
Efficient implementation of a multi-level parallel
in time algorithm

Matthew Emmett and Michael L. Minion

Abstract A strategy for scheduling the communication between processors in a
multi-level parallel-in-time algorithm to reduce blocking communication is pre-
sented. The particular time-parallel method examined is the parallel full approxi-
mation scheme in space and time (PFASST), which utilizes a hierarchy of spatial
and temporal discretization levels. By decomposing the update to initial conditions
passed between processors into multiple spatial resolutions, the communication at
the finest level can be scheduled to overlap with computationat coarser levels. The
potential cost savings is demonstrated with a three dimensional PDE example.

1 Introduction

The last decade has seen an increase in research into the parallelization of numer-
ical methods for ordinary and partial differential equations in the temporal direc-
tion. One strategy for temporal parallelization involves decomposing the solution
into time slices, which are distributed across processors or groups of processors,
and employing an iterative scheme for computing the solution on all time slices in
parallel [4, 3, 2]. The communication between time slices inthese algorithms is
quite regular, where each processor must send updates to theinitial condition to the
processor representing the following time slice. This communication must be done
during each iteration of the method, and the amount of data sent is proportional
to the size of the problem being solved. Although this communication takes place
less frequently than that which typically occurs in spatially parallelized solvers for
PDEs, the size of the data that must be transmitted is relatively large, and hence, re-
ducing the effective cost of this data transfer is necessaryto avoid reduced parallel
efficiency.

In [2] a new approach for the temporal parallelization of thenumerical solu-
tion to partial differential equations, called the Parallel Full Approximation Scheme
in Space and Time (PFASST), is introduced. PFASST is similarin structure to the
earlier Parareal [4] and PITA [3] methods, but uses a deferred correction type proce-
dure first described in [5, 7] within time slices instead of a traditional direct method,
which provides an improved theoretical maximum parallel efficiency as compared

Matthew Emmett
Lawrence Berkeley National Laboratory, e-mail:mwemmett@lbl.gov

Michael L. Minion
Institute for Computational and Mathematical Engineering, Stanford University, e-mail:
mlminion@gmail.com

1

2 Matthew Emmett and Michael L. Minion

to Parareal or PITA. The PFASST algorithm also uses a hierarchy of spatial and
temporal discretizations of the problem, wherein coarse problems are defined in a
procedure analogous to the full approximation scheme (FAS)used extensively in
multigrid methods for nonlinear problems (see e.g., [1]). Since FAS is naturally
recursive, an extension of the approach in [2] to multiple levels of spatial and tem-
poral refinement is possible. The key algorithmic change in PFASST presented here
concerns the issue of the communication cost.

The PFASST method is reviewed here in Sect. 2. In Section 3, anapproach is
outlined wherein corrections computed at different refinement levels are passed be-
tween processors in a way which can greatly reduce the communication overhead
of the PFASST iterations. The timing results presented in Sect. 4 demonstrate the
effectiveness of the proposed communication strategy. Finally, a short discussion of
the current results and future research directions can be found in Sect. 5.

2 PFASST

In this section, a brief description of the PFASST algorithmis included. It is as-
sumed that the reader is familiar with Spectral Deferred Correction (SDC) methods
and full approximation scheme (FAS) corrections. For more complete details, see
[7, 2].

For the following description, consider the ODE initial value problem

u′(t) = f (t,u(t)), u(0) = u0, (1)

wheret ∈ [0,T]; u0, u(t) ∈ CN ; and f : R×CN
→ CN . It is assumed here that (1)

represents a method of lines discretization of a PDE.
For a PFASST computation withL levels of spatial and temporal resolution (with

level 0 being the finest), the time interval of interest[0,T] is divided intoN uniform
intervals[tn, tn+1] which are assigned to the processorsPPPn wheren = 0. . .N − 1.
Each interval is subdivided on each levelℓ by definingMℓ + 1 SDC nodestttℓ =
[tℓ,0 · · · tℓ,Mℓ

] such thattn = tℓ,0 < · · · < tℓ,Mℓ
= tn+1, where we have omitted the de-

pendence oftttℓ on n for brevity. The SDC nodestttℓ+1 on levelℓ+ 1 are chosen to
be a subset of the SDC nodestttℓ on levelℓ to facilitate interpolation and restriction
between coarse and fine levels. Note that the use of point injection as the coarsen-
ing procedure with Gaussian quadrature nodes means that thecoarse nodes may not
correspond to Gaussian nodes. The solution at themth node on levelℓ during itera-
tion k is denotedUUU(ℓ,k,m). For brevity letUUU(ℓ,k) = [UUU(ℓ,k,0), · · · ,UUU(ℓ,k,Mℓ)] and
FFF(ℓ,k) = [FFF(ℓ,k,0), · · · ,FFF(ℓ,k,Mℓ)] = [f (tℓ,0,UUU(ℓ,k,0)), · · · , f (tℓ,Mℓ

