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1 Introduction

Most computational work in Jacobi-Davidson [7], an iterative method for large scale
eigenvalue problems, is due to a so-called correction equation. For this, to reduce
wall clock time and local memory requirements, [3, 5] proposed a domain decom-
position strategy that was further improved in [4] (§ 2 and§ 3).

Here we investigate practical aspects for parallel performance of the strategy
by scaling experiments on supercomputers (§ 4). This is of interest for large scale
eigenvalue problems that need a massively parallel treatment.

2 Domain decomposition

In [3, 5] a domain decomposition preconditioning techniquefor the (approximate)
solution of the correction equation was proposed. This technique is based on a
nonoverlapping additive Schwarz method with locally optimized coupling parame-
ters by Tan & Borsboom [8, 9] (belonging to the class of optimized Schwarz meth-
ods [2]).
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Fig. 1 Decomposition in one (left picture) and two dimensions (right picture).

For some partial differential equation (PDE) defined on a domain Ω with appro-
priate boundary conditions,Ω is covered by a gridΩ̂ and the PDE is discretized
accordingly, with unknowns defined on the grid points, yielding the linear system

By = d. (1)
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Now, the domain decomposition technique
1. Enhances the linear system (1) intoBC y≈ = d0 with the following structure
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in case of a two subdomain decomposition (generalization isstraightforward). Here
Ω is decomposed in two nonoverlapping subdomainsΩ1 andΩ2 with interface (or
internal boundary)Γ (see Fig. 1). The subdomains are covered by subgridsΩ̂1 and
Ω̂2 with additional grid points located just outside the subdomain near the interface
Γ (the open bullets “◦” in Fig. 1) such that no splitting of the original discretized
operator (or stencil) has to be made. ForB, the labels 1,2, ℓ, andr, respectively, refer
to operations on data from/to subdomainΩ1, Ω2, and left, right from the interface
Γ , respectively. Fory andd, the labels 1,2, ℓ, andr, respectively, refer to data in
subdomainΩ1, Ω2, and left, right from the interfaceΓ , respectively. Here, subvector
yℓ (yr respectively) contains those unknowns on the left (right) from Γ that are
coupled by the stencil both with unknowns inΩ1 (Ω2) and unknowns on the right
(left) from Γ . Subvector ˜yr (ỹℓ respectively) contains the unknowns at the additional
grid points of the subgrid forΩ1 (Ω2) on the right (left) ofΓ . For the unknowns
on the additional grid points additional equations are provided with the requirement
that the submatrix (theinterface coupling matrix)

C ≡

[

Cℓℓ Cℓr

Crℓ Crr

]

(3)

is nonsingular as for nonsingularC the solutiony≈ of (2) is unique, ˜yℓ = yℓ and
ỹr = yr, and the restriction ofy≈ to y is the unique solution of the original linear
system (1) ([9, Theorem 1], [8, Theorem 1.2.1]).
2. Splits the matrixBC = MC −NC in a partMC, the boxed parts in (2) that do not
map elements from one subgrid to the other subgrid and a remaining partNC that
couples the subgrids via the discretized interface with a relatively small number of
nonzero elements. (Therefore matrix vector multiplication with BC can be imple-
mented efficiently on distributed memory computers.)
3. Tunes the interface coupling matrixC defined in (3) such that error components
due to domain decomposition are damped in the Richardson iteration

y (i+1)
≈ = y (i)

≈ +M−1
C (d0−BC y (i)

≈ ). (4)

NoteMC
−1BC = I−MC

−1NC, therefore error components are propagated byMC
−1NC.

