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Summary: We apply domain decomposition to carry out finite elementusa-
tions of multi-component computer aided design (CAD) adsis. The novelty
of our research is the CAD-based domain decomposition. \Wsider design parts
as independent sub-domains and reuse assembly topologyittie degions, where
the interface boundary conditions should be applied. Thelet-Neumann [1],
Neumann-Neumann[2] and FETI [3] methods for non-matchiaggulations have
been studied. We endorse the proposed framework with noatesiperiments and
we focus on the essence of its parallel implementation.
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angulations, parallel computing.

1 Introduction

Computer aided design (CAD) and finite element (FE) modediregstandards in
a concept to manufacture industrial chain. Realistic FEuktions require huge
computational resources and may last unacceptably lorbidpaper, we present a
comprehensive framework that allows to automate and pdizadInumerical simu-
lations of multi-component CAD assemblies. We refer to tleekwof Pironneau [4]
et al., where the authors have proposed to use construotideggometry modeling
as a basis for spatial domain decomposition; see [6, 7, 8r9¢fated work on three
dimensional contact problems in solid mechanics.

The novelty of our research is the CAD-based domain decoitiposnethod.
We consider design parts as independent sub-domains. Therewse assembly
topology to define regions where the interface boundary itiond should be ap-
plied. Our motivation is to automate FE management of artiagi€AD data, i.e.
to update only the concerning meshes when CAD parts are reddifi addition, the
method aims to regularize mathematical models when usingusmaterial prop-
erties (steel, cooper, rubber etc.). The method is inhigrearallel and therefore
perfectly suited for hight performance computing.
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2 CAD-based Domain Decomposition

Generally, a FE model of an entire CAD prototype takes sédeans to be properly
defined. Once a pre-processing stage is completed (a glodsth,nbadings and
constraints are generated), adaptive refinement procedguéres communication
with CAD kernel at each computational iteration. Meanwhé@agineering design
changes are made on a daily basis at the CAD level, and thegeeasghally may not
follow the changes. Hence, the FE model cannot be updatédhweitich timespan.

Assembly-driven decomposition

The application of assembly driven domain decomposititowe to automate the
above framework. We consider each component of a CAD asyeaaslan indepen-
dent sub-domain. Triangulations are generated indepéyderd could be further
updated. Variational formulations are then explicitly ttemn for each sub-domain.
Inter-domain continuity conditions are set according ® domain decomposition
algorithm.

Let {P,...,Ps} refer to a set of assembly components (design parts),switl2.
We define{ Q,, ..., Qs} to be a set of the corresponding computational sub-domains.
An illustration is given in Fig. 1.

Fig. 1 An assembly-driven
domain decomposition. De-
sign parts are considered as
independent computational
sub-domains.

Modeling accuracy

Solid parts are generated independently of the FE procest)gy are manipulated
by FE algorithms after discretization. For a maniftda boundary of a solid part),
we define

H =diam(M) = sup |x3—Xg|

X1,%EM

along with the "smallest feature length{the smallest hole, fillet, chamfer etc.). Ac-
cording to the CAD documentation [10], parts are initialigated with the relative
accuracydiap which satisfies

108 <I/H < &pp <1072



FE of Multi-Component Assemblies: CAD-based Domain Decositon 3
CATI A modeling platform [11] allows to design parts with
10%<I,H<10®
however an option
108<I,HL1

is available to design small parts, but the module has lahiftglementation.

Initialization of inter-component contact regions

We propose to reuse "assembly constrains” (data on pagswelposition stored

in a CAD assembly file) in order to generate an initial list lo¢ ttontact regions
(called contact faces). L&tdenote a set of initial contact faces between all adjacent
assembly components (solid parts)

S={RN*P} 1<i#j<s

wheren* stands for a Boolean cut operator (intersection of mansfolthe number
of all possible contact pairs is bounded by the binomialficieft

dim(S) < (;)

In practice, for CAD assemblies, the number of inter-congmircontact faces is
much smaller than the binomial coefficient and often safisfie

dim(S) ~ &(s)

Definition 1. Two objectsA ¢ RY andB ¢ RY, d > 1 are geometrically equal if the
setAis equivalent to the sd&.

Definition 2. Topological equivalence - Two objects are topologicallyigglent if
there is a homeomorphism between them.

