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Abstract A strategy for scheduling the communication between pssin a

multi-level parallel-in-time algorithm to reduce blockircommunication is pre-
sented. The particular time-parallel method examinedeéspidwrallel full approxi-

mation scheme in space and time (PFASST), which utilizeseatthy of spatial

and temporal discretization levels. By decomposing theatgptb initial conditions

passed between processors into multiple spatial resobjtthe communication at
the finest level can be scheduled to overlap with computati@oarser levels. The
potential cost savings is demonstrated with a three dimeasPDE example.

1 Introduction

The last decade has seen an increase in research into tileljzation of numer-
ical methods for ordinary and partial differential equatdn the temporal direc-
tion. One strategy for temporal parallelization involvesdmposing the solution
into time slices, which are distributed across processoigraups of processors,
and employing an iterative scheme for computing the satuio all time slices in
parallel [4, 3, 2]. The communication between time sliceshiase algorithms is
quite regular, where each processor must send updatesitotilecondition to the
processor representing the following time slice. This camimation must be done
during each iteration of the method, and the amount of dataiseproportional
to the size of the problem being solved. Although this comication takes place
less frequently than that which typically occurs in spatiphrallelized solvers for
PDEs, the size of the data that must be transmitted is relgtigrge, and hence, re-
ducing the effective cost of this data transfer is necessaayoid reduced parallel
efficiency.

In [2] a new approach for the temporal parallelization of themerical solu-
tion to partial differential equations, called the PardHell Approximation Scheme
in Space and Time (PFASST), is introduced. PFASST is sinmlatructure to the
earlier Parareal [4] and PITA [3] methods, but uses a dederoerection type proce-
dure first described in [5, 7] within time slices instead ofaditional direct method,
which provides an improved theoretical maximum parallétiefncy as compared
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to Parareal or PITA. The PFASST algorithm also uses a hieyaof spatial and
temporal discretizations of the problem, wherein coareblems are defined in a
procedure analogous to the full approximation scheme (F&s8)Yl extensively in
multigrid methods for nonlinear problems (see e.g., [1]hc8 FAS is naturally
recursive, an extension of the approach in [2] to multiplele of spatial and tem-
poral refinement is possible. The key algorithmic changeFA$FST presented here
concerns the issue of the communication cost.

The PFASST method is reviewed here in Sect. 2. In Section apanoach is
outlined wherein corrections computed at different refinathevels are passed be-
tween processors in a way which can greatly reduce the comeation overhead
of the PFASST iterations. The timing results presented itt.Sedemonstrate the
effectiveness of the proposed communication strateggllyira short discussion of
the current results and future research directions canuelfm Sect. 5.

2 PFASST

In this section, a brief description of the PFASST algoritisnincluded. It is as-
sumed that the reader is familiar with Spectral Deferred@xion (SDC) methods
and full approximation scheme (FAS) corrections. For manmplete details, see
[7,2].

For the following description, consider the ODE initial walproblem

u'(t) = f(t,ut)),  u(0)=uo, (1)

wheret € [0,T]; up, u(t) € CN; andf : R x CN — CN. It is assumed here that (1)
represents a method of lines discretization of a PDE.

For a PFASST computation withlevels of spatial and temporal resolution (with
level O being the finest), the time interval of inter@T | is divided intoN uniform
intervals tn,t,1] which are assigned to the processBrswheren =0...N — 1.
Each interval is subdivided on each leveby definingM, + 1 SDC noded, =
[tro---tem,] such thaty =t o < --- <tym, = tn,1, where we have omitted the de-
pendence of, on n for brevity. The SDC nodet, ; on level/ + 1 are chosen to
be a subset of the SDC nodgn level/ to facilitate interpolation and restriction
between coarse and fine levels. Note that the use of poirttiofeas the coarsen-
ing procedure with Gaussian quadrature nodes means theddinge nodes may not
correspond to Gaussian nodes. The solution atrfA@ode on level during itera-
tionk is denotedJ (¢,k,m). For brevity letJ (¢,k) = [U (¢,k,0),---,U (¢,k,My)] and
F(Ev k) = [F(Ev k70)7 B F(Ea ka M/)] = [f(tf,OaU (ﬂa ka O))a ) f(tf,MpU (ﬂa ka M/))]