4. Computes a solution of the enhanced linear system from (4) or with a more
general Krylov method like GMRES [6] withKm(MC

−1 BC,MC
−1 d0) ≡

span(MC
−1 d0,MC

−1 BC MC
−1 d0, . . . ,(MC

−1 BC)m−1 MC
−1 d0).
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The key idea is to use the degrees of freedom, that we have created by the in-
troduction of additional unknowns near the interface, for damping the error compo-
nents. For this purpose, the spectral properties ofM−1

C NC for the specific underlying
PDE are analyzed. With results of this analysis, optimal coupling parameters can be
estimated, i.e. the interface coupling matrixC defined in (3) can be tuned. In this
way error components due to the splitting are damped “as muchas possible”, op-
timal choices result in a coupling that annihilates the outflow from one domain to
another: absorbing boundary conditions. This leads effectively to almost uncoupled
subproblems at subdomains. As a consequence, the number of iterations required
for convergence is minimal with minimal communication overhead (due to the ex-
plicit step withNC) between subdomains: an ideal situation for implementation on
parallel computers and/or distributed memory.

3 Jacobi-Davidson

For a standard eigenvalue problemAx = λ x each iteration Jacobi-Davidson [7]
1. Extracts an approximate eigenpair(θ ,u) ≈ (λ ,x) from a search subspaceV:
constructH ≡ V∗AV, solveH s = θ s, computeu = Vs.
2. Corrects the approximate eigenvectoru with a correctiont ⊥ u that is computed
from thecorrection equation:

PBPt = r where P ≡ I−
uu∗

u∗u
,B ≡ A−θ I, and r ≡−Bu. (5)

3. Expands the search subspace with the correctiont: Vnew = [V | t⊥] wheret⊥ ⊥ V.

The linear system described by the correction equation (5) may be highly in-
definite and is given in an unusual manner so that the application of the domain
decomposition technique needed further development and special attention.

Similar to the enhancements (1) of the linear system (2) in§ 2, the following com-
ponents of the correction equation are enhanced: the matrixB ≡ A−θ I to BC, the
correction vectort to t≈ and the vectorsu andr to u0 andr0. With these enhance-
ments, a correctiont≈ ⊥ u0 is computed from the following enhanced correction
equation [3,§3.3.2]:

PBC Pt≈ = r0 with P ≡ I−
u0u∗

0

u∗
0u0

. (6)

The preconditionerMC for BC is constructed in the same way as the ordinary
linear system case shown by the boxed parts in (2). However, because of the indef-
initeness, for the correction equation the matricesBC andMC are accompanied by
projections. Both for left and right preconditioning the projection is as follows:

P′ ≡ I−
M−1

C u0 u∗
0

u∗
0 M−1

C u0
. (7)
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In case of left preconditioning (for right preconditioningsee [3,§3.3.3]) we compute
approximate solutions to the correction equation from

P′ M−1
C BC P′ t≈ = P′ M−1

C r0. (8)

However, there is more to gain. For approximate solutions ofthe correction equa-
tion with a preconditioned Krylov method, the Jacobi-Davidson method is an accel-
erated inexact Newton method that consists of two nested iterative solvers. In the
innerloop of Jacobi-Davidson a search subspace for the (approximate) solution of
the correction equation is built up by powers ofM−1

C (A−θ I) for fixed θ . In the
outerloop a search subspace for the (approximate) solutionof the eigenvalue prob-
lem is built up by powers ofM−1

C (A−θ I) for variableθ . As θ varies slightly in
succeeding outer iterations, one may take advantage of the nesting by applying the
domain decomposition technique to the outer loop as was the subject of [4]. This
effectively leaded to two different processes:

• Jacobi-Davidson withenhanced inner loop, enhancement at intermediate level
with enhanced correction equation (6) and

• Jacobi-Davidson withenhanced outer loop, enhancement at highest level with a
slightly different correction equation

PBC Pt≈ = r≈ with P ≡ I−
u0u∗

0

u∗
0u0

. (9)

The amount of work for both processes per outer iteration is almost the same. How-
ever, Jacobi-Davidson with enhanced outer loop turned out to be faster as it damps
remaining error components from the previous outer iteration in the next one.

