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Summary: We apply domain decomposition to carry out finite element simula-
tions of multi-component computer aided design (CAD) assemblies. The novelty
of our research is the CAD-based domain decomposition. We consider design parts
as independent sub-domains and reuse assembly topology to define regions, where
the interface boundary conditions should be applied. The Dirichlet-Neumann [1],
Neumann-Neumann [2] and FETI [3] methods for non-matching triangulations have
been studied. We endorse the proposed framework with numerical experiments and
we focus on the essence of its parallel implementation.
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1 Introduction

Computer aided design (CAD) and finite element (FE) modelingare standards in
a concept to manufacture industrial chain. Realistic FE simulations require huge
computational resources and may last unacceptably long. Inthis paper, we present a
comprehensive framework that allows to automate and parallelize numerical simu-
lations of multi-component CAD assemblies. We refer to the work of Pironneau [4]
et al., where the authors have proposed to use constructive solid geometry modeling
as a basis for spatial domain decomposition; see [6, 7, 8, 9] for related work on three
dimensional contact problems in solid mechanics.

The novelty of our research is the CAD-based domain decomposition method.
We consider design parts as independent sub-domains. Then we reuse assembly
topology to define regions where the interface boundary conditions should be ap-
plied. Our motivation is to automate FE management of an existing CAD data, i.e.
to update only the concerning meshes when CAD parts are modified. In addition, the
method aims to regularize mathematical models when using various material prop-
erties (steel, cooper, rubber etc.). The method is inherently parallel and therefore
perfectly suited for hight performance computing.
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2 CAD-based Domain Decomposition

Generally, a FE model of an entire CAD prototype takes several days to be properly
defined. Once a pre-processing stage is completed (a global mesh, loadings and
constraints are generated), adaptive refinement procedurerequires communication
with CAD kernel at each computational iteration. Meanwhile, engineering design
changes are made on a daily basis at the CAD level, and the meshgenerally may not
follow the changes. Hence, the FE model cannot be updated within such timespan.

Assembly-driven decomposition

The application of assembly driven domain decomposition allows to automate the
above framework. We consider each component of a CAD assembly as an indepen-
dent sub-domain. Triangulations are generated independently and could be further
updated. Variational formulations are then explicitly written for each sub-domain.
Inter-domain continuity conditions are set according to the domain decomposition
algorithm.

Let {P1, ...,Ps} refer to a set of assembly components (design parts), withs ≥ 2.
We define{Ω1, ...,Ωs} to be a set of the corresponding computational sub-domains.
An illustration is given in Fig. 1.

Fig. 1 An assembly-driven
domain decomposition. De-
sign parts are considered as
independent computational
sub-domains.

Modeling accuracy

Solid parts are generated independently of the FE process, yet they are manipulated
by FE algorithms after discretization. For a manifoldM (a boundary of a solid part),
we define

H = diam(M) = sup
x1,x2∈M

|x1− x2|

along with the ”smallest feature length”l (the smallest hole, fillet, chamfer etc.). Ac-
cording to the CAD documentation [10], parts are initially created with the relative
accuracyδ r

CAD which satisfies

10−6
6 l/H < δ r

CAD 6 10−2
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CATIA modeling platform [11] allows to design parts with

10−6
6 l, H 6 103

however an option
10−8

6 l, H 6 1

is available to design small parts, but the module has limited implementation.

Initialization of inter-component contact regions

We propose to reuse ”assembly constrains” (data on parts relative position stored
in a CAD assembly file) in order to generate an initial list of the contact regions
(called contact faces). LetS denote a set of initial contact faces between all adjacent
assembly components (solid parts)

S= {Pi ∩
∗ Pj} 1≤ i 6= j ≤ s

where∩∗ stands for a Boolean cut operator (intersection of manifolds). The number
of all possible contact pairs is bounded by the binomial coefficient

dim(S)≤

(

s
2

)

In practice, for CAD assemblies, the number of inter-component contact faces is
much smaller than the binomial coefficient and often satisfies

dim(S)∼ O(s)

Definition 1. Two objectsA ⊂ R
d andB ⊂ R

d , d ≥ 1 are geometrically equal if the
setA is equivalent to the setB.

