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1 Introduction

When solving the Helmholtz equation with standard finite elements, the oscillatory
behavior of the solution results in a large number of degreesof freedom (DoFs) re-
quired to resolve the wave, especially for high wave numbers. This together with
the indefiniteness of the problem makes an iterative solution of the resulting lin-
ear system of equations difficult. Nevertheless, some advances for finding efficient
preconditioners for wave type problems have been made recently. Well known is
the shifted Laplace Preconditioner [5], or a sweeping preconditioner [4] based on
an approximate blockLDL⊤ factorization, which is constructed layer by layer. Es-
pecially for parallel computing platforms domain decomposition methods are very
popular. Apart from optimized Schwarz methods [8], i.e. Schwarz methods which
rely on optimal transmission conditions as interface condition, the FETI-H [7] and
the FETI-DPH [6] method are widely used. The last two methodscan be seen as fur-
ther developments of the FETI and the FETI-DP methods, respectively, specialized
for Helmholtz problems.

The solution strategies presented in this work are based on amixed hybrid dis-
continuous galerkin formulation [13, 10] Since the hybrid formulation provides ap-
propriate interface conditions an efficient iterative solution with Krylov space meth-
ods combined with domain decomposition preconditioners ispossible. Apart from
adapting a BDDC preconditioner [3, 11] to the current setting, a new Robin type
domain decomposition preconditioner is constructed. Thispreconditioner solves in
each iteration step local problems on subdomains by directly inverting the subdo-
main matrix. Thus, it is well suited for parallel computations. Good convergence
properties of both preconditioners are demonstrated by numerical experiments. The
results of this paper will be presented in more detail in [9].

2 The Mixed Hybrid Discontinuous Galerkin Formulation

Our formulation is based on the mixed form of the Helmholtz equation: Find a scalar
functionu : Ω →C and a vector valued functionp : Ω → Cd

gradu = iωp and divp = iωu
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with an absorbing boundary condition−p ·n+u= g onΓ := ∂Ω . As computational
domainΩ ⊂Rd with d = 2,3 a Lipschitz polyhedron is considered. Furthermore,n
denotes the outer normal vector, the angular frequencyω is a positive constant and
g ∈ L2(Γ ). Note that [12] guarantees a unique solution.

In this paper we make use of the following notations. ByT a triangulation with
the elementsT is denoted. The set of its facetsF we call F , nF represents the
normal vector onto a facetF , andnT is the outer normal vector of an elementT .
Furthermore volume integrals are denoted by

(

u,v
)

T :=
∫

T uv̄ dx and surface inte-
grals by

〈

u,v
〉

∂T :=
∫

∂T uv̄ ds.
In order to obtain efficient solvers for the Helmholtz equation, we consider it

in a mixed hybrid form. Thus, we search for(u,p,uF , pF) ∈ L2(Ω)×H(div,T )×
L2(F )×L2(F ) =: U ×V ×UF ×VF such that for all(v,q,vF ,qF) ∈U ×V ×UF ×
VF

∑
T∈T

(

(

iωu,v
)

T −
(

divp,v
)

T −
(

u,divq
)

T −
(

iωp,q
)

T +
〈

uF ,nT ·q
〉

∂T (1)

+
〈

nT ·p,vF
〉

∂T +
〈

nF ·p− pF ,nF ·q− qF
〉

∂T

)

−
〈

uF ,vF
〉

Γ =−
〈

g,vF
〉

Γ .

This mixed hybrid formulation was introduced and discussedin [13]. In the formu-
lation the spaceH(div,T ) represents an element wiseH(div) space without conti-
nuity constraints across element interfaces, andL2(F ) is the space ofL2 functions
on the facets. ConsequentlyuF and pF are supported just on the facets, and they
represent the values ofu andp · nF there. The problem is discretized by the finite
dimensional spaces

Uh := ∏
T∈T

Pk(T ), Vh := ∏
T∈T

RTk(T ),

UFh := ∏
F∈F

Pk(F), VFh :=UFh,

where polynomials of orderk are denoted asPk andRTk represents a Raviart-Thomas
element of orderk. The discrete solutions we calluh, ph, uFh andvFh, respectively.

