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1 Introduction

It is well known that for elliptic problems, domain decomposition methods need a
coarse grid in order to be scalable. One talks about strong scalability of an algorithm,
if it permits to solve a problem of fixed size faster in the sameproportion that one
adds processors. For example if on one processor, a stronglyscalable algorithm
needs 10 seconds to solve the problem, it would need 1 second using 10 processors.
Strong scalability is difficult to achieve already from a theoretical point of view, the
limit as the number of processors goes to infinity leads to zero work per processor
for a problem of fixed size. One therefore also talks about weak scalability, which
means that one can solve a larger and larger problem with moreand more processors
in a fixed time. For example if a weakly scalable algorithm solves a problem with
100’000 unknowns in 10 seconds using 1 processor, it should be able to solve a
problem with 1’000’000 unknowns in the same 10 seconds using10 processors.
Domain decomposition methods with coarse grids attempt to reach this goal.

The most fundamental result for the two level additive Schwarz method is then
precisely that the condition number of the preconditioned elliptic problem satisfies
the estimate

K (M−1
ASA)≤C(1+

H
δ
), (1)

whereδ denotes the size of the overlap, andH the diameter of the coarse mesh, see
the seminal technical report [2], or also the book [11] for a complete and detailed
treatment. This result indicates that if one keeps the ratioof the coarse mesh cells to
the overlap in a two level additive Schwarz method constant,the method is weakly
scalable (as long as the coarse grid solve remains negligible).

Similarly, for substructuring methods, to which the FETI and Balancing Neumann-
Neumann methods belong, there is a condition number estimate of the precondi-
tioned system of the form

K (M−1
subA)≤C(1+ ln(

H
h
))2

, (2)

where nowh denotes the mesh size. This theoretical result has been established for
the Balancing Neumann-Neumann algorithm in [3, 9], and for the FETI method in
[10]; for a complete treatment, see again the book [11]. In overlapping methods,
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Fig. 1 Decomposition into many subdomains for the one dimensionalmodel problem

the mesh sizeh is often related to the overlap parameterδ , since the overlap is in
general just one or a few mesh cells, and this permits us to compare (1) and (2).

It is also very easily possible to understand intuitively why such a coarse level
correction is necessary, if one wants to obtain a scalable method. For the simple
model problem,

(η − ∂xx)u= 0, u(0) andu(1) given, (3)

we consider the parallel Schwarz method introduced by Lions[8] for the decompo-
sition shown in Figure 1,

(η − ∂xx)un
i = 0 in Ωi ,

un
i (αi) = un−1

i−1 (αi), un
i (βi) = un−1

i+1 (βi),
(4)

which is a one level method, and is equivalent to RAS (restricted additive Schwarz
[1]), see [4] and [5] for a proof of equivalence. We show in Figure 2 the first few
iterations of algorithm (4): in the top row, for the case of two subdomains, we clearly
see that both iterates on the left and right subdomain start to converge with the first
iterations toward the solution, which is a straight line in this example withη = 0,
whereas with sixteen subdomains in the bottom row, the subdomains on the left
remain at zero, since communication in this algorithm is only local between the
subdomains.

2 Geometric Investigation of the Coarse Grid Correction

In order to obtain a scalable algorithm, one can introduce a second level solve like
in multigrid: one simply introduces for the fine discretization Au= f of (3) a coarse
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Fig. 2 First iterations of Lions parallel Schwarz methods (equivalent to RAS) for two subdomains
in the top row, and sixteen subdomains in the bottom row,η = 0
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Fig. 3 Various choices to place coarse grid nodes: center of subdomains (empty squares), center
of overlaps (empty circles), in the overlap to the left and right of the RAS discontinuity (filled
circles) and an equal number of coarse grid points within thesubdomains for a fair comparison
(filled squares)

grid, and then, after each iteration of algorithm (4), performs the correction

rn = f −Aun ;
rc = Rrn ;
uc = A−1

c rc ;
un = un+Euc ;

(5)

using standard components. In our example, we use for the extensionE linear inter-
polation, for the restrictionR the extension transposed and normalized, and for the
coarse matrix the Galerkin projectionAc = RAE. A classical choice for the coarse
grid is to put one grid point into the center of each subdomainas shown by the empty
square in Figure 3. This leads for our example to the convergence result shown in
Figure 7 on the left. We clearly see that without coarse grid,the convergence slows
down as we add subdomains, whereas with the coarse grid, the convergence curves
remain the same, the algorithm is scalable.

