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1 Schwarz waveform relaxation algorithms for a linear system

Let L be a partial differential operator, possibly acting on vector functions (x, t) 7→
u(x, t) ∈ Rd , of the time variable t and the space variable x = (x1,x2). The equation
to be solved in Ω × (0,T ) is

L u = F in Ω × (0,T ), u(·,0) = u0 in Ω , Bu = g on ∂Ω . (1)

The domain Ω is split into subdomains Ωi with possible overlap. Table 1 on the left
shows the simplified case of a rectangle Ω = (A,B)×(E,F) divided into two rectan-
gles Ω1 = (A,C+L)×(E,F) and Ω2 = (C,B)×(E,F) with overlap L, this example
will be the model case in the paper. On the right is described the alternate algo-
rithm, via two transmission operators B j on Γj. Boundary conditions are enforced
on the other boundaries, of Dirichlet or Nemann type. A parallel Schwarz algorithm
for elliptic equations was introduced by P.L. Lions in [14], extending the origi-
nal Schwarz’s domain decomposition algorithm for the Laplace equation in [16].

Ω1 Ω2

L

Γ1Γ2

t





Luk
1 = F in Ω1 × (0, T )

uk
1(·, 0) = u0 in Ω1, Buk

1 = g on ∂Ω1\Γ1

B1u
k
1 = B1u

k−1
2 on Γ1 × (0, T )





Luk
2 = F in Ω2 × (0, T )

uk
2(·, 0) = u0 in Ω2, Buk

2 = g on ∂Ω2\Γ2

B2u
k
2 = B2u

k−1
1 on Γ2 × (0, T )

Table 1: Domain decomposition and Schwarz waveform relaxation algorithm

P.L. Lions also mentioned the possibility of using the algorithm for time depen-
dent problem. However, it was recognized and analyzed as a waveform algorithm
(see [13]) only in [7]. The authors defined the Schwarz waveform relaxation algo-
rithm, which uses as transmission operators B j ≡ Id, corresponding to Dirichlet
transmission conditions. The convergence was analyzed with various tools, such as
maximum principle, Laplace transform in time. This algorithm enjoys superlinear
convergence over small time intervals, linear convergence over large time intervals.
A more detailed historical account can be found in [10]. On large time intervals, a
Fourier analysis is useful. Considering a small overlap, the boundaries of the do-
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mains can be rejected to infinity, and Fourier transform in the second variable can
be performed. This is the simplest way to proceed, but Fourier series on bounded in-
tervals can be used as well, though the objects are heavier, see [4] for an example in
structure mechanics. Numerical results show that the parameters obtained through
the analysis in an infinite domain are relevant.

Consider for instance the advection-diffusion reaction problem, with

L u := ∂tu+a ·∇u−ν∆u. (2)

The algorithm for the error ek
j is the same, with vanishing data F and u0. By Fourier

transform in time and x2, with dual variables τ and ξ , the Fourier transforms are
explicitely given by

êk
1(x1,ξ ,τ) = η

k
1(ξ ,τ)e

L−x
2ν

(a− f (z)), êk
2(x1,ξ ,τ) = η

k
2(ξ ,τ)e

x
2ν

(a+ f (z)),

with notations which will remain throughout the paper

z(ξ ,τ) = i(τ +a2ξ )+νξ
2, f (z) =

√
a2

1 +4νz.

The coefficients ηk
j are obtained recursively, using the transmission relations. They

are governed by the convergence factor ρD, and given in the parallel case by

ρD(z,L) := e−
L

2ν
f (z), η

k
j = ρD(z,L)k

η
0
j .

ρD is identically equal to 1 when L = 0, so the algorithm is not convergent. For
positive overlap, the high frequencies are damped exponentially. More precisely,
for the rectangle case in Table 1, suppose the initial boundary value problem is
solved by finite differences in time and space on a regular grid, with meshes ∆ t and
h = ∆x1 = ∆x2. Suppose Dirichlet boundary conditions are enforced on ∂Ω . Then
the lowest frequency resolved by the grid on Γj is ξm = π

F−E , corresponding to a
mode sin( πx2

F−E ), while the highest frequency is ξM = π

h , corresponding to a mode
sin(πx2

h ). The highest and lowest frequencies in time are defined in the same way,
by τm = π

2T ,τM = π

∆ t .