Since there is no global coupling for the functionsuh andph across different el-
ements, the corresponding DoFs can be eliminated cheaply onthe element level via
static condensation [1]. Note that this elimination corresponds on each element to
the solution of a wave type problem with Robin boundary conditions, and unique-
ness is guaranteed. The resulting linear system of equations needs now to be solved
only for the facet DoFs.

Remark 1. The original form of equation (1) in [13] contains a penalty parameterη ,
which was chosen to be one in our work. For this choice the local problem on the
element, which needs to be solved during static condensation, corresponds to the
original problem posed on the domain withg =±pF +uF . The sign depends on the
direction of the facet normalnF . Thus,g represents now the incoming impedance
trace for the element.
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In this work domain decomposition preconditioners will be used to solve the re-
duced linear system of equations for the facet unknownsuFh andpFh, which is ob-
tained by eliminating the volume unknownsuh andph. Note that this linear system
of equations is related to the skeleton of a mesh, and a domaindecomposition of the
skeleton is induced by a decomposition of the underlying mesh. Since impedance
traces are obtained from the facet unknowns by a simple transformation of vari-
ables, transmission conditions on the interface in the sense of [2] can be enforced
by guaranteeing the same value of the facet unknowns of different subdomains on
the subdomain interface. Thus the mixed hybrid formulationallows in a natural way
for appropriate transmission conditions for domain decomposition preconditioners.

3 The BDDC preconditioner for the mixed hybrid formulation

In this section, we adapt the BDDC preconditioner introduced by Dohrmann in [3]
(compare also [11]) to wave type problems. Therefore a stabilization term has to be
added to the mixed hybrid formulation, more precisely, the term

∑
T∈T

γ
(

〈

(nT ·nF)pF ,vF
〉

∂T\Γ +
〈

uF ,(nT ·nF)qF
〉

∂T\Γ

)

, γ ∈ C (2)

is added to (1). The parameterγ ∈ C is a tuning parameter, we choose based on
numerical experiments. For the Helmholtz and the vector valued wave equation we
made good experience withγ = −0.5−0.1i. These additional terms are just added
for inner facets, and because of the different sign ofnT ·nF for the two neighboring
elements, they cancel out when the global system of equations is assembled. Thus
the problem does not change. But for domain decomposition preconditioners, which
are based on submatrices assembled just for a subdomain the situation changes.
These additional terms do not cancel out in the submatrices for DoFs located on the
interface to other subdomains.

We use a BDDC preconditioner for this modified facet problem.The computa-
tional domain is divided into subdomains, and the DoFs on facets which just belong
to one subdomain are considered to be primal, as well as the low order DoFs on
interface facets. The high order DoFs on interface facets are the dual ones.

This choice leads to a large global system for the primal DoFs. Note that this
system of equations consists due to the missing high order unknowns at the interface
of weakly coupled subdomain blocks. Therefore it can be solved rather efficiently
by direct solvers on parallel computing platforms.
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4 A Robin type domain decomposition preconditioner

Like the BDDC preconditioner, the new Robin type domain decomposition (RDD)
preconditioner will be applied to the skeleton problem, including the stabilizing
terms (2) with the same value forγ.

Before describing the preconditioner, some notations are required. We assume,
that the computational domain is divided intoN subdomainsΩi. For each subdo-
main a matrixAi representing the subdomain problem is subassembled, and the
global matrixA of the linear system of equations is obtained by adding thesesubma-
trices. ByÃi we denote the block ofAi which corresponds to DoFs on inner facets,
i.e. facets which just belong to the domainΩi. The matrixR(i) restricts a vector to
the components corresponding to these inner DoFs of the domain Ωi. The matrix

R(i)
D provides a weighted restriction to the domainΩi, i.e. when applying it, a vector

entry is divided by the number of subdomains to which the corresponding DoFs be-

longs to. Note that an application of the prolongation matrix R(i)⊤
D results again in a

division for the interface DoFs. Thus, by summing up over allsubdomains, a mean
value on the interface can be created.

