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1 Introduction

Schwarz methods are nowadays known as parallel solvers, andthere are many vari-
ants: alternating and parallel Schwarz methods at the continuous level, additive and
multiplicative Schwarz methods at the discrete level, alsowith restricted variants,
which in the additive case build the important bridge between discrete and continu-
ous Schwarz methods, see [4]. But where did these methods come from? Why were
they invented in the first place? We explain in this paper thatHermann Amandus
Schwarz invented the alternating Schwarz method in [18] to close an important gap
in the proof of the Riemann mapping theorem, which was based on the Dirichlet
principle. The Dirichlet principle itself addresses the important question of exis-
tence and uniqueness of solutions of Laplace’s equation on abounded domain with
Dirichlet boundary conditions, and in the 19th century, this equation appeared inde-
pendently in many different areas. It was therefore of fundamental importance to put
the Dirichlet principle on firm mathematical grounds, and this is one of the major
achievements of Schwarz.

2 Laplace’s equation

In his Principia in 1687, Newton presented among many results also his famous
inverse square law for celestial bodies [15, end of proof of Prop. XI] 1:

see also [20] for a comprehensive treatment of the influence of Kepler and Newton
on numerical analysis. In modern notation, if we denote byf the force between two
celestial bodies, thenf is proportional to1

r2 , wherer :=
√

(x− ξ )2+(y−η)2+(z− ζ )2,
using the notation in Figure 1. Writingf = ( f1, f2, f3) component-wise, we obtain
for the components

f1 ≈
x− ξ

r3 , f2 ≈
y−η

r3 , f1 ≈
z− ζ

r3 .
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1 The centripetal force is inverse toL×SP2, it is inversely proportional to the squared distanceSP.
Q.E.I.
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Fig. 1 The sun and our planet earth, for which Newton’s inverse square law holds

This very elegant and simple law is at first only valid for point masses. Laplace
then, from 1785 onwards, was wondering how these forces looklike if the body
is not a point, but a three dimensional irregular object occupying a domainV ⊂
R

3. A clear exposition of his ideas only appeared in hisMécanique Ćelestefrom
1799, see [9]. He imagined that the body is composed of molecules, see the original
reproduced in Figure 2. In that case, one would need to sum thecontributions of all
the infinitesimally small body parts (“molecules”) making up the entire volume, and
would thus obtain for example for the first component of the force

f1 =
∫

V
ρ(ξ ,η ,ζ )

x− ξ
r3 dξ dη dζ , (1)

whereρ denotes the density of the body. The key idea of Laplace was now to intro-
duce the potential function

u=
∫ ∫ ∫

ρ(ξ ,η ,ζ )
1
r

dξ dηdζ . (2)

Let x, y, z, be the coordinates of the at-
tracted pointm; let dM be a molecule of
a spherical body with coordinatesx′, y′,
z′; if we call ρ the density, function ofx′,
y′, z′, independent ofx, y, z, we get

The action ofdM onm, decomposed par-
allel to thex-axis, and directed towards
its origin, is

and hence it will be equal to

denoting byV the integral

extended to the entire mass of the spher-
ical body, we will have−( dV

dx ), for the
total action of the spherical body on the
point m, decomposed in parallel to thex-
axis and directed towards their origin.

Fig. 2 Generalization of Laplace of the inverse square law of Newton to the case of a spherical
body, arguing with molecules. Copied from the 1799 publication of Laplace’sMécanique Céleste
[9, page 136].
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Fig. 3 Laplace equation by Euler in 1752 (top left), by Laplace in 1799 (top right), by Fourier in
1822 (bottom left), and by Kelvin in 1847 (bottom right)

Taking a derivative with respectx, and using∂
∂x

1
r =− x−ξ

r3 , we obtain by comparing
with (1), after a similar computation fory andz,

f =−

(

∂u
∂x

,

∂u
∂y

,

∂u
∂z

)

. (3)

Differentiating once more, we obtain∂∂x
x−ξ
r3 = r3−3(x−ξ )2r

r6 , and therefore, perform-
ing the same steps fory andzas well, that the potential function satisfies

∆u=
∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂z2 = 0, Laplace’s equation! (4)

This equation appeared already in Euler’sPrincipia motus fluidorum[2] (E258,
written 1752, published 1756) see Figure 3, but Euler could not really use it. It
appeared again in the theory of heat transfer, published by Fourier [3] in 1822, see
Figure 3. Fourier also argued with molecules, and Newton’s law of cooling, in order
to derive the equation.