,UUU(ℓ,k,Mℓ))].
In the parareal method, the processors are typically initialized by using the coarse

propagator in serial to yield a low-accuracy initial condition for each processor.
In [2], an alternative initialization scheme is described.During initialization, each
processor begins coarse SDC sweeps immediately using the initial condition from
the first processor. Hence the number of coarse iterations (SDC sweeps) done on

Efficient implementation of a multi-level parallel in time algorithm 3

processorPPPn in the initialization is equal ton rather than 1. This has the same total
computational cost of doing one coarse SDC sweep per processor in serial, but the
additional SDC sweeps can improve the accuracy of the solution significantly, as
is demonstrated in [2]. During this initial iteration, no communication is necessary
since each processor computes the same data as the processorcorresponding to the
previous process. Hence further discussion of the initialization procedure is omitted.

The full PFASST iterations fork = 0. . .K −1 on each processorPPPn proceed as
follows. Assuming that the fine solution and function valuesUUU(0,k) andFFF(0,k) are
available, the iterations are comprised of the following steps:

1. Perform one fine SDC sweep using the valuesUUU(0,k) andFFF(0,k). This will yield
provisional updated valuesUUU(0,k+1) andFFF(0,k+1).

2. SendUUU(0,k+1,M0) to processorPPPn+1 if n < N −1. This will be received as the
new initial conditionUUU(0,k+1,0) in the next iteration.

3. Go down theV -cycle: for eachℓ= 1. . .L−2

a. Restrict the fine valuesUUU(ℓ−1,k+1) to the coarse valuesUUU(ℓ,k) and com-
puteFFF(ℓ,k).

b. Compute the FAS correctionBBB(ℓ,k) usingFFF(ℓ−1,k+1), FFF(ℓ,k), andBBB(ℓ−
1,k).

c. Performnℓ SDC sweeps with the valuesUUU(ℓ,k), FFF(ℓ,k) and the FAS correc-
tion BBB(ℓ,k). This will yield new valuesUUU(ℓ,k+1) andFFF(ℓ,k+1).

d. SendUUU(ℓ,k+1,Mℓ) to processorPPPn+1 if n < N −1. This will be received as
the new initial conditionUUU(ℓ,k+1,0) in the next iteration.

4. Perform the bottom sweep:

a. Restrict the fine valuesUUU(L− 2,k+ 1) to the coarse valuesUUU(L− 1,k) and
computeFFF(L−1,k).

b. Compute the FAS correctionBBB(L− 1,k) usingFFF(L− 2,k+1), FFF(L− 1,k),
andBBB(L−2,k).

c. Receive the new initial valueUUU(L−1,k,0) from processorPPPn−1 if n > 0 and
computeFFF(L−1,k,0).

d. PerformnL−1 coarse SDC sweeps using the valuesUUU(L−1,k), FFF(L− 1,k)
and the FAS correctionBBB(L−1,k). This will yield new valuesUUU(L−1,k+1)
andFFF(L−1,k+1).

e. SendUUU(L− 1,k+ 1,ML−1) to processorPPPn+1 if n < N − 1. This will be re-
ceived as the new initial conditionUUU(L−1,k,0) in the current iteration on the
next processorPPPn+1.

5. Return up theV -cycle: for eachℓ= L−2. . .1:

a. Interpolate coarse correctionUUU(ℓ+1,k+1)−UUU(ℓ+1,k) in space and time
and add toUUU(ℓ,k+1). Recompute new valuesFFF(ℓ,k+1).

b. Receive the new initial valueUUU(ℓ,k+1,0) from processorPPPn−1 if n > 0.
c. Interpolate correctionUUU(ℓ+1,k+1,0)−UUU(ℓ+1,k,0) to newUUU(ℓ,k+1,0)

and recomputeFFF(ℓ,k+1,0).

4 Matthew Emmett and Michael L. Minion

d. Performnℓ SDC sweeps with the valuesUUU(ℓ,k+1), FFF(ℓ,k+1) and the FAS
correctionBBB(ℓ,k). This will once again yield new valuesUUU(ℓ,k + 1) and
FFF(ℓ,k+1).

6. Interpolate coarse correctionUUU(1,k+1)−UUU(1,k) in space and time and add to
UUU(0,k+1). Recompute new valuesFFF(0,k+1).

7. Receive the new initial valueUUU(0,k+1,0) from processorPPPn−1 if n > 0.
8. Interpolate correctionUUU(1,k+1,0)−UUU(1,k,0) to newUUU(0,k+1,0) and recom-

puteFFF(0,k+1,0).