In the parareal method, the processors are typically lizi¢id by using the coarse
propagator in serial to yield a low-accuracy initial corafit for each processor.
In [2], an alternative initialization scheme is describBdring initialization, each
processor begins coarse SDC sweeps immediately usingitia dondition from
the first processor. Hence the number of coarse iteratioD€ (Sveeps) done on
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processoP,, in the initialization is equal to rather than 1. This has the same total
computational cost of doing one coarse SDC sweep per pracesserial, but the
additional SDC sweeps can improve the accuracy of the soldignificantly, as
is demonstrated in [2]. During this initial iteration, nommunication is necessary
since each processor computes the same data as the pram@sssponding to the
previous process. Hence further discussion of the irdtiilon procedure is omitted.

The full PFASST iterations fok = 0...K — 1 on each process#, proceed as
follows. Assuming that the fine solution and function valug®, k) andF (0, k) are
available, the iterations are comprised of the followirepst

1. Perform one fine SDC sweep using the valuég, k) andF (0, k). This will yield
provisional updated valué$(0,k+ 1) andF (0,k+ 1).

2. SendJ (0,k+ 1,Mp) to processoPy 1 if n< N —1. This will be received as the
new initial conditionU (0,k+ 1,0) in the next iteration.

3. Go down thé&/-cycle: foreack =1...L—2

a. Restrict the fine valudd (¢ —1,k+ 1) to the coarse valudd(¢,k) and com-
puteF (¢,k).

b. Compute the FAS correctid(¢,k) usingF (¢ — 1,k+ 1), F(¢,k), andB(¢ —
1,k).

c. Performn, SDC sweeps with the valuék(¢,k), F(¢,k) and the FAS correc-
tion B(¢,k). This will yield new valued) (¢,k+ 1) andF (¢,k+ 1).

d. SendJ (¢,k+ 1,M;) to processoPy1 if n < N — 1. This will be received as
the new initial conditiord (¢,k+ 1,0) in the next iteration.

4. Perform the bottom sweep:

a. Restrict the fine valudd (L — 2,k+ 1) to the coarse valudd (L — 1,k) and
computeF (L — 1,k).

b. Compute the FAS correctidB(L — 1,k) usingF (L — 2,k+ 1), F(L — 1,k),
andB(L — 2,k).

c. Receive the new initial valud (L — 1,k,0) from processoP,_1 if n> 0 and
computeF (L — 1,k 0).

d. Performn__; coarse SDC sweeps using the vallbd — 1 k), F(L — 1,k)
and the FAS correctioB(L — 1,k). This will yield new valuedJ (L —1,k+1)
andF(L—-1,k+1).

e. SendJ (L — 1,k+1,M _y to processoPn,; if n <N — 1. This will be re-
ceived as the new initial conditidi(L — 1,k,0) in the current iteration on the
next processoPy 1.

5. Return up th&/-cycle: foreacld =L —2...1:

a. Interpolate coarse correctibh?+ 1,k+ 1) —U (£ + 1,k) in space and time
and add tdJ (¢,k+ 1). Recompute new valuds(¢,k+ 1).

b. Receive the new initial valud (¢,k+ 1,0) from processoP,,_; if n> 0.

c. Interpolate correctiotd (¢ + 1,k+ 1,0) —U (¢ + 1,k,0) to newU (¢,k+ 1,0)
and recomput€& (¢,k+1,0).
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d. Performn, SDC sweeps with the valuéb(¢,k+ 1), F (¢,k+ 1) and the FAS
correctionB(¢,k). This will once again yield new valued (¢,k+ 1) and
F(¢,k+1).

6. Interpolate coarse correctibh(1,k+ 1) —U(1,k) in space and time and add to
U (0,k+1). Recompute new valuds(0,k+ 1).

7. Receive the new initial valud (0,k+ 1,0) from processoPy_; if n > 0.

8. Interpolate correctiod (1,k+1,0) —U(1,k,0) to newU (0,k+1,0) and recom-
puteF (0,k+1,0).

The steps above are illustrated in Figure 1(b), in whichdsblocks denote SDC
sweepsk,) and gradient blocks denote interpolatid)ﬁg) or restriction Rﬁ*l). The
length of the blocks are proportional to their cost, with f812C sweeps being 4 and
16 times more expensive than intermediate and coarse SDE€psweespectively
(which would correspond to a 1D PFASST scheme with both apartid temporal
refinements by a factor of 2). The length of the interpolatiod restriction blocks is
also proportional to their cost: when transferring betwlegals we must re-evaluate
the function value# (¢,k) in order to compute the FAS correctioB&/, k).

