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1 Introduction

It is well known that for elliptic problems, domain decomjims methods need a
coarse grid in order to be scalable. One talks about straaiglsitity of an algorithm,
if it permits to solve a problem of fixed size faster in the sgm@portion that one
adds processors. For example if on one processor, a strgnglgble algorithm
needs 10 seconds to solve the problem, it would need 1 sesimgi10 processors.
Strong scalability is difficult to achieve already from adhetical point of view, the
limit as the number of processors goes to infinity leads to nark per processor
for a problem of fixed size. One therefore also talks aboutkveealability, which
means that one can solve a larger and larger problem with amarenore processors
in a fixed time. For example if a weakly scalable algorithnvesla problem with
100’000 unknowns in 10 seconds using 1 processor, it shoalldhbe to solve a
problem with 1’000’000 unknowns in the same 10 seconds usthgrocessors.
Domain decomposition methods with coarse grids attempgdolr this goal.

The most fundamental result for the two level additive Satawaethod is then
precisely that the condition number of the preconditionéptie problem satisfies

the estimate H
H (Magh) <C(1+ %), (1)

whered denotes the size of the overlap, afidhe diameter of the coarse mesh, see
the seminal technical report [2], or also the book [11] foroaplete and detailed
treatment. This result indicates that if one keeps the ddtibe coarse mesh cells to
the overlap in a two level additive Schwarz method constaetmethod is weakly
scalable (as long as the coarse grid solve remains negl)gibl

Similarly, for substructuring methods, to which the FETdi&alancing Neumann-
Neumann methods belong, there is a condition number e&tinfahe precondi-
tioned system of the form

H
H (M) < C(L+In(3)2, @)
where nowh denotes the mesh size. This theoretical result has bedslisisea for

the Balancing Neumann-Neumann algorithm in [3, 9], andlierEETI method in
[10]; for a complete treatment, see again the book [11]. lerlapping methods,
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Fig. 1 Decomposition into many subdomains for the one dimensiomalel problem

the mesh sizé is often related to the overlap paramedersince the overlap is in
general just one or a few mesh cells, and this permits us tgpacer(1) and (2).

It is also very easily possible to understand intuitivelyywguch a coarse level
correction is necessary, if one wants to obtain a scalabtbaode For the simple
model problem,

(n —ox)u=0, u(0)andu(l) given (3)

we consider the parallel Schwarz method introduced by Li8htor the decompo-
sition shown in Figure 1,

(Nn—0wu'=0 inQ;, @
ul(ai) = u{(ai), ul(B) = ul (B,

which is a one level method, and is equivalent to RAS (restli@dditive Schwarz
[1]), see [4] and [5] for a proof of equivalence. We show inuig 2 the first few
iterations of algorithm (4): in the top row, for the case obtsubdomains, we clearly
see that both iterates on the left and right subdomain staxdnverge with the first
iterations toward the solution, which is a straight line hiilstexample withn = 0,
whereas with sixteen subdomains in the bottom row, the sulilts on the left
remain at zero, since communication in this algorithm isydotal between the
subdomains.

2 Geometric Investigation of the Coarse Grid Correction

In order to obtain a scalable algorithm, one can introducecarsd level solve like
in multigrid: one simply introduces for the fine discretibatAu= f of (3) a coarse
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Fig. 2 Firstiterations of Lions parallel Schwarz methods (eqenato RAS) for two subdomains
in the top row, and sixteen subdomains in the bottom rpw 0
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Fig. 3 Various choices to place coarse grid nodes: center of suéithenfempty squares), center
of overlaps (empty circles), in the overlap to the left anghtiof the RAS discontinuity (filled
circles) and an equal number of coarse grid points withinstitedomains for a fair comparison
(filled squares)

grid, and then, after each iteration of algorithm (4), perfe the correction

rh="f—Au;

re=Rrp;

e =Agtre; ®)
Un =Un+ Elg;

using standard components. In our example, we use for teaswnE linear inter-
polation, for the restrictiofR the extension transposed and normalized, and for the
coarse matrix the Galerkin projectida = RAE A classical choice for the coarse
grid is to put one grid pointinto the center of each subdoraaishown by the empty
square in Figure 3. This leads for our example to the convegessult shown in
Figure 7 on the left. We clearly see that without coarse dhiel convergence slows
down as we add subdomains, whereas with the coarse gridotivergence curves
remain the same, the algorithm is scalable.