In order to see geometrically how the coarse grid correction(5) works, we now
visualize in each iteration step how it operates: we show in Figure 4 for the case of
four subdomains the iterates before the coarse grid correction, then the residual, the
best coarse correction possible and the one actually computed, and finally the iter-
ates after the coarse grid correction. We clearly see that the coarse grid correction is
effective: after one coarse grid correction, in the top row,the approximate solution is
already very close for all subdomains to the solution sought. We see however also a
very unnatural kink appearing in the corrected approximation on the right. Looking
at the middle picture of the top row, we see that the residual is concentrated in the
center of the overlaps. This is because in RAS, subdomain solutions are composed
piecewise, and subdomain solutions satisfy the equations in the subdomains (one
says they are harmonic), and thus have zero residual there. The coarse correction
computed with grid points in the center of each subdomain arenot suitable to cor-
rect such a residual support well, as one can see in the middlefigure in each row:
the residual is smeared out into the subdomains, instead of being corrected in the
overlap.

This indicates that coarse grid degrees of freedom in our example should be
placed in the overlap, in order to avoid the smearing of the residual into the sub-
domains, and ideally one should have one degree of freedom oneach side of the
non-zero residual location, in order to capture the ’jump’ in the ideal correction
shown in the middle column, see the filled circles in Figure 3.The best coarse space
must have as a range such types of corrections. We show in Figure 5 for the same
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Fig. 4 On each line the iterates before the coarse correction (left), residual, best possible coarse
correction and coarse correction actually computed (middle), and iterates after the coarse correc-
tion (right) for the first few iterations of the Lions parallel Schwarz method with coarse correction

example what happens with this new coarse grid correction. The result is striking:
we obtain convergence of the Schwarz algorithm with this coarse grid correction in
two iterations, independently of the number of subdomains.Under the conditions

1. The coarse grid nodes are in the overlap and can capture thediscontinuity from
RAS,

2. The coarse grid functions satisfy the homogeneous equation,

one obtains a direct solver! In order to illustrate that it isimportant for the coarse
grid shape functions to be harmonic, we show in Figure 6 what happens when we
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Fig. 5 Residual, best possible coarse grid correction and coarse correction actually computed with
good placement of coarse grid nodes (left), iterate after the new coarse grid correction (middle),
and iterate after the Schwarz correction (right) starting with the same initial configuration as shown
on the top left in Figure 4

solve a problem withη = 10, and still use piecewise linear coarse shape functions.
We clearly do not obtain the solution any more after two iterations, but still a very
rapidly converging method, note the different scaling in the residual plot on the left
of Figure 6! In order to finally compare with a classical two level additive Schwarz
method (AS), and measure the influence of using a Krylov method to accelerate
the iteration, we present in Figure 7 on the right the convergence histories for this
example. It is well known that AS does not converge without Krylov acceleration,
which explains the plateau observed in Figure 7. But even with Krylov accelera-
tion, the method is much slower than RAS with the new coarse grid placement. We
also notice that RAS now does basically not need Krylov acceleration any more,
convergence with and without Krylov is very similar.
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Fig. 6 Example withη = 10, but otherwise the same configuration as in Figure 5
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Fig. 7 Iteration versus error for Lions parallel Schwarz algorithm with and without coarse grid on
the left, and comparison of AS with classical coarse grid andRAS with optimally placed coarse
grid with and without Krylov acceleration on the right