Laplace’s equation turned out to be absolutely fundamental, it appeared again in
the theory of magnetism proposed by Gauss and Weber in Göttingen in 1839, in
the theory of electric fields put forward by W. Thomson (the later Lord Kelvin, pub-
lished in the Liouville Journal from 1847 on pages 256 and 496), in conformal maps
(Gauss 1825), in the irrotational motion of fluids in two dimensions (Helmholtz
1858), and finally in complex analysis, in particular in Riemann’s PhD Thesis in
1851, which is available in a modern typeset version in [17].

3 The Riemann Mapping Theorem

Riemann was a prodigy already in high-school, and his mathematical talent im-
pressed everybody:

“Ein Lehrer, der Rektor Schmalfuss, lieh ihm Legendres Zahlentheorie (Théorie des Nom-
bres), ein schwieriges Werk von 859 Quartformat-Seiten, bekam sie aber schon eine Woche
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“Die von Herrn Riemann eingere-
ichte Schrift legt ein bündiges Zeug-
niss ab von den gründlichen und
tief eindringenden Studien des Verf.
in demjenigen Gebiete, welchem der
darin behandelte Gegenstand angeört;
von einem strebsamen ächt mathe-
matischen Forschungsgeiste, und von
einer rühmlichen productiven Selb-
stthätigkeit. Der Vortrag ist umsichtig
und concis, theilweise selbst elegant:
der grösste Theil der Leser möchte in-
dess wohl in einigen Theilen noch eine
grössere Durchsichtigkeit der Anordung
wünschen. Das Ganze ist eine gediegene
werthvolle Arbeit, das Maass der An-
forderungen, welche man gewöhnlich an
Probeschriften zur Erlangung der Doc-
torwürde stellt, nicht bloss erfüllend,
sondern weit überragend .

Das Examen in der Mathematik werde ich übernehmen. Unter den Wochentagen ist mir Sonnabend
oder Freitag am passendsten und, wenn eine Nachmittagsstunde gewählt werden soll, um 5 oder 5
1/2 Uhr. Ich würde aber auch nichts gegen die Vormittagsstunde 11h zu erinnern haben. Ich setze
übrigens voraus, dass das Examen nicht vor der nächsten Woche statt finden wird”.

Fig. 4 Handwritten Laudatio of Gauss on Riemann’s PhD thesis, copied from Remmert [16]

später zurück und fand, als er Riemann im Abitur über dieses Werk weit über das̈Ubliche
hinaus prüfte, dass Riemann sich dieses Buch vollständigzu eigen gemacht hatte.”2

Riemann’s PhD supervisor was Gauss, who rarely praised the work of other mathe-
maticians. We show the laudatio on Riemann’s thesis in the original handwriting of
Gauss in Figure 43. Riemann build in his thesis the foundation of analytic function
theory, and gave toward the end an example, which became the famous Riemann
Mapping theorem:

