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1 The Invention of Substructuring Methods

Substructuring methods were invented in the engineering community. A very early
precursor is the so called “Moment Distribution Method”, or “Hardy Cross Method”
named after its inventor [11]. Cross states in the introduction to his paper from 1930
his motivation for the method:

The reactions in beams, bents, and arches which are immovably fixed at their ends have
been extensively discussed. They can be found comparatively readily by methods which are
more or less standard. The method of analysis herein presented enables one to derive from
these the moments, shears, and thrusts required in the design of complicated continuous
frames.

The idea is to give a precise method how to combine structures for which their reac-
tion to load is known (i.e. tabulated), when they interact at joints between structures.
The method is iterative, and described in Figure 1.

In modern terms, it is a Jacobi relaxation applied to the displacement formulation
of structural analysis [39], but also a precursor to the finite element method.

Fig. 1 The Hardy Cross Method from 1930
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Fig. 2 Two plane structures with non-overlapping subdomain decompositions from the original
publication of Przemieniecki in 1963

It was however at Boeing, right after the reinvention of the finite element method
for the design of aircraft [38, 9], where Przemieniecki introduced in his seminal
paper [33] the first substructuring method of the form we know them now. He first
explains why substructuring became necessary:

The necessity for dividing a structure into substructures arises either from the requirement
that different types of analysis have to be used on different components, or because the
capacity of the digital computer is not adequate to cope with the analysis of the complete
structure.

At the time, computational techniques for the simulation of aircraft were rapidly
developing, and complex structures had to be simulated, as shown in the original
drawings of Przemieniecki in Figure 2. Unlike in the case of Cross, the substructures
were too complicated to have tabulated solutions, and had to be simulated as well. At
the beginning of his paper, Przemieniecki describes the idea of his domain domain
decomposition method, which is not so different from the method of Cross, but it is
not iterative:

In the present method each substructure is first analyzed separately, assuming that all com-
mon boundaries with adjacent substructures are completely fixed: these boundaries are then
relaxed simultaneously and the actual boundary displacements are determined from the
equations of equilibrium of forces at the boundary joints. The substructures are then an-
alyzed separately again under the action of specified external loading and the previously
determined boundary displacements.

Let us see how this can be written in mathematical terms, using the notation used
by Przemieniecki. Like for many structural engineers at that time, the reasoning was
at the discrete level: let P be the exterior forces, K the stiffness matrix, and U the
displacement vector. Then these quantities satisfy the system of equations

KU = P. (1)

We now partition the unknowns U into unknowns Ui in the interior of each substruc-
ture, and the unknowns Ub on the boundaries between substructures, as indicated in
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Figure 2. If we partition the matrix and right hand side accordingly, the system (1)
can be rewritten as [

Kbb Kbi
Kib Kii

][
Ub
Ui

]
=

[
Pb
Pi

]
. (2)

Now the algorithm of Przemieniecki has three steps, as we have seen above. The first
step must keep boundaries between substructures fixed, and hence an (unknown)
force P(α) is needed to keep these boundaries fixed. Przemieniecki therefore parti-
tions the forcing vector into

P = P(α)+P(β ) =

[
P(α)

b
Pi

]
+

[
P(β )

b
0

]
. (3)

Since with the first vector on the right hand side as a load, the boundaries of the
substructures do not move, the displacements can also be written in the same de-
composition, namely

U =U (α)+U (β ) =

[
0

U (α)
i

]
+

[
Ub

U (β )
i

]
. (4)

By linearity, we can rewrite the original system as two systems, which represent the
first two steps in Przemieniecki’s algorithm,

(α) :
[

Kbb Kbi
Kib Kii

][
0

U (α)
i

]
=

[
P(α)

b
Pi

]
,

and

(β ) :
[

Kbb Kbi
Kib Kii

][
Ub

U (β )
i

]
=

[
P(β )

b
0

]
.

In the first step of Przemieniecki’s algorithm one needs to solve the first system.
Because the interfaces between substructures are not moving, this system simplifies
to

KbiU
(α)
i = P(α)

b , KiiU
(α)
i = Pi.

Knowing the forces Pi in the interior of each substructure, we can compute the inte-
rior displacements when the interfaces are kept fixed, U (α)

i = K−1
ii Pi. Inserting this

result into the first equation uncovers the unknown force that Przemieniecki needed
to impose to keep the interfaces fixed, namely

P(α)
b = KbiK−1

ii Pi.

We can now determine the remaining forces P(β )
b on the interfaces,

P(β )
b = Pb −P(α)

b = Pb −KbiK−1
ii Pi ,

and inserting this result into the second system (β ) gives
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KbbUb +KbiU
(β )
i = P(β )

b , KibUb +KiiU
(β )
i = 0.

We can now compute the second step in Przemieniecki’s algorithm, namely the
response of the structures to the interface loading P(β )

b . The second equation gives

the internal displacement U (β )
i based on the boundary displacement Ub,

U (β )
i =−K−1

ii KibUb,

and inserting this into the first equation, Przemieniecki obtains for the unknowns at
the interfaces the system

(Kbb −KbiK−1
ii Kib)Ub = Pb −KbiK−1

ii Pi. (5)

We see that the procedure, which Przemieniecki motivated by a strictly mechanical
argument, leads simply to the Schur complement system, where all interior variables
are eliminated! We note that the Schur complement system can also be derived us-
ing discrete harmonic functions on the substructures. The third and last step, after
solving the Schur complement system, is to simply compute the corresponding in-
terior displacements, and the problem is solved. Historically, the Schur complement
was also known under the name capacitance matrix [25], as we will see next.