τm =
π

2T
, τM =

π

∆ t
, ξm =

π

F−E
, ξM =

π

h
, K = z([τm,τM]× [ξm,ξM]).

In this paper, we consider only implicit schemes, with ∆ t and h are comparable.
Then the uniform convergence factor is given by

sup
K
|ρD(z,L)| ∼ 1− L

2ν
Re f (ξm,τm).

It tends linearly to 1 when the overlap tends to 0. For reasons of cost and memory,
the overlap is usually a few mesh points only, which implies that the convergence
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factor is highly dependent of the mesh size. It is therefore useful to design algorithms
with a more robust convergence behavior.

Schwarz algorithms with Robin transmission conditions were proposed in [15],
together with nonoverlapping subdomains. Optimized Schwarz waveform relaxation
algorithms have afterwards been proposed, with or without overlap, to be able to ac-
celerate the convergence of the algorithm. They use approximations of the Dirichlet-
to Neumann operator, they are differential in time and in the boundary variable, and
take here the form

B ju := (n j)1(ν∂1u− a1

2
u)+

p
2

u+
q
2
(∂tu+a2∂2u−ν∂22u). (3)

When q = 0, the operators are called Robin operators, while for q 6= 0, they are
referred to as Ventcel operators. The coefficients p and q are calculated such that they
optimize the convergence factor of the algorithm in the Fourier variables. Define a
first degree polynomial s(z) = p+ qz ∈ P1. The choice of p and q is a particular
case of the best approximation problem in the space Pn of complex polynomials
with degree lower than n:

ρ(z,s,L) =
s(z)− f (z)
s(z)+ f (z)

e−
L

2ν
f (z), |ρ(z∗,s∗,L)|= inf

s∈Pn
sup
z∈K
|ρ(z,s,L)| := δ

∗
n (L).

(4)
The analysis of the best approximation problem for the advection-diffusion equa-
tion in one dimension in the Robin case (n = 0) has been made “by hand” in [6] for
τm = 0. Further general tools for well-posedness of the best approximation prob-
lem (4) have been set in [2] for the Robin case, and applied to the one-dimensional
Ventcel-Schwarz algorithm. They are being extended in [1] to the 2-D case with
a complete analysis and explicit asymptotic formulae. Well-posedness of the algo-
rithm and convergence results, including variable coefficients and non planar bound-
aries in the nonoverlapping case, can be found in [11].

2 Optimized coefficients for the linear reactive transport system

We introduce a simplified system which has been used as a model in F. Häeberlein’s
thesis on CO2 sequestration. For the linearized system, we present optimized co-
efficients in closed form, extending previous results in [1]. A proof is given in the
one-dimensional overlapping case, which is new. These coefficients will be used in
the nonlinear case in §3.

Consider the system of equations for u = (u,v) in Ω × (0,T ),

∂t(φu)+∇·(−ν∇u+au)−R(u,v) = 0, ∂t(φv)+R(u,v) = 0, (5)

where Ω is a bounded domain in Rd and u and v denote the concentration of the
mobile and fixed species, respectively. φ > 0 is the porosity which is supposed to
be constant in time, ν ≥ 0 is the scalar diffusion-dispersion coefficient, a ∈ Rd is
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the Darcy velocity. All physical properties are supposed to be given and constant
in time. R(u,v) is a nonlinear function representing the chemical coupling term.
The final goal is to be able to simulate general situations where the kinetic reac-
tion rate is fully nonlinear. We present in §3 a test case with a semilinear model
R(u,v) = k(v−Ψ(u)), where k > 0 represents the reactive surface and Ψ is a non-
linear function modeling an adsorption process, see Figure 3, left. The domain de-
composition process relies on obtaining good transmission conditions. Therefore
we consider here a linear coupling term R(u,v) = k(v− cu) where k > 0 represents
the reactive surface and c > 0 an equilibrium constant. The linear case models a
chemical reaction that reaches its equilibrium point at v = cu. By the same method
of approximating the Dirichlet to Neumann map, Ventcell transmission conditions
can be obtained:

B j ·u :=±(ν∂1−
a1

2
)u+

p
2

u+
q
2
(φ∂t +a2∂2−ν∂22 + kc)u− q

2
kv. (6)

The convergence factor is still defined by (4), with z replaced by

Z(ξ ,τ,c) = z(ξ ,φτ)+ kc
iφτ

iφτ + k
. (7)

Z(ξ ,τ,c) appears as a perturbation of the function z(ξ ,φτ) introduced previously,
and will be treated as a linear perturbation in the parameter c. The domain of opti-
mization is K(c) = Z([τm,τM]× [ξm,ξM],c).