Definition 2. Topological equivalence - Two objects are topologically equivalent if
there is a homeomorphism between them.

In the following, a contact faceF is a set of patches; a patch is defined by
four NURBS or B-spline curves. LetFi, j andF j,i be the opposite contact faces
belonging to the adjacent componentsPi andPj, respectively. Then,Ti, j andT j,i be
a discretization of the above contact faces. In order to build

Ti, j = T j,i (1)

we require both geometrical and topological equivalence ofFi, j andF j,i. However,
(1) is hard to achieve, since solid models are built with onlya fixed accuracy.

Remark: Obviously, matching triangulationsTi, j = T j,i might be generated
within an additional computational cost. Unfortunately, for simulations involving
sliding, mixed finite elements (shape, order) or discontinuities in material coeffi-
cients matching triangulations are hard to maintain.
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Geometric discontinuities across contact faces

In practice, most contact regions are either non-planar or have curved boundaries.
When meshes are generated independently,Ti, j andT j,i often appear different, ow-
ing to round-off errors. As a result, geometric discontinuities are certain for non-
matching triangulations, which is clearly seen in Fig. 2.

Let u1h andu2h be discrete functions defined on the triangulationsT1,2 andT2,1,
respectively. ForT1,2 6= T2,1 the computation of a jump operator

u2h(x)− u1h(x)

on contact faces is not properly defined (not unique). Indeed, whenΩh is a polygonal
approximation ofΩ , numerical integration of boundary integrals will not be equal
on T1,2 6= T2,1. In this context, we are interested to compute the value of a finite
element functionuh(y) slightly outside its domain of definition, namely aty ∈ R

3

close toΩh in the sense
min
x∈Ωh

|x− y |< ch

wherec ∈ R+, andh is the discretization parameter (mesh size).

Assume thatΩh is triangulated into tetrahedral elements. Let{v0, ...,v3} be
the vertices of a tetrahedral elementT close toy. The barycentric coordinates
{λ0, ...,λ3} of y with respect toT satisfy

3

∑
i=0

λi = 1 and y =
3

∑
i=0

λi vi

When a pointy does not belong to the discrete domain, we shall define

uh(y) =
3

∑
i=0

λi uh(vi)

where the verticesvi are those of the nearest tetrahedral element. We use the same
approach for aP2 or higher Lagrangian finite element.

Fig. 2 Geometric discontinuity across the contact region in case of non-matching triangulations.
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Parallel implementation

Depending on the computer architecture, we propose two implementation schemes:
the first is suitable for small commodity clusters; the second fits massively parallel
architecture (HPC). LetNcpu be the number of available CPUs, processor cores,
that are used for a FE simulation. Lets be the number of assembly components.
Reasonably, one can expectNcpu ∼ s for small or intermediate commodity clusters
andNcpu >> s for HPC machines. Fig. 3 (left) illustrate the case, where three sub-
domains are assigned to a single process, i.e.cpu2, and solved in sequence; the
right chart in Fig. 3 shows the case, where each sub-domain istreated in parallel.
Inside one sub-domain either algebraic mesh partitioning or multi-threading is used
to parallelize a local solver.

Global continuity

solver @ cpu 1

Local solvers: cpu 2...4

@ cpu 2
@ cpu 3

@ cpu 4

Global continuity

solver @ cpu 1

Algebraic mesh splitting or

multi−threading: cpu 2...N

Assembly components

Fig. 3 Parallel implementation for small commodity clusters (left) and HPC systems (right).

