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1 Introduction

When solving the Helmholtz equation with standard finiteredats, the oscillatory
behavior of the solution results in a large number of degoé&®edom (DoFs) re-
quired to resolve the wave, especially for high wave numbeng together with
the indefiniteness of the problem makes an iterative salutiothe resulting lin-
ear system of equations difficult. Nevertheless, some ambgfor finding efficient
preconditioners for wave type problems have been made ttgceévell known is
the shifted Laplace Preconditioner [5], or a sweeping prditaner [4] based on
an approximate blockDL" factorization, which is constructed layer by layer. Es-
pecially for parallel computing platforms domain deconipos methods are very
popular. Apart from optimized Schwarz methods [8], i.e. \8atz methods which
rely on optimal transmission conditions as interface cthowlj the FETI-H [7] and
the FETI-DPH [6] method are widely used. The last two metteaasbe seen as fur-
ther developments of the FETI and the FETI-DP methods, ctispdy, specialized
for Helmholtz problems.

The solution strategies presented in this work are basedmixed hybrid dis-
continuous galerkin formulation [13, 10] Since the hybodmfulation provides ap-
propriate interface conditions an efficient iterative sioluwith Krylov space meth-
ods combined with domain decomposition preconditionepoissible. Apart from
adapting a BDDC preconditioner [3, 11] to the current sgttim new Robin type
domain decomposition preconditioner is constructed. pheésonditioner solves in
each iteration step local problems on subdomains by dyr@oterting the subdo-
main matrix. Thus, it is well suited for parallel computatio Good convergence
properties of both preconditioners are demonstrated byenigal experiments. The
results of this paper will be presented in more detail in [9].

2 The Mixed Hybrid Discontinuous Galerkin Formulation

Our formulation is based on the mixed form of the Helmholtzattpn: Find a scalar
functionu : Q — C and a vector valued functign: Q — C¢

gradu = iwp and divp =iwu
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with an absorbing boundary conditierp-n+u=gon/l :=0dQ. As computational
domainQ ¢ RY with d = 2,3 a Lipschitz polyhedron is considered. Furthermare,
denotes the outer normal vector, the angular frequenisya positive constant and
g € L%(I"). Note that [12] guarantees a unique solution.

In this paper we make use of the following notations..Bya triangulation with
the elementd is denoted. The set of its faceiswe call .#, ng represents the
normal vector onto a facét, andnt is the outer normal vector of an elemént
Furthermore volume integrals are denoted(byv)T := Jruvdx and surface inte-
grals by(u,v) ;; := [y uvds.

In order to obtain efficient solvers for the Helmholtz eqoafiwe consider it
in a mixed hybrid form. Thus, we search far,p,ug, pe) € L2(Q) x H(div,.7) x
L?(Z) x L?(F) =:U xV x Ug x Vg such that for al{v,q, Ve, e ) € U x V x Ug x
N

((iouu,v)T — (divp,v); — (u,divg); — (iwp,q) + (Ur,NT - Q) 51 (1)
TeT

(T PVE gy (ME P = PELE A= GF ) 7 ) — (UF Ve ) = —(G.VE )

This mixed hybrid formulation was introduced and discussgd3]. In the formu-
lation the spacé (div, .7") represents an element wiskdiv) space without conti-
nuity constraints across element interfaces, lat(d%) is the space of? functions

on the facets. Consequently and pr are supported just on the facets, and they
represent the values aofandp - ng there. The problem is discretized by the finite
dimensional spaces

Uni= []A(T). Vo= [ RTT).

TeT TeT
Uen == [ R(F) Veh := Ugh,
FeF

where polynomials of orddrare denoted a8 andRTy represents a Raviart-Thomas
element of ordek. The discrete solutions we cal}, pn, Urh andvgy, respectively.

Since there is no global coupling for the functiansandpy, across different el-
ements, the corresponding DoFs can be eliminated cheapheagiement level via
static condensation [1]. Note that this elimination copa®ds on each element to
the solution of a wave type problem with Robin boundary ctiads, and unique-
ness is guaranteed. The resulting linear system of equsatieads now to be solved
only for the facet DoFs.

Remark 1. The original form of equation (1) in [13] contains a penaléygameten,
which was chosen to be one in our work. For this choice the jpablem on the
element, which needs to be solved during static condemsat@responds to the
original problem posed on the domain wgh= + pr + ug. The sign depends on the
direction of the facet normaidg. Thus,g represents now the incoming impedance
trace for the element.
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In this work domain decomposition preconditioners will ls=d to solve the re-
duced linear system of equations for the facet unknawpsand pgp, which is ob-
tained by eliminating the volume unknowagandpy. Note that this linear system
of equations is related to the skeleton of a mesh, and a dateammposition of the
skeleton is induced by a decomposition of the underlyingrm&ince impedance
traces are obtained from the facet unknowns by a simpleftranation of vari-
ables, transmission conditions on the interface in theeseh§2] can be enforced
by guaranteeing the same value of the facet unknowns ofreiffesubdomains on
the subdomain interface. Thus the mixed hybrid formulagibows in a natural way
for appropriate transmission conditions for domain decasitfipn preconditioners.