Warning: in this text, the proofs are based very often on asymptotic considera-
tions. To alleviate the notations, we introduce the notation Qw h or Q=∝(h) if there
exists C 6= 0 such that Q ∼Ch. The analysis below is an extension of that made in
the case c = 0 described above. The formulas include the case c = 0. The important
theoretical results in [2, ?] apply here, to give

1. Existence of solutions for the best approximation problem, overlap or not.
2. Uniqueness for small L,∆ t and h, in the Robin case n = 0.
3. Uniqueness for L = 0, small ∆ t and h, in the Ventcel case n = 1.
4. For n = 0 and 1, consider the real function

F(s,L) = sup
Z∈K(c)∩{ℜZ≥0}

|ρ(Z,s(Z),L)| . (8)

If it has a local minimum in Pn, it is the global minimum.

The last property will be decisive for the approximate computation of the best pa-
rameters.

Shortcuts are defined in one dimension by fm = f (Z(0,τm,c)), fM = f (Z(0,τM,c)).

Theorem 1. For positive c, small h w ∆ t, if L = 0 or L w h, the best approximation
problem (4) in K(c) has a unique solution, whose coefficients are given in the 1-D

case asymptotically in terms of xm = ℜ( f (τm)), xM = ℜ( f (τM))∼
√

2νπφ

∆ t :
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dimension method overlap parameters (p∗,q∗) δ ∗ ∼ 1−2 xm
p∗

1 n=0, Robin L = 0 p∗0(0) =
√

xm| fM |2−xM | fm|2
xM−xm

1−∝(∆ t
1
4 )

1 n=0, Robin L > 0 p∗0(L)∼ p∗0(0) 1−∝(∆ t
1
4 )

1 n=1, Ventcel L≥ 0 p1(L)∗ ∼ x
3
4
mx

1
4
M, q∗1(L)∼

2ν p∗
xmxM

1−∝(∆ t
1
8 )

In two dimensions, define , for |a2|ξm > τm, τ0 as the largest real root of

φτ

(
1+ c

k2

k2 + τ2φ 2

)
= |a2|ξm,

the real function g1(s) =
k2

s+ k2 ,

ξ1 = a2
(|a|2 +4νkc(1−g1(φτm)))−

√
(|a|2 +4νkc(1−g1(φτm)))2†+16ν2(φτm)2(1+ cg1(φτm))2

8ν2φτm(1+ cg1(φτm))
,

Zw =





Z(ξ1,τm) if ξm ≤ |ξ1| ≤ ξM ,

Z(τ0,−sign(a2)ξm) if |ξ1| ≤ ξm and ℜ f (τ0,−sign(a2)ξm)≤ℜ f (τm,−sign(a2)ξm),

Z(τm,−sign(a2)ξm) otherwise.
xw = ℜZw.

The best coefficients for the Robin-Schwarz algorithm (n = 0) are

overlap parameter p∗ δ ∗ ∼ 1−2 xw
p∗

L = 0 p∗0(0)∼
√

2νπxwφ

∆ t 1−∝(∆ t
1
2 )

L > 0 p∗0(L)∼
3
√

νx2
w

2L 1−∝(L
1
3 )

Define the function

g(t) =
2t−
√

t2 +1
t2 +1

,

and for Q < Q0 ≈ 0.36900, t2(Q) is the only root of g(t) = Q larger than t0 =√
54+6

√
33/6≈ 1.567618292,

P(Q) =





√
1+
√

t2(Q)2 +1( 1√
t2(Q)2+1

+Q) if Q < Q1 ≈ 0.1735,

1+Q if Q > Q1.
(9)