Assume that one MPI process lives on each multi-core unit, and OpenMP par-
allelization occurs below, i.e. inside the multi-core NUMAunit [12, 13]. Actually,
a good practice for computational performance is to set the number of OpenMP
threads equal to the physical number of cores inside one NUMAnode. Fig. 4 de-
picts the scalability results of a multi-threaded CG solverrunning on a Cray XE6
node (left) and SGI Altix UV 100 shared memory cluster. We observe almost linear
speed-up,×6 and×8, respectively, for threads placed inside a single multi-core die.
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SGI Altix UV 100 NumaLink 5, 16 Intel Xeon X7550
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Fig. 4 Scalability results of a multi-threaded CG solver: Cray XE6(left), SGI Altix UV (right).
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3 Numerical Experiments

We consider the case of a linear elasticity. The model problem allows to describe
the displacementu = (u1,u2,u3)

t of an elastic body in its equilibrium position
under the action of an external body forcef = ( f1, f2, f3)t and a surface charge
gN = (gN1,gN2,gN3)

t distributed on∂ΩN . Without getting technical about the spaces
involved, i.e. the displacement weighting and trial solution W andV , for details
see [15], the weak formulation for a problem of linear elasticity reads: findu ∈ V
such that for allw ∈W

a(u,w) = F(w)

with

a(u,w) =
∫

Ω
λ (∇ ·u)(∇ ·w)dx+

∫

Ω
2µ ε(u) : ε(w)dx

F(w) =

∫

Ω
f ·wdx+

∫

∂ΩN

gN ·wds

whereλ andµ are the Lamé parameters, andε(u) is the infinitesimal strain tensor.

We have discretized the above problem using aP2 finite element. The FE model
consists of three sub-domains, each triangulated independently, see Fig. 5. When
working with fine meshes, the finest sub-domain contains roughly 3.6 million un-
knowns. We have used 4 computational nodes of a Cray XE6, witha total of
96 cores. The tasks were executed by 4 MPI processes each with24 OpenMP
threads, see Fig. 3 (right) (one MPI for a global continuity solver, one MPI per
sub-domain). Three domain decomposition algorithms for non-matching meshes
(Dirichlet-Neumann, Neumann-Neumann and FETI) have been implemented using
a modified version of the integrated environmentFreeFem++ [14].

For simplicity reasons (to avoid floating sub-domains), we have set that each sub-
domain has a part of its boundary belonging to a Dirichlet datum u = gD on ∂ΩD

Fig. 5 A three component assembly. Non-matching triangulations are clear.
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Fig. 6 The FETI method for non-matching triangulations. Lineal elasticity problem. Displacement
field at iterations: 1, 2, 10.

(bolt holes of the left and right components, a back face of the middle component).
All components are subject to the gravitational force. Portion of a front face of the
right component is subject to a surface charge. We have setE=210 GPa,ν = 0.3,
E=105 GPa,ν = 0.34 andE=117 GPa,ν = 0.33 for the left, middle and right com-
ponent, respectively; recall:λ = ν E

(1+ν) (1−2ν) andµ = E
2(1+ν) . For each sub-domain,

we have set the initial solutionu(0)
ih = (0,0,0)t .

On Fig. 6, we have visualized the computed displacements at iterations 1, 2 and
10; the computational time was 73 seconds per a single globaliteration in the FETI
method (fine meshes). The rate of convergence is shown in Fig.7 for the Dirichlet-
Neumann and Neumann-Neumann methods, respectively. The FETI method ex-
hibits performance similar to the Neumann-Neumann method.The computations
have been repeated for quasi-uniform coarse, medium and finetriangulations; for
the mixed test we have used coarse, fine, medium triangulations for the left, middle
and right component, respectively.
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Fig. 7 The Dirichlet-Neumann method, relativeL2 error. The curves depict different levels of
component mesh resolutionH/h.
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4 Conclusions

We have introduced a comprehensive framework that allows toautomate numer-
ical simulations of multi-component CAD assemblies in the sense that meshes
can be independently updated for each component. This paperhas presented the
CAD-based domain decomposition method. We have implemented the Dirichlet-
Neumann, Neumann-Neumann and FETI methods for non-matching triangulations.
Numerical results have indicated that all above methods arehighly accurate finite
element approximations for problems of linear elasticity.We have compared con-
vergence properties of the three methods. The Dirichlet-Neumann method exhibits
better convergence and is the most simple to implement.
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