2 “A teacher, Professor Schmalfuss, lend him Legendre’s bookon number theory, a very difficult
work of 859 pages in quarto format, and he got it back already after a week. When he tested Rie-
mann in his final high-school exam on this subject much more thoroughly than usual, he realized
that Riemann had completely mastered the content of the book.”
3 The manuscript submitted by Riemann is a testament of the thorough and deep studies by the
author in the area to which the treated subject belongs; of anaspiring and truly mathematical
research spirit, and of a glorious, productive self-activity. The presentation is comprehensive and
concise, partly even elegant: the major part of the readers would however in some parts still wish
for more transparency and better arrangement. As a whole, itis a dignified valuable work, which
does not only satisfy the requirement one usually imposes ona manuscript to obtain a PhD degree,
but goes very far beyond.
The mathematics exam I will do myself. I prefer Sunday or Friday, and in the afternoon at 5 or 5:30
pm. I would also be available in the morning at 11am. I assume that the exam will not be before
next week.
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“Zwei gegebene einfach zusammenhängende Flächen können stets so aufeinander bezogen
werden, dass jedem Punkte der einen ein mit ihm stetig fortr¨uckender Punkt entspricht...;”4

Riemann also gave a constructive proof of this theorem. In modern notation, we
need to find an analytic functionf which mapsΩ to the unit disk and one point
z0 ∈ Ω into 0. We thus setf (z) := (z−z0)eg(z), g= u+ iv an analytic function to be
determined, in order to ensure thatz0 is the only point mapped into zero. In order
to arrive from the boundary∂Ω on the boundary of the disk with the mapping, we
must have for allz∈ ∂Ω that| f (z)| = 1, which implies that

1= | f (z)|= |(z− z0)e
u+iv|= |(z− z0)|e

u =⇒ u(z) =−log|z− z0|, ∀z∈ ∂Ω . (5)

Sinceg is analytic, the real partu of g satisfies Laplace’s equation∆u = 0 on Ω ,
with boundary values given in (5). It thus suffices to solve for u, constructv using
the Cauchy-Riemann equations, and then the construction off is complete.

Riemann’s PhD thesis was very well received by the mathematical world of
that time, and widely studied. Among the first readers were also Weierstrass and
Helmholtz:

“Weierstrass hatte die Riemannsche Dissertation zum Ferienstudium mitgenommen und
klagte, dass ihm, dem Funktionentheoretiker, die Riemannschen Methoden schwer verständlich
seien. Helmholtz bat sich die Schrift aus und sagte beim nächsten Zusammentreffen, ihm
schienen die Riemannschen Gedankengänge völlig naturgemäss und selbstverständlich zu
sein.” (Funktionentheorie 1 von Reinhold Remmert, Georg Schumacher)5

Nevertheless, an important question remained: Riemann hadused that au satisfying
Laplace’s equation on an arbitrary domain with given boundary conditions exists.
But was this really true ? When Riemann was challenged with this, he replied

“Hierzu kann in vielen Fällen. . . ein Princip dienen, welches Dirichlet zur Lösung dieser
Aufgabe für eine der Laplace’schen Differentialgleichung genügende Function. . . in seinen
Vorlesungen. . . seit einer Reihe von Jahren zu geben pflegt.” (Riemann 1857,Werkep. 97)6

The idea, which became known under the name of “Dirichlet principle”, is to choose
among all the functions defined on a given domainΩ with the prescribed boundary
values the one that minimizes the integral

J(u) =
∫ ∫

Ω

1
2

(

u2
x +u2

y

)

dxdy which is always non-negative.

But is the Dirichlet principle correct for an arbitrary, non-negative functional?
Weierstrass gave in (1869, Werke 2, p. 49) a counter example:for the non-negative

4 Two simply connected surfaces can always be mapped one to theother, such that each point on
the former moves continuously with the point on the latter...
5 Weierstrass had taken Riemann’s PhD thesis as vacation reading, and complained that for a
function theorist like him, the methods of Riemann were hardto understand. Helmholtz then also
borrowed the thesis, and said on their next meeting, that forhim, Riemann’s thoughts seemed to
be completely natural and self-evident.
6 To this end, one can often invoke a principle for finding a function that solves Laplace’s equation,
which Dirichlet has been using in his lectures over the past few years.
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functional
∫ 1

−1
(x ·y′)2dx→ min y(−1) = a, y(1) = b,

the functiony(x) must have a small derivative whenx is large, to make the func-
tional small. Hence the derivative can only be large whenx is close to zero, and
the minimum is achieved for the step function, which is not differentiable atx= 0.
Weierstrass concludes

“Die Dirichlet’sche Schlussweise führt also in dem betrachteten Falle offenbar zu einem
falschen Resultat.”7

But Riemann only answered “... meine Existenztheoreme sindtrotzdem richtig”8

and Helmholtz commented “Für uns Physiker bleibt das Dirichletsche Prinzip ein
Beweis”9.