Defining C = ∆ t/h, the best coefficients for the Ventcel-Schwarz algorithm (n = 1)
are

overlap p∗1 q∗1 δ ∗ ∼ 1−2 xw
p∗1

L = 0 p∗1(0)∼





4
√

νx3
wπ

h if Cxw < 2,

4

√
8νxwπ

hC (P( 2
Cxw ))2 if Cxw > 2,

q∗1(0)∼
2p∗1(0)π

hxw
1−∝(h

1
4 )

L > 0 p∗1(L)∼
5
√

νx4
w

2L q∗1(L)∼
2νx2

w
p∗1(L)

3 1−∝(L
1
5 )
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Proof. It relies on the use of the explicit formulations in [1] for c= 0, together with a
continuation argument. We present in detail the analysis for the Robin transmission
condition with overlap. Define

R0(τ,s) =
∣∣∣∣
s− f (Z)
s+ f (Z)

∣∣∣∣
2

, R(τ,s,L) = R0(τ,s)e−Lℜ f (Z)/ν . (10)

Lemma 1. In one dimension, for τM � 1 and L� 1 with L w τ
−λ

M , the minmax
problem (4) in K(c) with n = 0 has a unique solution (s∗0(L),δ

∗
0 (L)).

• If 0 < λ < 3
4 , it is the unique solution of the equation

R(τm,s,L) = R(τ+,s,L), (11)

where τ+(s,L) is the unique local maximum point of R(·,s,L). It is asymptotically
given by

s∗0(L)∼
3
√

(ℜ( f (τm)))2L
2ν

δ ∗0 (L)∼ 1−2 3
√

ℜ( f (τm))L
2ν

, (12)

• If 3
4 < λ ≤ 1, it is the unique solution of the equation

R(τm,s,L) = R(τM,s,L). (13)

It is asymptotically given by

s∗0(L)∼ s∗0, δ
∗
0 (L)∼ δ

∗
0 . (14)

Remark 1. Note that if λ is close to 0, then δ ∗0 (L) = 1−∝( 3
√

L), which gives the
best behavior, independent of ∆ t. For the Dirichlet case, we would have

sup
K
|ρD(τ,L)| = 1−∝(L).

If λ = 1, which is the case if the overlap contains a few grid points, then the overlap
does not improve the convergence. We will see that it is not the case in higher
dimension.

Proof of the Lemma Introduce the curve F : τ ∈ R+ 7→ f (τ) ∈ C. The domain
K(c) is F ([τm,τM]). The proof has four steps.

1. Study the graph of F , see Figure 1.
2. Existence and uniqueness of a minmax reached at (s∗0(L),δ

∗
0 (L)) follows from

the theoretical results above.
3. Prove that if L is small, s is large, and Ls is small, the function τ 7→ R(τ,s,L) has

a unique stationary point τ+ ∼ s/Lφ corresponding to a maximum.
4. Prove that for small L, there is a unique s̄∗0(L) such that R(τm,s,L) = R(τ+,s,L)

or R(τM,s,L) , and that it satisfies the assumptions in the previous item.
5. Prove that s̄∗0(L) is a strict real minimum point of F(·,L).
6. Conclude by theoretical results that s̄∗0(L) = s∗0(L).
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Fig. 1 Geometric representation of the function F defining K(c), for c = 1, k = 0 (magenta),
c = 1, k = 5 (blue), c = 10, k = 5 (green). The direction of increasing τ is indicated by the arrow.

The real and imaginary parts of f , x(τ) and y(τ), are defined by:




x2− y2 = a2
1 +4ν

kcτ2φ 2

k2 + τ2φ 2 ,

2xy = 4ντφ
(
1+ k2c

k2+τ2φ2

)
,

x≥ xm > 0, y≥ 0.

(15)

In the (x,y) plane, the curve F lies between the real axis and the bisectrix (y = x).
For further investigations, the derivatives of x and y are needed. To simplify the
notations, introduce

ω = φτ, g1(s) =
k2

s+ k2 , g2(s) = 1− cg1(s)+2cg1(s)2,

and differentiate (15) to obtain the derivatives of x and y, in terms of x, y, g1, and g2
as:

{
x2− y2 = a2

1 +4νkc(1−g1(ω
2))

2xy = 4νω(1+ cg1(ω
2))

,

(
∂τ x
∂τ y

)
=

2νφ

x2 + y2




2c
k

ωg2
1(ω

2)x+g2(ω
2)y

−2c
k

ωg2
1(ω

2)y+g2(ω
2)x


 .