2 Capacitance Matrix Methods

The capacitance matrix method became popular in the early 1970, due to a publica-
tion by Buzbee, Dorr, George and Golub [8] that has a very short abstract:

There are several very fast direct methods which can be used to solve the discrete Poisson
equation on rectangular domains. We show that these methods can also be used to treat
problems on irregular regions.

The paper first gives a general introduction to Schur complement techniques at the
algebraic level, and then the authors show how Schur complements can be used to
solve problems on irregular domains by imbedding, and by domain splitting, with
a typical example of an L-shaped domain. As in Przemieniecki, the Schur com-
plement system (5) is solved by direct methods. A new important idea was then
introduced by Proskurowski and Widlund in [32]:

This new formulation leads to well-conditioned capacitance matrix equations which can be
solved quite efficiently by the conjugate gradient method. A highly accurate solution can,
therefore, be obtained at an expense which grows no faster than that for a fast Laplace solver
on a rectangle when the mesh size is decreased.

The authors explain that their method can use fast Possion solvers for a similar
purpose as for the fundamental solustions when constructing the classical integral
equations of potential theory. The key contribution is however the solution of the
Schur complement system by a Krylov method, which paved the way for iterative
substructuring methods.
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Fig. 3 Original Figure by Dryja [16] to introduce preconditioned iterative substructuring methods
on the left, and first preconditioner estimate on the right

3 Iterative Substructuring Methods

The explicit calculation of the Schur complement S is expensive and requires large
amount of memory since the matrix is much denser than the original stiffness matrix
K as defined in (1), even though it is much smaller. However the action of the Schur
complement on a vector can be calculated implicitly by solving local substructure
problems. Therefore the explicit formation of the Schur complement can be avoided
if Krylov space methods are used to solve the interface problem (5) iteratively, as
shown in [32]. To make the number of iterations however manageable, for certain
accuracy, it is crucial to construct a suitable preconditioner for the Krylov subspace
methods. In a sequence of papers [15, 16, 17], Dryja first introduced preconditioned
Krylov space methods for solving the interface problem (5). The L-shaped domain
shown in Figure 3 on the left was divided into two subdomains in [16], and the
preconditioner is selected as K−1/2, where K is here the discrete Laplacian operator
on the subdomain interface. Dryja proved in [16] the first spectral equivalence re-
sult for preconditioning the capacitance matrix, as shown in Figure 3 on the right.
This result was proved using Fourier analysis, and the preconditioner can also be
implemented efficiently using a fast sine transform.

Golub and Mayers proposed a slightly improved version of this preconditioners
in [24]. In [1, 2], Bjørstad and Widlund explicit derived and diagonalized the lo-
cal Schur complement S(i) and proposed two preconditioners. The preconditioner
considered by Dryja was called the “good method” and the other, the Neumann-
Dirichlet preconditioner for two subdomains, the “excellent method”. The applica-
tion of this preconditioner to a vector requires the solution of one subdomain Neu-
mann problem and one subdomain Dirichlet problem. It converges in one step if the
two subdomains come from a symmetric region cut in half and the triangulation is
regular and symmetric. If the subdomain partition allows a red-black coloring, the
Neumann-Dirichlet (Dirichlet-Neumann) algorithms can also be extended to many
subdomains.

Another type of preconditioner, the Neumann-Neumann preconditioner was in-
troduced in [22, 3, 27]. The application of this preconditioner to a vector requires the
solutions of two Dirichlet problems and two Neumann problems. Thus, it is more
expensive than the Neumann-Dirichlet preconditioner. However, it is easy to extend
to many subdomains and can be made to perform well with jump coefficients by
introducing a simple scaling operator.
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The number of iterations will increase with an increase of the number of sub-
domains for most one-level preconditioners. An additional level is needed to re-
move such dependence. For Dirichlet-Neumann preconditioners, when the subdo-
main partitions has cross points, a natural second, coarse level solver can be formed
using variables related to these cross points, see [19, 18]. The two-level Neumann-
Neumann algorithms, known as Balancing Neumann-Neumann algorithms, where
introduced in [29, 28, 26, 21]. The coarse level solver can be constructed us-
ing weighted counting functions. The balancing Neumann-Neumann algorithm has
been extended to several applications such as for the mixed finite element discretiza-
tions, Stokes, and almost incompressible elasticity, [10, 31, 23]. Recently, the bal-
ancing domain decomposition by constraints method has been developed and it has
been widely used [12, 30]; it is similar to the balancing Neumann-Neumann al-
gorithms but its coarse problems are given in terms of a set of primal constraints
partially enforcing contiunity across the interface.

4 Primal Iterative Substructuring Methods

There is another class of substructuring methods known as the primal iterative sub-
structuring methods. The difference between the preconditioners in this class and
the algorithms described in Section 3 is that the coupling between all pairs of faces,
edges, and vertices are eliminated in the preconditioners of this class while the cou-
pling between neighboring subdomains are eliminated in the previous class.

The development of the primal iterative substructuring methods started with a
famous series of four papers [4, 5, 6, 7]. [4] is the first paper on iterative substruc-
turing methods to deal with cross points satisfactorily. The algorithm proposed in
that paper has a coarse level component formed in terms of the cross points and an
almost optimal condition number bound was established in two dimensions. How-
ever such a coarse level problem does not always work well in three dimensions
because of a much weaker finite element Sobolev inequality. Related methods with
a coarse solver based on the wire basket were introduced in [7] for three dimensional
problems and an almost optimal bound was obtained.

An observation on using a change of basis from a partial hierarchical basis to the
usual nodal basis for this class of algorithms was made in [37] and many precondi-
tioners of this type were introduced in [20]. These algorithms have been successfully
implemented and extended to three dimensional linear elasticity [35, 36]. Quite re-
cently, the coarse components introduced here have also been used for overlapping
domain decomposition methods to obtain algorithms independent of the coefficient
jumps [34, 13, 14].
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