In order to see geometrically how the coarse grid correc)mvorks, we now
visualize in each iteration step how it operates: we showidnte 4 for the case of
four subdomains the iterates before the coarse grid casret¢hen the residual, the
best coarse correction possible and the one actually cadpand finally the iter-
ates after the coarse grid correction. We clearly see teatdhrse grid correction is
effective: after one coarse grid correction, in the top itv,approximate solution is
already very close for all subdomains to the solution sougletsee however also a
very unnatural kink appearing in the corrected approxiomatin the right. Looking
at the middle picture of the top row, we see that the residuabncentrated in the
center of the overlaps. This is because in RAS, subdomainiens are composed
piecewise, and subdomain solutions satisfy the equatiotisei subdomains (one
says they are harmonic), and thus have zero residual theeecdarse correction
computed with grid points in the center of each subdomaimatesuitable to cor-
rect such a residual support well, as one can see in the middie in each row:
the residual is smeared out into the subdomains, insteadinglzorrected in the
overlap.

This indicates that coarse grid degrees of freedom in oumpl& should be
placed in the overlap, in order to avoid the smearing of tls&dtel into the sub-
domains, and ideally one should have one degree of freedoeaci side of the
non-zero residual location, in order to capture the ’jummpthe ideal correction
shown in the middle column, see the filled circles in Figurél8 best coarse space
must have as a range such types of corrections. We show imePgior the same
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Fig. 4 On each line the iterates before the coarse correction), (feffidual, best possible coarse
correction and coarse correction actually computed (middind iterates after the coarse correc-
tion (right) for the first few iterations of the Lions pardl@chwarz method with coarse correction

example what happens with this new coarse grid correctiba.résult is striking:
we obtain convergence of the Schwarz algorithm with thiss®grid correction in
two iterations, independently of the number of subdomaimsler the conditions

1. The coarse grid nodes are in the overlap and can captudisitentinuity from
RAS,
2. The coarse grid functions satisfy the homogeneous exquati

one obtains a direct solver! In order to illustrate that iinportant for the coarse
grid shape functions to be harmonic, we show in Figure 6 wappkns when we
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Fig. 5 Residual, best possible coarse grid correction and coarsection actually computed with
good placement of coarse grid nodes (left), iterate aftemétw coarse grid correction (middle),

and iterate after the Schwarz correction (right) startiittp ¢ihe same initial configuration as shown
on the top left in Figure 4

solve a problem witlp = 10, and still use piecewise linear coarse shape functions.
We clearly do not obtain the solution any more after two tierss, but still a very
rapidly converging method, note the different scaling ia tésidual plot on the left
of Figure 6! In order to finally compare with a classical twedeadditive Schwarz
method (AS), and measure the influence of using a Krylov ntetboaccelerate
the iteration, we present in Figure 7 on the right the corsecg histories for this
example. It is well known that AS does not converge withoutl&v acceleration,
which explains the plateau observed in Figure 7. But eveh Wil/lov accelera-
tion, the method is much slower than RAS with the new coargegiacement. We
also notice that RAS now does basically not need Krylov agedibn any more,
convergence with and without Krylov is very similar.
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Fig. 6 Example withn = 10, but otherwise the same configuration as in Figure 5
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Fig. 7 Iteration versus error for Lions parallel Schwarz algaritivith and without coarse grid on
the left, and comparison of AS with classical coarse grid BAG with optimally placed coarse
grid with and without Krylov acceleration on the right