(16)
The zeros of ∂τ x exist only at points τ with g2(ω

2) < 0, which happens only if

c > 8 and g1(ω
2) ∈]g̃1

1, g̃
2
1[⊂]0,1[, with g̃1

1 = c−
√

c2−8c
4c and g̃2

1 = c+
√

c2−8c
4c . Ac-

cordingly ∂τ y vanishes only at points τ with g2(ω
2) > 0, which happens if c > 8

and g1(ω
2) 6=∈]g̃1

1, g̃
2
1[, or c < 8 .

To solve ∂τ x = 0, it will be easier to rewrite it in terms of g1(ω
2) < 0 only.

To do so, multiply the equation ∂τ x = 0 successively by x and by y, then replace
xy = 2νω(1+ cg1). In the resulting equation replace ω2g1(ω

2) = k2(1− g1(ω
2)),
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and finally insert these values into the equation x2−y2 = a2
1 +4νkc(1−g1(ω

2)), to
obtain that ∂τ x(τ) = 0 is equivalent to

g1(ω
2) is a root of Q in (g̃1

1, g̃
2
1), with

Q(X) =−4c2(c+2b+2)X4 + c2(3c+4b+8)X3− c(3c+4b+4)X2 + cX−1.

Computing the derivatives of Q, it is easy to see that Q has a maximum point in
(0,1). Since Q has alternate coefficients, it cannot have negative zeros. Compute
Q(0) = −1, Q(1) < 0. Q(g̃ j

1) = 4c2(g̃ j
1)

3(1− g̃ j
1)(1+ cg̃ j

1) > 0. This proves that Q
has two roots in (0,1), outside (g̃1

1, g̃
2
1), which indeed correspond to zeros of ∂τ y.

This implies that x is an increasing function of τ , y′ vanishes for two values of τ ,
and the curve has the behavior depicted in Figure 1.

2. Rewrite the convergence factor R with L = 2ν` as

R0(τ,s) =
(x− s)2 + y2

(x+ s)2 + y2 , R(τ,s,L) = R0(τ,s)e−2`x

Compute for fixed s the derivative of R with respect to τ .

∂τ R(τ, p,L) = (∂τ R0(τ,s)−2`∂τ xR0(τ,s))e−2`x =
2νφS(τ, p, `)
| f |2| f + p|4

with

S(τ,s, `,c) =
(
4s(x2− y2− s2)−2`| f 2− s2|2

)(2c
k

ωg2
1x+g2y

)
+8sxy

(
−2c

k
ωg2

1y+g2x
)
.

Suppose ` small, s large, and `s small. For c = 0, S is a bi-quadratic polynomial in
the x variable

S̃(x,s, `) =−4`x4 +4(`b2 + s)x2− `b2(b2−2s2)+2s(b2− s2).

S̃ has two positive roots, which behave asymptotically as x− ∼ s and x+ ∼
√

s/`,
corresponding to two values of τ , τ− ∼ s2

2νφ
� τ+ ∼ s

2ν`φ . Since R tends to 0 at
infinity, τ− corresponds to a minimum, and τ+ to a maximum of R.

We now extend the solution to positive c. A careful computation shows that

∂cS(τ±,s, `,c)∼ 16sνx± 6= 0.

Therefore, by the implicit function theorem, in a neighborhood of 0, 0 ≤ c ≤ c0,
the root τ− (resp. τ+) continues in a minimum point τ−(c), (resp. maximum point
τ+(c)) with τ±(0) = τ±. They have the same asymptotic behavior τ+(c) ∼ s/2ν`
(resp. τ−(c) ∼ s2/2ν) independent of c, and one can iterate the argument, show-
ing for any c the existence of a function τ+(c) ∼ s

2ν`φ (resp. τ−(c) ∼ s2

2ν
) with

S(τ±(c),s, `,c) = 0. They remain indeed global maximal and minimal points: sup-
pose that there exists another root τ of S, and examine its asymptotic behav-
ior. Since ∂τ x(τ) > 0, it can not be at finite distance, since then we would have
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S(τ, p, `,c)∼−4s3x′ < 0. Suppose now that τ w `−θ with θ > 0. Then the principal
part of S is:

−4`(x(τ))4 +4p(x(τ))2− p3(p`+2)

whose roots are equivalent to those of S, proving that there is no other extremal point
than τ±(c). Then

sup
τ∈K

R(τ,s,L) =

{
max(R(τm,s,L),R(τ+,s,L)) if τ+ < τM,

max(R(τm,s,L),R(τM,s,L)) if τ+ > τM,

3 Compute now ∂sR(τ,s,L) = (∂sR(τ,s,0))e−`x. It is easy to see that R(τm,s,L)
is an increasing function of s, R(τ+,s,L) a decreasing function of s, and R(τM,s,L)
has a minimum reached for s = | f (τM)|.

If λ < 3
4 , asymptotic considerations show that there exists a s̄∗0 such that R(τm,s,L)−

R(τ+,s,L)=0, and that

sup
τ∈K

R(τ,s,L) =

{
R(τ+,s,L) for s < s̄∗0,
R(τm,s,L) for s > s̄∗0.

The other case is similar.
4 To prove that it is a strict local minimum, proceed as in [1] and evaluate asymp-

totically the sign of ∂pR(τ+, s̄∗0(L),L)×∂pR(τm, s̄∗0(L),L)< 0.

2.1 Performances of different transmission conditions

In this test case in Ω = (0,1)× (0,1), the diffusion parameter is ν = 1, advection
is a = (1 · 10−2, 5 · 10−2), the reactivity coefficient is set to k = 5 with an equi-
librium parameter of c = 10. The finite volumes method is described in [8]. The
discretization parameters are ∆ t = ∆x = ∆y = 2 ·10−2. The domain Ω is split into
Ω1 = [0, 0.5+L]× [0,1] and Ω2 = [0.5, 1]× [0,1]. A minimal overlap of size L=∆x
is used. A random initial guess is imposed on the interface Γ1. The results are plot
in Figure 2. The expected behavior takes place. The best convergence behaviour
is obtained with optimised Ventcel conditions with overlap which reach the error
precision of 10−10 in only 6 iterations.

3 Newton-Schwarz waveform relaxation for the nonlinear system

The Schwarz waveform relaxation algorithm was used for the semilinear heat equa-
tion ∂tu− c2(x)∂xxu + f (u) = 0 in [5] . Under the condition that f ′(x) ≤ a, the
same convergence behavior as in the linear case was exhibited and analyzed. Op-
timized Schwarz waveform relaxation algorihtm, with nonlinear transmission con-
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Fig. 2 Iterations versus error of the domain decomposition iterates

ditions were first introduced in [11], for the semilinear wave equation. In [3], the
semilinear advection-diffusion reaction equation in 2 dimensions was considered,
∂tu−ν∆u+ f (u) = 0, where f is constrained only to be in C2(R), with f (0) = 0.
Nonoverlapping Robin-Schwarz and Ventcell-Schwarz where proposed and ana-
lyzed. The main difficulty in this case is that each iterate in Table 1 is solution
of a nonlinear problem, whose solution has to be defined properly, and has its own
time of existence T n

j . The sequence (T n
j )n is decreasing, and it must be shown that

there is a lower bound T∗ for these times. Then the convergence is achieved inside
(0,T∗). From a numerical point of view, a nonlinear system has to be solved in each
subdomain at every step, which has been implemented with P1 finite elements in
space, and a linearly implicit Euler scheme in time. It turns out that the requirement
of small time interval given by the existence analysis is not compelling (see also
[11]). Furthermore nonlinear transmission condition where the coefficients p and q
depend on the iterates through the formulas of §1 were successfully implemented.