3 The BDDC preconditioner for the mixed hybrid formulation

In this section, we adapt the BDDC preconditioner introdlieg Dohrmann in [3]
(compare also [11]) to wave type problems. Therefore alstabon term has to be
added to the mixed hybrid formulation, more precisely, grent

ngy(«nT'nF)vaVF%T\r +(ur, (n7 'nF)QF>aT\r)7 yeC (2

is added to (1). The parametgr= C is a tuning parameter, we choose based on
numerical experiments. For the Helmholtz and the vectaralvave equation we
made good experience with= —0.5— 0.1i. These additional terms are just added
for inner facets, and because of the different sign-ofng for the two neighboring
elements, they cancel out when the global system of equsaisomssembled. Thus
the problem does not change. But for domain decompositiecgoditioners, which
are based on submatrices assembled just for a subdomaiitihtos changes.
These additional terms do not cancel out in the submatrard3dFs located on the
interface to other subdomains.

We use a BDDC preconditioner for this modified facet probl&ime computa-
tional domain is divided into subdomains, and the DoFs oatfawhich just belong
to one subdomain are considered to be primal, as well as th@ider DoFs on
interface facets. The high order DoFs on interface facetshe dual ones.

This choice leads to a large global system for the primal DdFege that this
system of equations consists due to the missing high orderaywns at the interface
of weakly coupled subdomain blocks. Therefore it can beexbhather efficiently
by direct solvers on parallel computing platforms.
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4 A Robin type domain decomposition preconditioner

Like the BDDC preconditioner, the new Robin type domain deposition (RDD)
preconditioner will be applied to the skeleton problemJuding the stabilizing
terms (2) with the same value fgr

Before describing the preconditioner, some notations egeaired. We assume,
that the computational domain is divided iftbsubdomaing?;. For each subdo-
main a matrixA; representing the subdomain problem is subassembled, and th
global matrixA of the linear system of equations is obtained by adding thesma-
trices. ByA; we denote the block o& which corresponds to DoFs on inner facets,
i.e. facets which just belong to the doma®. The matrixR() restricts a vector to
the components corresponding to these inner DoFs of the idaf@aThe matrix
R,(D') provides a weighted restriction to the dom&lp i.e. when applying it, a vector
entry is divided by the number of subdomains to which theexgonding DoFs be-
longs to. Note that an application of the prolongation ma%?ﬂ” results again in a
division for the interface DoFs. Thus, by summing up ovesaliddomains, a mean
value on the interface can be created.

Using this notations, a RDD step for findiig= Cg3pb with b as right hand
side of the linear system of equations &gp as the preconditioner reads as

1) Yo =0, o

2)  yi=yo+ 3 RUTATIRY (b~ Ayo),
3 Ya=yitdiy .(I)TNAiilR.l()I) (b—Ay1),
4) =y + 3N, ROTAIRO (b — Ay,).

In step 2, the system of equations is solved exactly for theEdDan the inner
facets under the constraint that the solution on the interf&zero. Step 3 provides
an update for the interface solution by partitioning theuattesidual among the
subdomains and solving the problem there exactly. A contisunterface solution
is constructed by averaging the different subdomain samistiFinally, in step 4 the
solution is updated by solving the system of equations &x&mtthe DoFs on inner
facets. Note that the interface solution remains unchanged

The RDD-preconditioner can also be introduced in the viarnal projector no-
tation. Therefore, we denote the bilinear form represeritie Schur complement
system, which is defined on the facet spd¢e= Ug, x Vg, by a. Additionally, it
is assumed that the bilinear forancan be decomposed into its subdomain contri-
butionsa;, i.e.a= SN ;a. The subspace & containing the functions which are
supported on the subdomai® is denoted by\{, and inW functions supported
only on inner facets of the domaip; are collected. The operator representation of
the restriction matri>R'(3') is called%’g) : W — W. Thus, when applying it to any
function inW, the function is restricted to the domaih, and its values on the in-
terface facets are divided by the number of neighboring smiadns. Furthermore,
2 W — W is the restriction operator corresponding to the ma&ix, and by
Z17 the prolongation operators are denoted.
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Based on this, we define the variational proje(ﬁg) via 3”8) = @8”9?9

with the projectorZ)) : W — W and
a(Ppu0) =auzy) ) voew.

In the same way the variational projectat!) with 22() = ()T (1) can be intro-
duced. Herez() : W — W is given via

a(2Vu,0) =au,2Vg)  vVoeW.

If the operatore corresponds to the bilinear forapand.7 is the identity, the error
propagation operatef of the RDD-preconditioner reads as

=9 —Gegpdt = (7 - ii@@) (7~ ii@@) (7~ ii@@).