3 Communication between processors

In the precursors to this work appearing in [7, 2] as well a&sdtliginal papers on
the parareal method, little attention is given to the togisaheduling the commu-
nication between processors. In this section, a strateggtwéifectively unblocks
communication except at the coarsest resolution is predetiis assumed here that
the parallel implementation of PFASST allows computatiod eommunication to
be performed simultaneously.

In each PFASST iteration, the full solution (or correctiorthe solution) must
be passed forward in time to the next processor. In the twal Esheme presented
in [7, 2], this is done directly after the coarse correctisrapplied to the current
fine solution. Since the coarse SDC sweep on the next pracessoot begin until
this data is received, scheduling the communication invtaig results in dlocking
communication. The blocking communication is depictedio E(a), where each
column represents the operations done on a processor withimwea progressing
from bottom to top. The white and black circles corresponithéosend and receive
process on each processor. After the coarsest SDC sweegptéder ), the full
update of the initial condition is sent forward in time. Thhite gap represents the
waiting time, which grows linearly with the number of prosess.

Note in Fig. 1(a), the first operation performed after a pssoe receives data
is a coarse SDC sweep. In order to perform this sweep, a néal icondition is
required, but only at the coarse resolution. The key observaised here is that
it is only necessary to pass the corrections to the initith daring each PFASST
iteration, and more importantly this communication can beainposed into cor-
rections corresponding to each level of spatial resolutidtihough this means that
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more data in total is being passed during each PFASST eratata from the finer
levels can be sent before the corresponding fine SDC sweepedormed on each
processor. Therefore, if the computational cost of the attatjpn at the coarser
levels is greater than the communication cost of sending aiaa particular level,
then the communication becomaan-blocking.

For example, consider Fig. 1(b), which diagrams the sclireglof communica-
tion for a three-level implementation of the PFASST alduorit At each level, as
soon as an SDC sweep is completed (denotedpjor ¢ = 0...2), the correction
to the solution at the final SDC node (which corresponds tditeeSDC node on
the next processor) is sent. This can be done before thesreewall to compute a
correction at the next coarsest level (denoted by the bIBﬁT&). The sent data can
then be received in a buffer at the next processor and is remtatkuntil after the
corresponding coarse correction has been computed (dEmpthe bIockaH) on
that processor. Hence, the sending of the finest data ogesldp the computation
of the correction on two coarser levels. It is only at the seat level that there is no
computational work to be done while waiting for the data todeeived. However, if
the coarse data is significantly smaller than fine data, thexwanication cost at the
coarsest level is likewise significantly reduced. In the#atevel, three-dimensional
example in Sect. 4, the coarsest level contains 1/64 the anoddata as the finest
level with communication time similarly reduced.

It should be noted that the crossing of the lines correspanidi communication
in Fig. 1(b) assume that blocking coarse communicationctbelscheduled to in-
terrupt non-blocking fine level communication, a featureolihmay not exist in a
standard message passing library. If this is not the caseg ib still the opportu-
nity to overlap computation with communication before th&cking coarsest level
send occurs. Finally, recall that the work performed by gackessor in Fig. 1(b) is
not uniform since process®;, doesn coarse SDC sweeps during the initialization
procedure.

4 Timing

Timing information for a three-level PFASST run was obtaltfier a three dimen-
sional model problem: the incompressible Navier-Stokes#ggns given by

U+u-Ou=vd2u—DOpd-u=0. (2)

A method of lines approach is employed by placing the eqoaiio projection form
and using spectral approximations to all spatial deriestivia the FFT [6]. The ad-
vective piece of the equation is treated explicitly while thiffusive piece is treated
implicitly. The fine spatial discretization consists of 35@ints in a unit cube, re-
sulting in a total of 3< 256° degrees of freedom on the fine level, or approximately
384 megabytes using 64 bits per degree of freedom. The fineai@trdiscretization
consists of 5 Gauss-Lobatto SDC nodes. The run was perfoacreds 16 proces-
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Fig. 1 Left: (a) Communication diagram for the original 2-levelASST algorithm. Right: (b)
Communication diagram for the 3-lewélcycle PFASST algorithm.

sors of “Edison”, the Cray XC30 system at the National Enétggearch Scientific
Computing Center (NERSC).