The key question is: can we learn anything from this simple one dimensional ex-
ample for a problem in higher dimensions? According to the design rule 1. above,
the coarse grid needs to have nodes in the overlap, and enoughto capture an arbi-
trary residual located there, as shown in Figure 8 on the left. Then one can prove
that we still get a direct solver, provided design rule 2. above is also satisfied. It
is interesting at this point to indicate a relation of this coarse grid correction and
the optimal transmission operator introduced in [6], whichleads to convergence of
an optimized Schwarz method in two iterations, independently of the number of
subdomains and subdomain configuration, even with crosspoints! The transmission
operator also contains a coarse grid component there, and itneeds precisely the same
traces as our presently proposed coarse grid, and one can finda complete proof at
the algebraic level on convergence in two iterations in [6].Similarly, for a banded
matrix, there is also an optimal transmission operator in [7], which again involves
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δ
2

δ
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Fig. 8 Optimal coarse grid in two dimensions, and a simple approximation, extending the 1d opti-
mal placement in tensor form
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the same global traces. Naturally, these methods are related, but the precise relation
is non-trivial and will be developed elsewhere.

The coarse space indicated in Figure 8 on the left is however very expensive,
it requires many degrees of freedom, and also a solve for eachin order to obtain
harmonic shape functions. A much cheaper alternative is indicated in Figure 8 on
the right: one simply places four coarse grid nodes around the cross point of the
decomposition. One can then again use Q1 coarse shape element functions, which
are harmonic. We show in Figure 9 the convergence histories we obtain for the
Laplace equation on the unit square, decomposed into 16× 16 subdomains, using
256×256 gridpoints. On the left we used the Lions Schwarz method with a coarse
grid (equivalent to two level RAS) with overlap 3h. We show the result for the

• classical placement of one coarse grid node in the center of each subdomain
(classical Q1, empty square in the 1d Figure 3),

• one node at each crosspoint (Q1 in overlap, empty circle in the 1d Figure 3), in
order to illustrate that really one node is not enough for thejumps in RAS,

• four nodes per subdomain equally spaced (Q1 fair, filled square in the 1d Figure
3) with the same number of coarse grid points as the optimizedcoarse grid for a
fair comparison, and

• four nodes around the crosspoints (optimized Q1, filled circle in the 1d Figure
3), with the same number of coarse grid points as Q1 fair.

Clearly the optimized placement of the coarse grid nodes leads to a substantially
faster method than all the other choices.

In Figure 9 on the right we show the corresponding result for AS with minimal
overlaph. It is interesting to note that for minimal overlap, the influence of the
placement of the coarse nodes is even more important, and oneobtains a much
faster method than with any of the other coarse grid node placements in this two
dimensional example.
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Fig. 9 Convergence histories for two level RAS with various coarsegrid node placements on the
left and overlap 3h, and on the right for AS (additive Schwarz) with overlaph
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3 Conclusions

We explained geometrically the interplay between Schwarz iterations and coarse
grid corrections. Our example in one dimension revealed that in addition to having
harmonic coarse space shape functions, it is also very important where the coarse
grid nodes are placed. Optimal placement in one dimension isin the overlap, which
leads to a method that converges in two iterations, independently of the number
of subdomains. In higher spatial dimensions, it is still possible to construct such a
coarse grid correction, but one has to use a number of degreesof freedom propor-
tional to the skeleton of the decomposition. Using however asimple approxima-
tion, placing only few degrees of freedom around the crosspoints, leads already to
a much faster iterative method than placing coarse nodes as it is done traditionally
somewhere within the subdomains. Several theoretical results are already available,
though in the different context of transmission conditions, see [6] and [7], and we
are currently working on a rigorous error analysis of this new idea. It is also an open
question how such an optimized coarse grid would have to looklike for a general
decomposition of a general domain, our examples here havingbeen simple squares.
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