The steps above are illustrated in Figure 1(b), in which solid blocks denote SDC
sweeps (Fℓ) and gradient blocks denote interpolation (Iℓℓ+1) or restriction (Rℓ+1

ℓ). The
length of the blocks are proportional to their cost, with fineSDC sweeps being 4 and
16 times more expensive than intermediate and coarse SDC sweeps, respectively
(which would correspond to a 1D PFASST scheme with both spatial and temporal
refinements by a factor of 2). The length of the interpolationand restriction blocks is
also proportional to their cost: when transferring betweenlevels we must re-evaluate
the function valuesFFF(ℓ,k) in order to compute the FAS correctionsBBB(ℓ,k).

3 Communication between processors

In the precursors to this work appearing in [7, 2] as well as the original papers on
the parareal method, little attention is given to the topic of scheduling the commu-
nication between processors. In this section, a strategy which effectively unblocks
communication except at the coarsest resolution is presented. It is assumed here that
the parallel implementation of PFASST allows computation and communication to
be performed simultaneously.

In each PFASST iteration, the full solution (or correction to the solution) must
be passed forward in time to the next processor. In the two level scheme presented
in [7, 2], this is done directly after the coarse correction is applied to the current
fine solution. Since the coarse SDC sweep on the next processor cannot begin until
this data is received, scheduling the communication in thisway results in ablocking
communication. The blocking communication is depicted in Fig. 1(a), where each
column represents the operations done on a processor with wall time progressing
from bottom to top. The white and black circles correspond tothe send and receive
process on each processor. After the coarsest SDC sweep (denotedF1), the full
update of the initial condition is sent forward in time. The white gap represents the
waiting time, which grows linearly with the number of processors.

Note in Fig. 1(a), the first operation performed after a processor receives data
is a coarse SDC sweep. In order to perform this sweep, a new initial condition is
required, but only at the coarse resolution. The key observation used here is that
it is only necessary to pass the corrections to the initial data during each PFASST
iteration, and more importantly this communication can be decomposed into cor-
rections corresponding to each level of spatial resolution. Although this means that

Efficient implementation of a multi-level parallel in time algorithm 5

more data in total is being passed during each PFASST iteration, data from the finer
levels can be sent before the corresponding fine SDC sweeps are performed on each
processor. Therefore, if the computational cost of the computation at the coarser
levels is greater than the communication cost of sending data at a particular level,
then the communication becomesnon-blocking.

For example, consider Fig. 1(b), which diagrams the scheduling of communica-
tion for a three-level implementation of the PFASST algorithm. At each level, as
soon as an SDC sweep is completed (denoted byFℓ for ℓ = 0. . .2), the correction
to the solution at the final SDC node (which corresponds to thefirst SDC node on
the next processor) is sent. This can be done before the recursive call to compute a
correction at the next coarsest level (denoted by the blocksRℓ+1

ℓ). The sent data can
then be received in a buffer at the next processor and is not needed until after the
corresponding coarse correction has been computed (denoted by the blocksIℓℓ+1) on
that processor. Hence, the sending of the finest data overlaps with the computation
of the correction on two coarser levels. It is only at the coarsest level that there is no
computational work to be done while waiting for the data to bereceived. However, if
the coarse data is significantly smaller than fine data, the communication cost at the
coarsest level is likewise significantly reduced. In the three-level, three-dimensional
example in Sect. 4, the coarsest level contains 1/64 the amount of data as the finest
level with communication time similarly reduced.

It should be noted that the crossing of the lines corresponding to communication
in Fig. 1(b) assume that blocking coarse communication could be scheduled to in-
terrupt non-blocking fine level communication, a feature which may not exist in a
standard message passing library. If this is not the case, there is still the opportu-
nity to overlap computation with communication before the blocking coarsest level
send occurs. Finally, recall that the work performed by eachprocessor in Fig. 1(b) is
not uniform since processorPPPn doesn coarse SDC sweeps during the initialization
procedure.

4 Timing

Timing information for a three-level PFASST run was obtained for a three dimen-
sional model problem: the incompressible Navier-Stokes equations given by

uuut + uuu ·∇uuu = ν∇2uuu−∇p∇ ·uuu = 0. (2)

A method of lines approach is employed by placing the equations in projection form
and using spectral approximations to all spatial derivatives via the FFT [6]. The ad-
vective piece of the equation is treated explicitly while the diffusive piece is treated
implicitly. The fine spatial discretization consists of 2563 points in a unit cube, re-
sulting in a total of 3×2563 degrees of freedom on the fine level, or approximately
384 megabytes using 64 bits per degree of freedom. The fine temporal discretization
consists of 5 Gauss-Lobatto SDC nodes. The run was performedacross 16 proces-

6 Matthew Emmett and Michael L. Minion

P0 P1 P2 P3

w
a
ll
c
lo
c
k

P0 P1 P2 P3
receive

send

F0

R
1

0

F1

R
2

1

F2

I1
2

F1

I0
1

it
e
r
a
t
io
n

Fig. 1 Left: (a) Communication diagram for the original 2-level PFASST algorithm. Right: (b)
Communication diagram for the 3-levelV -cycle PFASST algorithm.

sors of “Edison”, the Cray XC30 system at the National EnergyResearch Scientific
Computing Center (NERSC).