In the following, a contact face” is a set of patches; a patch is defined by
four NURBS or B-spline curves. Le¥j j and.#;; be the opposite contact faces
belonging to the adjacent componeRtandP;, respectively. Then; j and.7j ; be
a discretization of the above contact faces. In order taibuil

T =i (2)

we require both geometrical and topological equivalenc&gfand.7#; ;. However,
(1) is hard to achieve, since solid models are built with anfixed accuracy.

Remark: Obviously, matching triangulationss ; = .7j; might be generated
within an additional computational cost. Unfortunately; s8imulations involving
sliding, mixed finite elements (shape, order) or discoiiti@s in material coeffi-
cients matching triangulations are hard to maintain.
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Geometric discontinuities across contact faces

In practice, most contact regions are either non-planamlaee ltcurved boundaries.
When meshes are generated independefilyand.7j ; often appear different, ow-
ing to round-off errors. As a result, geometric discontiiesi are certain for non-

matching triangulations, which is clearly seen in Fig. 2.
Letu;, anduyp, be discrete functions defined on the triangulatiohs and .7 1,

respectively. Foi7; » # 7> 1 the computation of a jump operator
Uzh(X) — Uzn(X)

on contact faces is not properly defined (not unique). IndebdnQ,, is a polygonal
approximation ofQ, numerical integration of boundary integrals will not baiah
on 712 # J21. In this context, we are interested to compute the value afigefi
element functioru,(y) slightly outside its domain of definition, namely yat R3

close toQy, in the sense
min|X—y| <ch
XEQy

wherec € R, andh is the discretization parameter (mesh size).

Assume thatQ is triangulated into tetrahedral elements. U&b,...,v3} be
the vertices of a tetrahedral eleméhtclose toy. The barycentric coordinates

{Ao, ...,A3} of y with respect tdl' satisfy

3 3
i;)\i =1 and y= i;/\i Vi

When a poin does not belong to the discrete domain, we shall define

3
Un(y) = _;/\i Un(Vi)

where the verticeg; are those of the nearest tetrahedral element. We use the same
approach for &, or higher Lagrangian finite element.
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Fig. 2 Geometric discontinuity across the contact region in cas@i-matching triangulations.
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Parallel implementation

Depending on the computer architecture, we propose twoeimghtation schemes:
the first is suitable for small commodity clusters; the setfits massively parallel
architecture (HPC). LelNcpy be the number of available CPUs, processor cores,
that are used for a FE simulation. Lebe the number of assembly components.
Reasonably, one can expédi, ~ s for small or intermediate commodity clusters
andNcpy >> sfor HPC machines. Fig. 3 (left) illustrate the case, whereefsub-
domains are assigned to a single processcipel2, and solved in sequence; the
right chart in Fig. 3 shows the case, where each sub-domaieadted in parallel.
Inside one sub-domain either algebraic mesh partitioninguti-threading is used

to parallelize a local solver.

Global continuity
Global continuity D solver @ cpu 1
' \\\ D D Assembly components

D:Hj Qjﬂ @&W Local sovers: cpu 2.4 //\ /I\D “

@ cpu 2 @cpu3 Q D o D / Q Algebraic mesh splitting or
O D

multi-threading: cpu 2...N
Fig. 3 Parallel implementation for small commodity clusterstflehd HPC systems (right).

Assume that one MPI process lives on each multi-core unit,@penMP par-
allelization occurs below, i.e. inside the multi-core NUMAIt [12, 13]. Actually,
a good practice for computational performance is to set timaber of OpenMP
threads equal to the physical number of cores inside one NUidde. Fig. 4 de-
picts the scalability results of a multi-threaded CG soleming on a Cray XE6
node (left) and SGI Altix UV 100 shared memory cluster. Weeskis almost linear
speed-upx 6 andx 8, respectively, for threads placed inside a single muatedie.

