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1 Introduction

Most computational work in Jacobi-Davidson [7], an iteratnethod for large scale
eigenvalue problems, is due to a so-called correction @xuéftor this, to reduce
wall clock time and local memory requirements, [3, 5] pragmba domain decom-
position strategy that was further improved in [4]X and§ 3).

Here we investigate practical aspects for parallel peréoree of the strategy
by scaling experiments on supercomputé&rd); This is of interest for large scale
eigenvalue problems that need a massively parallel tredtme

2 Domain decomposition

In [3, 5] a domain decomposition preconditioning technifprethe (approximate)
solution of the correction equation was proposed. Thisrtiegle is based on a
nonoverlapping additive Schwarz method with locally optied coupling parame-
ters by Tan & Borsboom [8, 9] (belonging to the class of optiedi Schwarz meth-
ods [2]).
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Fig. 1 Decomposition in one (left picture) and two dimensions (rigltysie).

For some partial differential equation (PDE) defined on a&orf2 with appro-
priate boundary conditions? is covered by a grid2 and the PDE is discretized
accordingly, with unknowns defined on the grid points, yirgdcthe linear system

By =d. (1)
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Now, the domain decomposition technique
1. Enhancesthe linear system (1) intBc y~, = dg with the following structure
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in case of a two subdomain decomposition (generalizatistrasghtforward). Here
Q is decomposed in two nonoverlapping subdoma&@asnd Q; with interface (or
internal boundary) (see Fig. 1). The subdomains are covered by sub@idand
Q, with additional grid points located just outside the subdomear the interface
I" (the open bulletsd¢” in Fig. 1) such that no splitting of the original discretize
operator (or stencil) has to be made. Bothe labels 12, ¢, andr, respectively, refer
to operations on data from/to subdomai, Q,, and left, right from the interface
I, respectively. Foy andd, the labels 12, ¢, andr, respectively, refer to data in
subdomain;, Q,, and left, right from the interfacke, respectively. Here, subvector
v (yr respectively) contains those unknowns on the left (righwjrf/” that are
coupled by the stencil both with unknowns@h (Q,) and unknowns on the right
(left) from I" . Subvectow;” (Y, respectively) contains the unknowns at the additional
grid points of the subgrid fof2; (£2,) on the right (left) of/". For the unknowns
on the additional grid points additional equations are jated with the requirement
that the submatrix (thenterface coupling matrix)

_ |Cu Cyy
c= [Crf Crr:| (3)

is nonsingular as for nonsingul@r the solutiony., of (2) is unique,y; =y, and

¥r = ¥r, and the restriction oy to y is the unique solution of the original linear
system (1) ([9, Theorem 1], [8, Theorem 1.2.1]).

2. Splitsthe matrixBc = Mc — N¢ in a partM¢, the boxed parts in (2) that do not
map elements from one subgrid to the other subgrid and a némgapartNc that
couples the subgrids via the discretized interface withatively small number of
nonzero elements. (Therefore matrix vector multiplicatwith B¢ can be imple-
mented efficiently on distributed memory computers.)

3. Tunes the interface coupling matri€ defined in (3) such that error components
due to domain decomposition are damped in the Richards@tidge

yo =y md (do—Beyl). 4)

NoteM¢ 1Bc = | —M¢ INg, therefore error components are propagatekilgy*Nc.

4. Computes a solution of the enhanced linear system from (4) or with aemor
general Krylov method like GMRES [6] with#m(Mc B, Mc dg) =

spar(M 61 do, M61 Bc Mcfl do,..., (M 61 Bc)m71 Mcfl do).
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The key idea is to use the degrees of freedom, that we haveedrbg the in-
troduction of additional unknowns near the interface, famging the error compo-
nents. For this purpose, the spectral propertiemg’f Nc for the specific underlying
PDE are analyzed. With results of this analysis, optimapling parameters can be
estimated, i.e. the interface coupling mat@hdefined in (3) can be tuned. In this
way error components due to the splitting are damped “as raaqgtossible”, op-
timal choices result in a coupling that annihilates the outffrom one domain to
another: absorbing boundary conditions. This leads éffelgtto almost uncoupled
subproblems at subdomains. As a consequence, the numkeraifons required
for convergence is minimal with minimal communication dwead (due to the ex-
plicit step withN¢) between subdomains: an ideal situation for implementatio
parallel computers and/or distributed memory.

3 Jacobi-Davidson

For a standard eigenvalue problémw = A x each iteration Jacobi-Davidson [7]
1. Extracts an approximate eigenpdif, u) ~ (A,x) from a search subspate
constructH = V*AV, solveH s= 6's, computeu = Vs.