The key question is: can we learn anything from this simpkedimensional ex-
ample for a problem in higher dimensions? According to th&gterule 1. above,
the coarse grid needs to have nodes in the overlap, and etougpture an arbi-
trary residual located there, as shown in Figure 8 on the Téfén one can prove
that we still get a direct solver, provided design rule 2.\abis also satisfied. It
is interesting at this point to indicate a relation of thisse grid correction and
the optimal transmission operator introduced in [6], wHidds to convergence of
an optimized Schwarz method in two iterations, indepengeitthe number of
subdomains and subdomain configuration, even with crostgdihe transmission
operator also contains a coarse grid component there, aaddts precisely the same
traces as our presently proposed coarse grid, and one caa ¢iochplete proof at
the algebraic level on convergence in two iterations in $inilarly, for a banded
matrix, there is also an optimal transmission operator jnWhich again involves
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Fig. 8 Optimal coarse grid in two dimensions, and a simple appraion, extending the 1d opti-
mal placement in tensor form
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the same global traces. Naturally, these methods are delaiéthe precise relation
is non-trivial and will be developed elsewhere.

The coarse space indicated in Figure 8 on the left is howesr @xpensive,
it requires many degrees of freedom, and also a solve for isactder to obtain
harmonic shape functions. A much cheaper alternative isated in Figure 8 on
the right: one simply places four coarse grid nodes arouactthss point of the
decomposition. One can then again use Q1 coarse shape élemetions, which
are harmonic. We show in Figure 9 the convergence historee®btain for the
Laplace equation on the unit square, decomposed into 16 subdomains, using
256 x 256 gridpoints. On the left we used the Lions Schwarz methitid avcoarse
grid (equivalent to two level RAS) with overlapn3We show the result for the

e classical placement of one coarse grid node in the centeadf subdomain
(classical Q1, empty square in the 1d Figure 3),

e one node at each crosspoint (Q1 in overlap, empty circlearithFigure 3), in
order to illustrate that really one node is not enough forjaingps in RAS,

e four nodes per subdomain equally spaced (QL1 fair, filled ismjmathe 1d Figure
3) with the same number of coarse grid points as the optimiradse grid for a
fair comparison, and

e four nodes around the crosspoints (optimized Q1, filledeiit the 1d Figure
3), with the same number of coarse grid points as Q1 fair.

Clearly the optimized placement of the coarse grid nodedsléa a substantially
faster method than all the other choices.

In Figure 9 on the right we show the corresponding result fSrufith minimal
overlaph. It is interesting to note that for minimal overlap, the irfhce of the
placement of the coarse nodes is even more important, anelmaas a much
faster method than with any of the other coarse grid nodespteats in this two
dimensional example.
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Fig. 9 Convergence histories for two level RAS with various coaysé node placements on the
left and overlap B, and on the right for AS (additive Schwarz) with overtap
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3 Conclusions

We explained geometrically the interplay between Schwiations and coarse
grid corrections. Our example in one dimension revealetithaddition to having
harmonic coarse space shape functions, it is also very ipiowhere the coarse
grid nodes are placed. Optimal placement in one dimensiortliee overlap, which
leads to a method that converges in two iterations, indegrghdof the number
of subdomains. In higher spatial dimensions, it is stillgibke to construct such a
coarse grid correction, but one has to use a number of degféeedom propor-
tional to the skeleton of the decomposition. Using howevsingple approxima-
tion, placing only few degrees of freedom around the crassépdeads already to
a much faster iterative method than placing coarse noddssaadane traditionally
somewhere within the subdomains. Several theoreticaltsemie already available,
though in the different context of transmission conditiosee [6] and [7], and we
are currently working on a rigorous error analysis of thizdea. It is also an open
question how such an optimized coarse grid would have to ligekfor a general
decomposition of a general domain, our examples here hévgag simple squares.
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