O dim(K)= 44536 e A dim(K)= 146 130 )/ <
A dim(K)= 146 130 L 6af| O dm@= 273151 | P
o dim(K)= 273151 . O dim(K)=1084520| /
O dim(K) = 1084 520 2 A < dim(K) = 2 095 119 K
< dim(K) = 2 095 119 e Y
18 , AL q
. Ao 4 N
Vs Aoy N o o
s 4 _ odo
ey oatagd
T L 8430800000
3 12 8458
2 , ‘g & g geo
0 P
(B 9 3
;
ik
o ;99
3
F
L4
1 & Cray XE6, 2 AMD Opteron 6172 -
1 6 12 18 24 1 16 32 48 64 80 95 112 128
Number of cores Number of cores

Fig. 4 Scalability results of a multi-threaded CG solver: Cray X#ft), SGI Altix UV (right).
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3 Numerical Experiments

We consider the case of a linear elasticity. The model prota#iows to describe
the displacementi = (up,up,u3)' of an elastic body in its equilibrium position
under the action of an external body forte- (fi, fo, f3)' and a surface charge
gN = (Ing, Oy, O, ) distributed ord Q. Without getting technical about the spaces
involved, i.e. the displacement weighting and trial s@aotiv andV, for details
see [15], the weak formulation for a problem of linear etastireads: findu € V
such that for allv e W

a(u,w) = F(w)

with
a(u,w):/Q)\(D-u)(D-w)der/QZue(u):s(w)dx
F(w):/gf-wdx+/aQ gn-wds

whereA andyu are the Lamé parameters, agid) is the infinitesimal strain tensor.

We have discretized the above problem usirit éinite element. The FE model
consists of three sub-domains, each triangulated indepeiydsee Fig. 5. When
working with fine meshes, the finest sub-domain containshiyu.6 million un-
knowns. We have used 4 computational nodes of a Cray XE6, avithtal of
96 cores. The tasks were executed by 4 MPI processes each2dvipenMP
threads, see Fig. 3 (right) (one MPI for a global continuityver, one MPI per
sub-domain). Three domain decomposition algorithms far-matching meshes
(Dirichlet-Neumann, Neumann-Neumann and FETI) have begtemented using
a modified version of the integrated environmenteFemt+ [14].

For simplicity reasons (to avoid floating sub-domains), wedhset that each sub-
domain has a part of its boundary belonging to a Dirichletidall = gp ondQp
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Fig. 5 A three component assembly. Non-matching triangulatioe<ikzar.
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Fig. 6 The FETI method for non-matching triangulations. Linealkgicity problem. Displacement
field at iterations: 1, 2, 10.

(bolt holes of the left and right components, a back face efntiiddle component).
All components are subject to the gravitational force. iBarbf a front face of the
right component is subject to a surface charge. We haves210GPay = 0.3,

E=105GPay = 0.34 andE=117 GPay = 0.33 for the left, middle and right com-

ponent, respectively; recall: = W(EPZ\/) andu = ﬁ For each sub-domain,

we have set the initial solutian](g) =(0,0,0)t

On Fig. 6, we have visualized the computed displacementsrations 1, 2 and
10; the computational time was 73 seconds per a single gi@ation in the FETI
method (fine meshes). The rate of convergence is shown iry Fig.the Dirichlet-
Neumann and Neumann-Neumann methods, respectively. Thé iREthod ex-
hibits performance similar to the Neumann-Neumann methibé. computations
have been repeated for quasi-uniform coarse, medium andrimgulations; for
the mixed test we have used coarse, fine, medium triangotafiow the left, middle
and right component, respectively.

—O— Coarse mesh
O Medium
¢ Fine
> Mixed

—O— Coarse mesh
O Medium o 10
¢ Fine

> Mixed

Error

Dirichlet-Nebmann Neumann-Neumann

10° 10" 10 10° 10" 10°
Iterations Iterations

Fig. 7 The Dirichlet-Neumann method, relatit& error. The curves depict different levels of
component mesh resolutidt/h.
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4 Conclusions

We have introduced a comprehensive framework that allonautomate numer-
ical simulations of multi-component CAD assemblies in tlease that meshes
can be independently updated for each component. This egsepresented the
CAD-based domain decomposition method. We have implerdeht Dirichlet-
Neumann, Neumann-Neumann and FETI methods for non-mattfiemgulations.
Numerical results have indicated that all above method$igfely accurate finite
element approximations for problems of linear elastiditfe have compared con-
vergence properties of the three methods. The Dirichletihsnn method exhibits
better convergence and is the most simple to implement.
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