Using this notations, a RDD step for findingx̃ := C−1
RDDb with b as right hand

side of the linear system of equations andCRDD as the preconditioner reads as

1) y0 = 0,
2) y1 = y0+∑N

i=1 R(i)⊤Ã−1
i R(i)(b−Ay0),

3) y2 = y1+∑N
i=1 R(i)⊤

D A−1
i R(i)

D (b−Ay1),

4) x̃ = y2+∑N
i=1 R(i)⊤Ã−1

i R(i)(b−Ay2).

In step 2, the system of equations is solved exactly for the DoFs on the inner
facets under the constraint that the solution on the interface is zero. Step 3 provides
an update for the interface solution by partitioning the actual residual among the
subdomains and solving the problem there exactly. A continuous interface solution
is constructed by averaging the different subdomain solutions. Finally, in step 4 the
solution is updated by solving the system of equations exactly for the DoFs on inner
facets. Note that the interface solution remains unchanged.

The RDD-preconditioner can also be introduced in the variational projector no-
tation. Therefore, we denote the bilinear form representing the Schur complement
system, which is defined on the facet spaceW := UFh ×VFh by a. Additionally, it
is assumed that the bilinear forma can be decomposed into its subdomain contri-
butionsai, i.e. a = ∑N

i=1 ai. The subspace ofW containing the functions which are
supported on the subdomainΩi is denoted byWi, and inW̃i functions supported
only on inner facets of the domainΩi are collected. The operator representation of

the restriction matrixR(i)
D is calledR

(i)
D : W → Wi. Thus, when applying it to any

function inW , the function is restricted to the domainΩi, and its values on the in-
terface facets are divided by the number of neighboring subdomains. Furthermore,
R(i) : W → W̃i is the restriction operator corresponding to the matrixR(i), and by
R(i)⊤ the prolongation operators are denoted.



Hybrid Domain Decomposition Solvers for the Helmholtz Equation 5

Based on this, we define the variational projectorP
(i)
D via P

(i)
D = R

(i)⊤
D P̂

(i)
D

with the projectorP̂(i)
D : W →Wi and

ai(P̂
(i)
D u,φ) = a(u,R(i)⊤

D φ) ∀φ ∈Wi.

In the same way the variational projectorP(i) with P(i) = R(i)⊤P̂(i) can be intro-
duced. Here,P̂(i) : W → W̃i is given via

ai(P̂
(i)u,φ) = a(u,R(i)⊤φ) ∀φ ∈ W̃i.

If the operatorA corresponds to the bilinear forma, andI is the identity, the error
propagation operatorE of the RDD-preconditioner reads as

E = I −C
−1
RDDA =

(

I −
N

∑
i=1

P
(i)
)(

I −
N

∑
i=1

P
(i)
D

)(

I −
N

∑
i=1

P
(i)
)

.

Remark 2. Because the system of equations is always solved exact for the DoFs on
inner facets, both sets of facet DoFsuFh andpFh are not needed anymore, and the
problem can be formulated just by usinguFh. On the interface, both types of un-
knowns are still necessary in order to fix continuity conditions of the impedance
traces across the interface and to guarantee convergence ofthe iterative solver. Nev-
ertheless, neglecting one type of facet unknowns on inner facets saves many DoFs
in an actual calculation.

5 Numerical Results

For all numerical examples which are presented in this section, we made good ex-
perience by taking a CG-solver, although, there exists no convergence theory for
complex symmetric problems. We start the numerical resultssection by compar-
ing the preconditioners for a simple two dimensional model problem. There, the
Helmholtz equation is solved on a squareΩ = [−1,1]2 with an incoming wave from
above of Gaussian amplitude, fixed by the absorbing boundarycondition. The com-
putations were done with the MPI-parallel finite element code Netgen/Ngsolve (see
http://sourceforge.net/projects/ngsolve or [14]), which contains the software pack-
age Metis for partitioning the domain. If not said differently, a Dell R-910 Server (4
Xeon E7 CPUs with 10 cores a 2.2 GHz, 512 GB RAM) was used.

In Table 1 the iteration numbers for the BDDC and the RDD preconditioner for
different wavelengthsλ := 2π

ω and mesh sizesh are given. For all computations the
polynomial order was kept constant to four, and nine subdomains were used for the
preconditioners.