2. Correctsthe approximate eigenvectomwith a correctiort | u that is computed
from thecorrection equation:

PBPt—r Wherele—%,BEA—el, and r = —Bu. 5)

3. Expandsthe search subspace with the correctiovine, = [V |t*] wheret" L V.

The linear system described by the correction equation @) be highly in-
definite and is given in an unusual manner so that the apjplicaf the domain
decomposition technique needed further development aemaattention.

Similar to the enhancements (1) of the linear system (2Rirthe following com-
ponents of the correction equation are enhanced: the niatexA — 61 to Bc, the
correction vectot to t. and the vectorsi andr to ug andrg. With these enhance-
ments, a correctioby, | ug is computed from the following enhanced correction
equation [353.3.2]:

UoUg
UgUo

PBcPt. =rg with P=I- (6)

The preconditioneM¢ for B¢ is constructed in the same way as the ordinary
linear system case shown by the boxed parts in (2). Howegeguse of the indef-

initeness, for the correction equation the matriBgsandM¢ are accompanied by
projections. Both for left and right preconditioning thejaction is as follows:

Mctuoug

usMctug’

(7)
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In case of left preconditioning (for right preconditionigge [353.3.3]) we compute
approximate solutions to the correction equation from

PMciBcP t~ = P Mctro. (8)

However, there is more to gain. For approximate solutiorte®torrection equa-
tion with a preconditioned Krylov method, the Jacobi-Daad method is an accel-
erated inexact Newton method that consists of two nesteatiite solvers. In the
innerloop of Jacobi-Davidson a search subspace for thedzippate) solution of
the correction equation is built up by powersMEl (A—061) for fixed 6. In the
outerloop a search subspace for the (approximate) solafitite eigenvalue prob-
lem is built up by powers oME1 (A —01) for variable8. As 6 varies slightly in
succeeding outer iterations, one may take advantage oktteng by applying the
domain decomposition technique to the outer loop as wasubgea of [4]. This
effectively leaded to two different processes:

e Jacobi-Davidson witlenhanced inner loop, enhancement at intermediate level
with enhanced correction equation (6) and

e Jacobi-Davidson witlenhanced outer loop, enhancement at highest level with a
slightly different correction equation

UpUyg

PBcPte=r~ with P=I-—20.
UgUo

9)

The amount of work for both processes per outer iteratiomiost the same. How-
ever, Jacobi-Davidson with enhanced outer loop turnedmbetfaster as it damps
remaining error components from the previous outer itenaiti the next one.

4 Scaling experiments

For the two processes, in [4,5.1] different eigenvalue problems have been con-
sidered including variable coefficients and large jumps.eH® investigate prac-
tical aspects for parallel performance, we consider thersiglue problem for the
Laplace operator as results for different numbers of sulailesrshow more regular
behavior (see for instance Fig. 3 in [4]). Except for the fagperiment about dif-
ferent decompositions, in all experiments we take for theaia Q the unit square,
decompose? in p square subdomains, and cover each subdomain by & 2%
subgrid. Jacobi-Davidson is started with a parabolic sti@petorx(1—x)y(1—y)
forO<x<1land0<y<1(seealso[3 3.5.1]) to compute the most global eigen-
vector (for which the corresponding eigenvalue is the dbsae to zero) of the
two-dimensional Laplace operator éhuntil the residual norm of the approximate
eigenpair is less than 18. We apply right preconditioning in the enhanced correc-
tion equation for exact solves with the preconditioner. @ect subdomain solves)
to enable a Schur complement approach. The preconditidges constructed only
once, at the first Jacobi-Davidson outer iteration. The reimg linear system is
solved with GMRES [€].
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Fig. 2 Residual norm of the approximate eigenpair as a function ofl#fu®bi-Davidson outer
iteration for the different decompositions with GMRES(8)ptand GMRES(4) (bottom).

Implementation is in Fortran77 with calls to BLAS, LAPACKné MPI. Note,
however, that Fortran compiler, BLAS, LAPACK, and MPI venss differ on the
specific hardware which is of influence on the (parallel) perfance. Scaling ex-
periments are performed on the following hardware:

e Curie linux-cluster (2 Intel eight 2.7 GHz core E5-2680 ndaéiniBand QDR,
Intel Fortran 12, BLAS/LAPACK from MKL, Bull X MP1),

e H4+ linux-cluster (1 Intel quad 3.4 GHz core i7-2600 node,B/$Gigabit Eth-
ernet, Intel Fortran 11, MPICH?2),

e |IBM POWERS5+ system Huygens (16 IBM single 1.9 GHz core Powerdde,
1.2 GB/s InfiniBand, XL Fortran 10, BLAS from ESSL, MPI fromNMBPE),

e IBM POWERG6 system Huygens (16 IBM dual 4.7 GHz core Power6 nbée
GB/s InfiniBand, XL Fortran 12, BLAS from ESSL, MPI from IBM BE

e Lisa 2008 linux-cluster (1 Intel Xeon 3.4E GHz core node, BMR)'s InfiniBand,
GFortran, MPICH2),

e Lisa 2012 linux-cluster (2 Intel eight 1.8 GHz core Xeon EBAL node, Intel
Fortran 12, BLAS/LAPACK from MKL, OpenMPI),

On the H4+ and Lisa 2008 linux-clusters one subdomain igaedito one node.
On the other hardware one subdomain is assigned to one ceselt® presented
here are averages of three measured wall-clock times.