4 The Schwarz Alternating Method

The entire mathematical world stood now in front of a big challenge, namely to
show rigorously that for an arbitrary domainΩ , Laplace’s equation∆u = 0 with
prescribed boundary conditionsu= g on ∂Ω has a unique solution. For special do-
mains, the answer had been known for quite some time: Poisson(1815) had found
the solution formula for circular domains, and Fourier (1807) for rectangular do-
mains using Fourier series. But the existence of solutions of Laplace’s equation on
arbitrary domains appeared hopeless !

It is at this moment, where Schwarz invented the first ever domain decomposition
method [18]. His paper starts with the paragraph

10

Schwarz then invents the famous alternating Schwarz methodto prove existence and
uniqueness of the solution of Laplace’s equation on a domaincomposed of a disk
and a rectangle, as shown from the original publication in Figure 5 on the left. His
alternating method is given by

7 Dirichlet’s reasoning apparently leads to an incorrect result in this case [8].
8 ... my existence theorems nevertheless hold [8].
9 For us physicists the Dirichlet principle remains a proof [8].
10 The method of conclusion, which became known under the name Dirichlet Principle, and which
in a certain sense has to be considered to be the foundation ofthe theory of analytic functions de-
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Fig. 5 Original drawing of Schwarz from 1870 on the left to explain his alternating method, and
his physical interpretation of the method using a two level vacuum pump on the right

∆un
1 = 0 in T1, ∆un

2 = 0 in T2,
un

1 = g onL0, un
2 = g onL3,

un
1 = un−1

2 onL2, un
2 = un

1 onL1.
(6)

Since the method only uses solutions of Laplace’s equation on the disk and the
rectangle, for which the proof of the Dirichlet principle did not pose any difficulties,
the method is well defined. Schwarz then proved the convergence of his method
to a limit that satisfies Laplaces equation as well in the composed domain. Adding
other circles or rectangles Schwarz then proved recursively the Dirichlet principle
for more and more complicated domains. This closed the gap inRiemann’s proof.

Schwarz also gave an analogy of his alternating method with aphysical device,
as indicated on the right in Figure 5: a vacuum pump with two cylinders. In order to
create a vacuum in the inner chamber, one has to alternatingly pump with the two
cylinders, similar to the subdomain solves in the alternating method.

5 The Schwarz method as a computational tool

At the beginning of the 20th Century, Hilbert (see [6, 7]) finally managed, after a
hard struggle, to establish a theory fordirect methods of variational calculus, which
later led to the Ritz-Galerkin method (see e.g. [5]). The Schwarz method thus lost
completely its importance as a theoretical tool. Curiously, some other decades later,
its importance forpractical computationswas discovered: in 1965, Miller states
[14]:

“Schwarz’s method presents some intriguing possibilitiesfor numerical methods. Firstly,
quite simple explicit solutions by classical methods are often known for simple regions
such as rectangles or circles. Also, better numerical solutions, from the standpoint of the
computational work involved, are often known for certain types of regions than for others.
By Schwarz’s method, we may be able to extend these classicalresults and these computa-
tional advantages to more complicated regions.”

veloped by Riemann, is subject to, like it is generally admitted now, very well justified objections,
whose complete removal has eluded all efforts of mathematicians to the best of my knowledge.
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Fundamental early contributions to the theory were by Sobolev [19], who gave a
variational convergence proof for the case of elasticity, Mikhlin [13], with a varia-
tional proof for convergence for general elliptic operators, and then the sequence of
publications by Lions [10, 11, 12]. The complete breakthrough as a computational
method came with the introduction of the two level additive Schwarz method [1].
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