4 Scaling experiments

For the two processes, in [4,§ 5.1] different eigenvalue problems have been con-
sidered including variable coefficients and large jumps. Here, to investigate prac-
tical aspects for parallel performance, we consider the eigenvalue problem for the
Laplace operator as results for different numbers of subdomains show more regular
behavior (see for instance Fig. 3 in [4]). Except for the firstexperiment about dif-
ferent decompositions, in all experiments we take for the domainΩ the unit square,
decomposeΩ in p square subdomains, and cover each subdomain by a 256× 256
subgrid. Jacobi-Davidson is started with a parabolic shaped vectorx(1−x)y(1−y)
for 0≤ x ≤ 1 and 0≤ y ≤ 1 (see also [3,§ 3.5.1]) to compute the most global eigen-
vector (for which the corresponding eigenvalue is the closest one to zero) of the
two-dimensional Laplace operator onΩ until the residual norm of the approximate
eigenpair is less than 10−9. We apply right preconditioning in the enhanced correc-
tion equation for exact solves with the preconditioner (i.e. exact subdomain solves)
to enable a Schur complement approach. The preconditionerMC is constructed only
once, at the first Jacobi-Davidson outer iteration. The remaining linear system is
solved with GMRES [6].



Practical aspects of domain decomposition in Jacobi-Davidson forparallel performance 5

0 5 10 15 20 25

10
−4

10
−2

10
0

10
2

outer iteration

re
si

du
al

 n
or

m
 a

pp
ro

xi
m

at
e 

ei
ge

np
ai

r

8 GMRES inner iterations

 

 
enhanced innerloop, 1 × 16 decomposition
enhanced outerloop, 1 × 16 decomposition
enhanced innerloop, 2 × 8 decomposition
enhanced outerloop, 2 × 8 decomposition
enhanced innerloop, 4 × 4 decomposition
enhanced outerloop, 4 × 4 decomposition
enhanced innerloop, 8 × 2 decomposition
enhanced outerloop, 8 × 2 decomposition
enhanced innerloop, 16 × 1 decomposition
enhanced outerloop, 16 × 1 decomposition

0 5 10 15 20 25

10
−4

10
−2

10
0

10
2

outer iteration

re
si

du
al

 n
or

m
 a

pp
ro

xi
m

at
e 

ei
ge

np
ai

r

4 GMRES inner iterations

Fig. 2 Residual norm of the approximate eigenpair as a function of theJacobi-Davidson outer
iteration for the different decompositions with GMRES(8) (top) and GMRES(4) (bottom).

Implementation is in Fortran77 with calls to BLAS, LAPACK, and MPI. Note,
however, that Fortran compiler, BLAS, LAPACK, and MPI versions differ on the
specific hardware which is of influence on the (parallel) performance. Scaling ex-
periments are performed on the following hardware:

• Curie linux-cluster (2 Intel eight 2.7 GHz core E5-2680 node, InfiniBand QDR,
Intel Fortran 12, BLAS/LAPACK from MKL, Bull X MPI),

• H4+ linux-cluster (1 Intel quad 3.4 GHz core i7-2600 node, 1 GB/s Gigabit Eth-
ernet, Intel Fortran 11, MPICH2),

• IBM POWER5+ system Huygens (16 IBM single 1.9 GHz core Power5+node,
1.2 GB/s InfiniBand, XL Fortran 10, BLAS from ESSL, MPI from IBM PE),

• IBM POWER6 system Huygens (16 IBM dual 4.7 GHz core Power6 node, 160
GB/s InfiniBand, XL Fortran 12, BLAS from ESSL, MPI from IBM PE),

• Lisa 2008 linux-cluster (1 Intel Xeon 3.4E GHz core node, 800MB/s InfiniBand,
GFortran, MPICH2),

• Lisa 2012 linux-cluster (2 Intel eight 1.8 GHz core Xeon E5-2650L node, Intel
Fortran 12, BLAS/LAPACK from MKL, OpenMPI),

On the H4+ and Lisa 2008 linux-clusters one subdomain is assigned to one node.
On the other hardware one subdomain is assigned to one core. Results presented
here are averages of three measured wall-clock times.