First we study different decompositions for a fixed numbesudfdomains for the
same (discretized) eigenvalue problem. We keep the owgridlifixed to a size of
1024 x 1024 gridpoints and consider configurations witha 16, 2x 8,4 x 4, 8



6 Menno Genseberger
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Fig. 3 Residual norm of the approximate eigenpair as a function ofvdlé clock time for the
different decompositions. Shown are both enhanced innerlodgahanced outerloop for the Lisa
2012 and H4+ linux-cluster and a fixed number of 8 and 4 inneatitans with GMRES.

x 2, and 16x 1 decomposition, respectively (resulting in subgrids a&si024x
64, 512x 128, 256x 256, 128x 512, and 64x 1024, respectively). So the num-
ber of subdomains is 16 with 65536 unknowns per subdomaith @oafigurations,
but the subdomains differ in shape. Fig. 2 shows the resitah of the approxi-
mate eigenpair as a function of the Jacobi-Davidson oweatibn for the different
decompositions. Shown are both enhanced innerloop andcheeti@uterloop for a
fixed number of 8 (top) and 4 (bottom) inner iterations with BES. As expected,
the convergence histories for configurations which areorgd (for instance % 8
and 8x 2) coincide. Decomposition in only one direction needs #esi number
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of outer iterations for convergence. For the tuning of theptiog between the sub-
domains we only took into consideration the one dimensiohatacter of the error
modes. For decompositions in two directions error modekhaite a two dimen-
sional character and are therefore harder to damp. Fig. Bsstiwe residual norm
of the approximate eigenpair as a function of wall clock tifoethe different de-
compositions. Shown are both enhanced innerloop and eaetianterloop for the
Lisa 2012 and H4+ linux-cluster and a fixed number of 8 and ériiterations with
GMRES. By comparing the mirrored configurations it can beeoled that the grid
ordening may significantly lower the performance. This ismyan the construction
of the preconditioner with LAPACK (initial horizontal lirsein the figure). Although
processors of the H4+ linux-cluster are faster, use of thdLNMplementation of
LAPACK resulted in a faster construction of the precondi@io at the Lisa 2012
linux-cluster. After the construction of the precondionthe process at the H4+
linux-cluster goes faster than the Lisa 2012 linux-clusiithe H4+ linux-cluster
communication is between 16 nodes over a relatively slowad, at the Lisa 2012
linux-cluster communication is fast inside a 16 core nodi whared memory. So,
we may conclude that the process is dominated by compugtieork. This con-
firms the remarks at the end 2 about the minimal communication overhead.

For the massively parallel behavior, we first extend Fig.o8nfif4] with results
from (weak) scaling experiments on more recent hardwark! (F®OWERG system
Huygens, Curie, and H4+). In Fig. 4 it can be observed thatrérel holds, but now
for lower wall clock times as processor speed has increaseldef for the more
recent hardware.

To further investigate the weak scaling we start with a dgquusition in 16 sub-
domains (on 1 node with 16 cores) on the Curie linux-clusteriacrease everytime
the number of subdomains in both directions with a factor@n¥16, 64, 256, 1024,
4096 to 16384 subdomains (cores), resulting in up to mome t6aunknowns. For
an efficient overall method, we will now use (see{4])

IrVllz <277 |Ir @2 (10)

as a stopping criterion for the inner iterations (GMREShatjt" Jacobi-Davidson
outer iteration. Here(® is the residual at the start of the inner iterations ehche
residual at thé™ inner iteration. Fig. 5 shows the results for Jacobi-Dawidwith
enhanced outerloop. Note that in this figure we choose tHmgaz the x-axis to be
guadratic to have a better impression. The figure indicdtaisfor a large number
of subdomains the wall clock doubles when the number of smadlts increases
in both directions with a factor 2. This can be explained fribra local behavior
of the error modes due to domain decomposition: mainly omedsional near the
interface. The additional work to damp these error modesctifely depends on
this local behavior.
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Fig. 4 Massively parallel behavior on different hardware.
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Fig. 5 Massively parallel behavior on the Curie linux-cluster (qadidrscaling of the x-axis).
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