Figs. 2 and 3 present timing information for various parts ofthe PFASST algo-
rithm across the processors for each PFASST iteration. FromFig. 2 we note that
the iteration time (which encompasses all overhead costs including interpolation,
restriction, and FAS computation) is fairly consistent across each processor and it-
eration, and that the cost of the intermediate and coarse sweeps are significantly
cheaper than the fine sweep.

From Fig. 3 we note that the (blocking) coarse send and receive times are fairly
significant (send/receive 0) between some processors. Thisestablishes that commu-
nication across compute nodes is non-trivial even at the coarse level (recall that the
coarse level consists of 3×643 degrees of freedom, which is 64 times less than the
fine level). Finally, the fine and intermediate send and receive times (send/receive 1
and 2) are essentially zero across all processors and iterations. This demonstrates
that the fine and intermediate communications are essentially non-blocking and
were successfully overlapped with computation.

The three-level PFASST run using 16 time processors desribed above achieves
a speedup of roughly 7.2 compared to a serial SDC-based run (which requires 8
serial iterations per time step to acheive the same accuracyas 6 PFASST iterations).
This corresponds to a parallel efficiency of roughly 45%. Theparallel efficiency of
PFASST can vary substantially depending on the number of processors, the error
tolerance, and the sensitivity of the problem at hand [2].

Efficient implementation of a multi-level parallel in time algorithm 7

Fig. 2 Timing information for the three-dimensional Navier-Stokes solver. The top panel shows
the total elapsed run time. The bottom panel shows iterationtime (including all overhead), SDC
sweep time for each level, and the initialization time (predictor).

Fig. 3 Communication timing information for the three-dimensional Navier-Stokes solver. The
top panel shows send time for each level, and the bottom panelshows receive time for each level.
Note that the send and receive times for the intermediate andfine levels (1 and 0) are negligible
compared to the coarse level (2).

5 Discussion

In summary, we have demonstrated how the necessary transferof relatively large
amounts of data between processors in the PFASST algorithm can be scheduled
so that only a small amount of the transfer is blocking. As long as the computa-

8 Matthew Emmett and Michael L. Minion

tion involved in a recursive call to a coarser level correction is more expensive than
the communication, the communication cost is negligible. The effectiveness of the
scheduling procedure relies on the communication and computation being done si-
multaneously, and is optimal if blocking communication caninterrupt non-blocking
communication between two processors.

Current trends in the design of the next generation of large parallel computers
suggest that the relative cost of data transfer between processors will continue to
grow. In this case, more elaborate strategies to avoid blocking communication in the
PFASST algorithm might become necessary. For example, since only the correction
to the solution needs to be passed between processors, it is possible that fewer sig-
nificant digits could be used to transmit data. The main pointwe stress here is that,
except at the coarsest level, there is useful work that a processor can perform while
data is being passed from processor to processor. In fact, the algorithm could be
reconfigured so that at each stage of the FAS procedure, SDC sweeps are performed
at each level until the necessary data at the next finest levelis received.

References

1. Briggs, W.L., Henson, V.E., McCormick, S.F.: A MultigridTutorial, vol. 72. SIAM (2000)
2. Emmett, M., Minion, M.: Toward an efficient parallel in time method for partial differential

equations. Communications in Applied Mathematics and Computational Science7(1), 105–
132 (2012)

3. Farhat, C., Chandesris, M.: Time-decomposed parallel time-integrators: theory and feasibility
studies for fluid, structure, and fluid-structure applications. Internat. J. Numer. Methods Engrg.
58(9), 1397–1434 (2003)

4. Lions, J., Maday, Y., Turinici, G.: A ”parareal” in time discretization of PDE’s. Comptes Rendus
de l’Academie des Sciences Series I Mathematics332(7), 661–668 (2001)

5. Minion, M., Williams, S.: Parareal and spectral deferredcorrections. In: AIP Conference Pro-
ceedings, vol. 1048, pp. 388–391. AIP (2008)

6. Minion, M.L.: Semi-implicit projection methods for incompressible flow based on spectral de-
ferred corrections. Appl. Numer. Math.48(3-4), 369–387 (2004)

7. Minion, M.L.: A hybrid parareal spectral deferred corrections method. Comm. Appl. Math. and
Comp. Sci.5(2), 265–301 (2010)