First we study different decompositions for a fixed number ofsubdomains for the
same (discretized) eigenvalue problem. We keep the overallgrid fixed to a size of
1024× 1024 gridpoints and consider configurations with a 1× 16, 2× 8, 4× 4, 8
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Fig. 3 Residual norm of the approximate eigenpair as a function of thewall clock time for the
different decompositions. Shown are both enhanced innerloop and enhanced outerloop for the Lisa
2012 and H4+ linux-cluster and a fixed number of 8 and 4 inner iterations with GMRES.

× 2, and 16× 1 decomposition, respectively (resulting in subgrids of size 1024×
64, 512× 128, 256× 256, 128× 512, and 64× 1024, respectively). So the num-
ber of subdomains is 16 with 65536 unknowns per subdomain in all configurations,
but the subdomains differ in shape. Fig. 2 shows the residualnorm of the approxi-
mate eigenpair as a function of the Jacobi-Davidson outer iteration for the different
decompositions. Shown are both enhanced innerloop and enhanced outerloop for a
fixed number of 8 (top) and 4 (bottom) inner iterations with GMRES. As expected,
the convergence histories for configurations which are mirrored (for instance 2× 8
and 8× 2) coincide. Decomposition in only one direction needs the least number
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of outer iterations for convergence. For the tuning of the coupling between the sub-
domains we only took into consideration the one dimensionalcharacter of the error
modes. For decompositions in two directions error modes will have a two dimen-
sional character and are therefore harder to damp. Fig. 3 shows the residual norm
of the approximate eigenpair as a function of wall clock timefor the different de-
compositions. Shown are both enhanced innerloop and enhanced outerloop for the
Lisa 2012 and H4+ linux-cluster and a fixed number of 8 and 4 inner iterations with
GMRES. By comparing the mirrored configurations it can be observed that the grid
ordening may significantly lower the performance. This is mainly in the construction
of the preconditioner with LAPACK (initial horizontal lines in the figure). Although
processors of the H4+ linux-cluster are faster, use of the MKL implementation of
LAPACK resulted in a faster construction of the preconditioner at the Lisa 2012
linux-cluster. After the construction of the preconditioner, the process at the H4+
linux-cluster goes faster than the Lisa 2012 linux-cluster. At the H4+ linux-cluster
communication is between 16 nodes over a relatively slow network, at the Lisa 2012
linux-cluster communication is fast inside a 16 core node with shared memory. So,
we may conclude that the process is dominated by computational work. This con-
firms the remarks at the end of§ 2 about the minimal communication overhead.

For the massively parallel behavior, we first extend Fig. 6 from [4] with results
from (weak) scaling experiments on more recent hardware (IBM POWER6 system
Huygens, Curie, and H4+). In Fig. 4 it can be observed that thetrend holds, but now
for lower wall clock times as processor speed has increased further for the more
recent hardware.

To further investigate the weak scaling we start with a decomposition in 16 sub-
domains (on 1 node with 16 cores) on the Curie linux-cluster and increase everytime
the number of subdomains in both directions with a factor 2. From 16, 64, 256, 1024,
4096 to 16384 subdomains (cores), resulting in up to more than 109 unknowns. For
an efficient overall method, we will now use (see [1,§4])

‖r(i)‖2 < 2− j ‖r(0)‖2 (10)

as a stopping criterion for the inner iterations (GMRES) at the jth Jacobi-Davidson
outer iteration. Herer(0) is the residual at the start of the inner iterations andr(i) the
residual at theith inner iteration. Fig. 5 shows the results for Jacobi-Davidson with
enhanced outerloop. Note that in this figure we choose the scaling of the x-axis to be
quadratic to have a better impression. The figure indicates that for a large number
of subdomains the wall clock doubles when the number of subdomains increases
in both directions with a factor 2. This can be explained fromthe local behavior
of the error modes due to domain decomposition: mainly one dimensional near the
interface. The additional work to damp these error modes effectively depends on
this local behavior.
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Fig. 4 Massively parallel behavior on different hardware.
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Fig. 5 Massively parallel behavior on the Curie linux-cluster (quadratic scaling of the x-axis).
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