Figs. 2 and 3 present timing information for various partshef PFASST algo-
rithm across the processors for each PFASST iteration. Figm2 we note that
the iteration time (which encompasses all overhead costadimg interpolation,
restriction, and FAS computation) is fairly consistentossreach processor and it-
eration, and that the cost of the intermediate and coarsepsaare significantly
cheaper than the fine sweep.

From Fig. 3 we note that the (blocking) coarse send and recienes are fairly
significant (send/receive 0) between some processorsestablishes that commu-
nication across compute nodes is non-trivial even at thesedavel (recall that the
coarse level consists 0f:364° degrees of freedom, which is 64 times less than the
fine level). Finally, the fine and intermediate send and xectéines (send/receive 1
and 2) are essentially zero across all processors anddtesaf his demonstrates
that the fine and intermediate communications are essigntiah-blocking and
were successfully overlapped with computation.

The three-level PFASST run using 16 time processors deseabeve achieves
a speedup of roughly 7.2 compared to a serial SDC-based rhici{wequires 8
serial iterations per time step to acheive the same accasa6PFASST iterations).
This corresponds to a parallel efficiency of roughly 45%. pheallel efficiency of
PFASST can vary substantially depending on the number afgssors, the error
tolerance, and the sensitivity of the problem at hand [2].
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PFASST timing
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Fig. 2 Timing information for the three-dimensional Navier-Stsksolver. The top panel shows
the total elapsed run time. The bottom panel shows iterdiie (including all overhead), SDC
sweep time for each level, and the initialization time (jceat).
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Fig. 3 Communication timing information for the three-dimensibNavier-Stokes solver. The
top panel shows send time for each level, and the bottom ghaoels receive time for each level.
Note that the send and receive times for the intermediatdiaadevels (1 and 0) are negligible
compared to the coarse level (2).

5 Discussion

In summary, we have demonstrated how the necessary trasfsfelatively large
amounts of data between processors in the PFASST algoritimbe scheduled
so that only a small amount of the transfer is blocking. Agglais the computa-
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tion involved in a recursive call to a coarser level cormtis more expensive than
the communication, the communication cost is negligiblee €ffectiveness of the
scheduling procedure relies on the communication and ctatipn being done si-
multaneously, and is optimal if blocking communication @aerrupt non-blocking
communication between two processors.

Current trends in the design of the next generation of lagyalfel computers
suggest that the relative cost of data transfer betweerepsocs will continue to
grow. In this case, more elaborate strategies to avoid bigadlommunication in the
PFASST algorithm might become necessary. For examplee sinly the correction
to the solution needs to be passed between processorsp#sibfe that fewer sig-
nificant digits could be used to transmit data. The main pe@stress here is that,
except at the coarsest level, there is useful work that agssmr can perform while
data is being passed from processor to processor. In factlgorithm could be
reconfigured so that at each stage of the FAS procedure, SB€psvare performed
at each level until the necessary data at the next finestileveteived.

References

1. Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multigridutorial, vol. 72. SIAM (2000)

2. Emmett, M., Minion, M.: Toward an efficient parallel in tavrmethod for partial differential
equations. Communications in Applied Mathematics and Gdatwnal Scienc&(1), 105—
132 (2012)

3. Farhat, C., Chandesris, M.: Time-decomposed paratfed-thtegrators: theory and feasibility
studies for fluid, structure, and fluid-structure applicas. Internat. J. Numer. Methods Engrg.
58(9), 1397-1434 (2003)

4. Lions, J., Maday, Y., Turinici, G.: A "parareal” in timeddiretization of PDE’s. Comptes Rendus
de I'’Academie des Sciences Series | Mathem@RZ&7), 661-668 (2001)

5. Minion, M., Williams, S.: Parareal and spectral defertedections. In: AIP Conference Pro-
ceedings, vol. 1048, pp. 388—-391. AIP (2008)

6. Minion, M.L.: Semi-implicit projection methods for inogpressible flow based on spectral de-
ferred corrections. Appl. Numer. Math8(3-4), 369-387 (2004)

7. Minion, M.L.: A hybrid parareal spectral deferred cotiens method. Comm. Appl. Math. and
Comp. Sci5(2), 265-301 (2010)



