to the bad conditioning of the system, the
convergence to the solution for p = 12 can reach 10~ instead of 107.

3.2 Quality

Here, we want to observe the influence of the quality of the coarse space on the
convergence rate of the preconditioned solution method.

We apply our technique on the case GTOIR proposed by a CFD company called
FLUOREM, on [1], which deals with steady flow parametrization. From a steady
RANS simulation (compressible Navier-Stokes equations) on a reference configu-
ration they obtain linear systems with real, square and indefinite matrices. Those
matrices, generated through automatic differentiation of the flow solver around a
steady state, correspond to the Jacobian with respect to the conservative fluid vari-
ables of the discretized governing equations (finite-volume discretization). The right
hand side represents the derivative of the equations with respect to a parameter (of
operation or shape).

The CASE_004 GTO1 operator comes from a 2D inviscid case in the context of
a linear cascade turbine. The solution of the discrete system is defined over five
variables per node. The discretisation is done among 1596 nodes, describing one
inter-blade channel. The stencil involved by the convective scheme uses nine nodes.
Thus, there are nine non-zero blocks for each node in the matrix. The peculiarity
is that the computational domain is periodic, which introduces some non-zero ele-
ments far away from the diagonal. The resulting matrix is real, non-symmetric and
not positive definite, of size m = 7980.

Figure 2 shows the singular values (left) obtained after 20, 40 or 60 iterations of
a RAS iterative process with p = 8. For [ = 60, o covers 15 orders of magnitude,
while it covers 10 orders of magnitude for [ =40 and 5 for / = 20. For each we
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Fig. 1 Solving 2D driven cavity, Re=2000, n=9661, with GCR preconditioned by RAS (left) and
ML_RAS_svd(60) (right). Singular values of RAS solutions to compute M ! for p=4,8, 12 (top).

choose [ = g. As expected, the convergence of the GMRES (right) is better when
q increases. Nevertheless, the convergence plots for 20 and 40 singular values kept
are similar.

Table 1 shows the coarse solution accuracy compared to a solution given using
LU factorization. The greater the number of iterations of a Richardson process is,
the better the coarse solution accuracy is.

Those results shows that, although the quality of the coarse space is increasing
with the number of Richardson iterations, it is not necessary to compute a lot of
singular values to enhance the convergence with this technique.
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Fig. 2 Solving 2D case, GTOl, n=7814, with GMRES preconditioned by RAS and
ML_RAS_svd(q), p = 8 (right), Singular values of RAS solutions to compute M(T' (left)

modes 20 40 60
[|ttex — UgucH 7.23 e-01|5.99 ¢-02(8.39 e-03

Table 1 Coarse solution accuracy for the GTO1 case, compared to a solution given using LU
factorization.

4 Conclusion

As in [9] and [6] the principle of using the SVD of successive solutions of an it-
erative process enables to compute a coarse solution without the knowledge of the
underlying equations but it not used to accelerate a sequence of vectors but to con-
struct a Krylov subspace. Then it can also be used to construct algebraic coarse
levels for a two-level preconditioning technique based on any preconditioner which
can be used in an iterative Richardson process.

Numerical results have been shown for the RAS preconditioning technique on
two fluid flow problems. The algebraic framewok enables to deal with real, non-
symmetric and not positive definite operators. The two-level preconditioners pro-
duced are numerically scalable for domain decomposition technique such as RAS
and the coarse space enables to compute an approximation of the solution which is
used to initialize the chosen Krylov method.

Further work concerns the study of the non-singularity of the coarse operators
built with this approach [4]. Moreover, a discussion about the choice of the SVD
algorithms and the quality of the coarse space produced should be studied.
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