According to the table, the BDDC preconditioner shows the highest iteration
numbers close to the resolution limit ath ≈ λ , which corresponds for a polynomial
order ofp= 4 to about four unknowns per wavelength. When increasing thenumber
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Table 1 Iteration numbers of the BDDC/RDD preconditioner using 9 subdomains (p = 4) for
different mesh sizes and wavelengthλ .

λ 1 1
2

1
4

1
8

1
16

1
32

1
64

h = 1
4 45/78 49/65 60/61

h = 1
8 51/95 48/84 56/71 73/70

h = 1
16 56/123 50/96 49/83 59/73 80/72

h = 1
32 63/154 57/125 48/101 49/84 65/74 85/74

h = 1
64 66/202 62/164 56/127 50/111 50/89 74/82 101/89

of unknowns per wavelength, either by decreasing the mesh size or by increasing
the wavelength, the number of iterations stays constant or grows slightly. For the
RDD preconditioner the situation is vice versa. Although, for a large wavelength
and a small mesh size the RDD preconditioner needs much more iterations than the
BDDC preconditioner, it gets more and more competitive if the number of degrees
of freedom per wavelength is reduced. Considering, that theRDD preconditioner
is faster than the BDDC preconditioner with respect to setup-time and time per
iteration, it is the method of choice for discretizations close to the resolution limit
of the wave.

One reason for this behavior could be the different structure of the two solvers.
While the RDD preconditioner allows just for local corrections, the BDDC solver
benefits additionally from a coarse grid solution. For a decreasing wavelength, the
solution gets more and more oscillatory, and the coarse gridcorrection, which pro-
vides communication across the whole subdomain loses its importance.

The number of iterations of the BDDC and the RDD preconditioner is also in-
fluenced by the size of the subdomains the computational domain is divided into.
In Figure 1 iteration numbers of these two preconditioners are plotted for differ-
ent wavelengths against the subdomain sizeH, both in logarithmic scale. Note that
the partitioning of the domain was done by Metis, and therefore, H represents an
average subdomain size. In the corresponding experiments the mesh size was kept
constant to 1

64 and the polynomial order to four. For the RDD preconditionerthe
number of iterations decreases with an increasing subdomain size. Figure 1 indi-
cates that this decrease is proportional toH−α . According our experimental data
α was estimated to be approximately 0.65. The situation is slightly different for
the BDDC preconditioner. While it shows the same features for small wavelengths,
i.e. for settings close to the resolution limit, the iterations stay almost constant for
large wavelengths. A reason for this is, that for less oscillatory solutions the BDDC
preconditioner benefits from its coarse grid correction.

Finally, we want to demonstrate the efficiency of our preconditioners with a three
dimensional large scale example. The computational results presented in the follow-
ing have been achieved using the Vienna Scientific Cluster 2 (VSC2). In this exam-
ple, the solution of the Helmholtz equation for a grating (compare Figure 2) with pe-
riod 0.14 was computed. The diameter of the computational domain was two. Thus,
assuming a wave incoming from the top with Gaussian amplitude and wavelength
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Fig. 1 Number of iterations plotted versus the size of one subdomain H for the BDDC and the
RDD preconditioner. The polynomial order was 4 andh = 1

64.

Fig. 2 Real part of the solution (left) and its absolute value (right) for a wave diffracted at a grating.

0.025 corresponds to an effective domain size of 80 wavelengths. For this setting,
the left hand plot in Figure 2 shows the real part of the solution, and the absolute
value is plotted on in the righthand plot. In the calculation, the underlying mesh had
about 1.61 million elements with a maximal mesh size of 0.021. Selecting a polyno-
mial order ofp = 4 results in approximately 288.8 million volume unknowns (56.5
M. for u and 232.3 M. forp) and 98.0 million facet unknowns (49.0 M. foruF and
pF ). Using 1200 subdomains, the assembly of the matrix took 58 seconds and the
setup of the RDD preconditioner 33 seconds. The problem was solved in 12.9 min-
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utes with 399 iterations on 1200 processors. Recovering thevolume DoFsuh andph

from the facet DoFsuFh andpFh took 53 seconds.
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