For the nonlinear reactive transport system, with suitable assumptions on the
coefficients, the same methods apply, for the existence and convergence analy-
sis (see below). However, acceleration must be obtained. This has been done in
F. Haeberlein’s thesis [8], where several scenarii where studied. First, writing the
Schwarz iteration in a interface substructuring manner, it is seen as a fixed point it-
eration for the interface problem, preconditioned by the domain decomposition with
transmission conditions given by the B j. It will be called Classical approach. For
steady elliptic problems, the resolution of the interface problem is accelerated by a
Krylov algorithm (see [17]). In this time-dependent non-linear frame, it is treated
by a Newton-Krylov algorithm (called Nested Iteration Approach). Each iteration
requires the resolution of smaller time-dependent nonlinear systems in the subdo-
mains. This approach has been successfully implemented and described in [9]. An
interesting other approach is called Common iteration approach. It is a Newton-
Schwarz Krylov approach (see [12]) with the Jacobian explicitely computed.
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Uk+1 =Uk +h, ∂th−ν∆h+ f ′(Uk)h =−(∂tUk−ν∆Uk + f (Uk)).

The linear problem above is solved by an optimized Ventcell-Schwarz domain de-
composition algorithm, accelerated by Krylov. The approach requires in every itera-
tion of the outer loop (indices in n) to set up a right hand side-vector that demands to
solve two linear problems in the subdomains. Moreover, in the matrix-vector mul-
tiplication inside the Krylov-method, only linear problems in the subdomains are
evaluated. No nested nonlinear iterative method is needed. For this reason and in
contrast to the approach above, this approach was called ’Common Iteration Ap-
proach’ (CIA) due to the common iterative approach of the nonlinear character of
the monodomain problem. The name ”Newton-Schwarz-Krylov“ can be used in or-
der to explain the order of application of the different numerical tools: The global
problem is first attacked by a Newton-type method. At every iteration, the resulting
linear problem is decomposed by a Schwarz-type algorithm where the problem is
reduced to the interface variables. The resulting linear system is then solved by a
Krylov-type method.

The next simulation shows nonoverlapping Robin-Schwarz simulations in do-
main Ω = [0, 1]× [0, 1] ⊂ R2 with the subdomains Ω1 = [0, 0.5]× [0, 1] and
Ω2 = [0.5, 1]× [0, 1]. The considered time window is t ∈ [0, 1]. Physical param-
eters are φ = 1, ν = 1.5, a = (5 · 10−2, 1 · 10−3). The nonlinear coupling term is
defined by R(u,v) = k(v−Ψ(u)) where

Ψ(u) =
QsKLu

(1+KLu−KSu)(1−KSu)

is the BET isotherm law with k = 100, QS = 2, KS = 0.7 and KL = 100 (cf. figure 3,
left). BET theory is a rule for the physical adsorption of gas molecules on a solid sur-
face and serves as the basis for an important analysis technique for the measurement
of the specific surface area of a material. One observes the quadratic convergence
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Fig. 3 Nonlinear simulation with 200 points per space dimension

of the new approaches since they are Newton-based, the quadratic convergence is



12 Florian Häberlein and Laurence Halpern

observed late in the history since the initial guess (randomly chosen) is far from the
exact solution. The classical approach shows only a superlinear convergence, also
in this case, the superlinear character appears late in the convergence history.
The proof of convergence for the fixed point algorithms goes as follows:

1. Define the iterates in the relevant Sobolev spaces, which is a little more difficult
in the overlapping case due to the use of trace theorems (see [6] and [2]).

2. Prove the existence of a existence time independent of the iteration number.
3. Prove the convergence by energy estimates.

The first two items, and the third one in the nonoverlapping case can be obtained
as in [3]. In the overlapping case, a new method has been introduced in [18]. The
idea is to obtain a decay of a weighted error in time (weight e−αt ) and in the
direction normal to the interface (weight ϕ(x1) to be chosen to decay the energy) .
The strategy applies here. However, there is no proof of quadratic convergence of
the Newton-based algorithms yet, even though clear evidence is given in Figure 3.
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Paris 13 (2011)

5. Gander, M.J.: A waveform relaxation algorithm with overlapping splitting for reaction diffusion
equations. Numer. Linear Alg. Appl 6, 125–145 (1998)

6. Gander, M.J., Halpern, L.: Optimized Schwarz waveform relaxation methods for advection
reaction diffusion problems. SIAM J. Numer. Anal. 45(2), 666–697 (2007)

7. Gander, M.J., Stuart, A.M.: Space time continuous analysis of waveform relaxation for the heat
equation. SIAM J. Sci. Comput. 19, 2014–2031 (1998)
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