Remark 2. Because the system of equations is always solved exactdddalrs on
inner facets, both sets of facet Dots, and pry are not needed anymore, and the
problem can be formulated just by usiog,. On the interface, both types of un-
knowns are still necessary in order to fix continuity coruis of the impedance
traces across the interface and to guarantee convergetieeitdrative solver. Nev-
ertheless, neglecting one type of facet unknowns on inreet$esaves many DoFs
in an actual calculation.

5 Numerical Results

For all numerical examples which are presented in thissectie made good ex-
perience by taking a CG-solver, although, there exists mvegence theory for
complex symmetric problems. We start the numerical regdtgion by compar-
ing the preconditioners for a simple two dimensional modebfem. There, the
Helmholtz equation is solved on a squ&e-= [—1, 1] with an incoming wave from
above of Gaussian amplitude, fixed by the absorbing bouratargition. The com-
putations were done with the MPI-parallel finite elementebiétgen/Ngsolve (see
http: //sourceforge.net/projects/ngsolve or [14]), which contains the software pack-
age Metis for partitioning the domain. If not said differgna Dell R-910 Server (4
Xeon E7 CPUs with 10 cores a 2.2 GHz, 512 GB RAM) was used.

In Table 1 the iteration numbers for the BDDC and the RDD pnélitioner for
different wavelengthg = %" and mesh sizes are given. For all computations the
polynomial order was kept constant to four, and nine subdusnaere used for the
preconditioners.

According to the table, the BDDC preconditioner shows thghast iteration
numbers close to the resolution limitkats A, which corresponds for a polynomial
order ofp = 4 to about four unknowns per wavelength. When increasingtingber
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Table 1 Iteration numbers of the BDDC/RDD preconditioner using 8damains p = 4) for
different mesh sizes and wavelength

A 5 i 8 6 »
h=21 45/78 49/65 60/61

h:% 51/95 48/84 56/71 73/70

h=. 56/123 50/96 49/83 59/73 80/72

h:si2 63/154 57/125 48/101 49/84 65/74 85/74

h=4 66/202 62/164 56/127 50/111 50/89 74/82 101/89

of unknowns per wavelength, either by decreasing the meghasiby increasing
the wavelength, the number of iterations stays constantawgyslightly. For the

RDD preconditioner the situation is vice versa. Althougdr, & large wavelength
and a small mesh size the RDD preconditioner needs much tecagons than the
BDDC preconditioner, it gets more and more competitive & ttumber of degrees
of freedom per wavelength is reduced. Considering, thaRib® preconditioner

is faster than the BDDC preconditioner with respect to s¢itme and time per

iteration, it is the method of choice for discretizationssd to the resolution limit
of the wave.

One reason for this behavior could be the different strgctiirthe two solvers.
While the RDD preconditioner allows just for local corrects, the BDDC solver
benefits additionally from a coarse grid solution. For a dasing wavelength, the
solution gets more and more oscillatory, and the coarsecgricction, which pro-
vides communication across the whole subdomain loses fisritance.

The number of iterations of the BDDC and the RDD precondéias also in-
fluenced by the size of the subdomains the computational moimaivided into.
In Figure 1 iteration numbers of these two preconditioneespdotted for differ-
ent wavelengths against the subdomain siz&doth in logarithmic scale. Note that
the partitioning of the domain was done by Metis, and theeefd represents an
average subdomain size. In the corresponding experimeainésh size was kept
constant toei4 and the polynomial order to four. For the RDD preconditiottner
number of iterations decreases with an increasing subdosiee. Figure 1 indi-
cates that this decrease is proportionaHto?. According our experimental data
o was estimated to be approximately 0.65. The situation gh#li different for
the BDDC preconditioner. While it shows the same featuresiweall wavelengths,
i.e. for settings close to the resolution limit, the iteoat stay almost constant for
large wavelengths. A reason for this is, that for less aaaitly solutions the BDDC
preconditioner benefits from its coarse grid correction.

Finally, we want to demonstrate the efficiency of our preétomaers with a three
dimensional large scale example. The computational ieptdsented in the follow-
ing have been achieved using the Vienna Scientific Clust®iSZ@). In this exam-
ple, the solution of the Helmholtz equation for a gratingiigare Figure 2) with pe-
riod 0.14 was computed. The diameter of the computationaladio was two. Thus,
assuming a wave incoming from the top with Gaussian amgitutt wavelength
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Fig. 1 Number of iterations plotted versus the size of one subdoidaior the BDDC and the
RDD preconditioner. The polynomial order was 4 dngd 6%,.

Fig. 2 Real part of the solution (left) and its absolute value igbr a wave diffracted at a grating.

0.025 corresponds to an effective domain size of 80 wavéhsngor this setting,
the left hand plot in Figure 2 shows the real part of the soiytand the absolute
value is plotted on in the righthand plot. In the calculatithe underlying mesh had
about 1.61 million elements with a maximal mesh size of 0.&2&lecting a polyno-
mial order ofp = 4 results in approximately 288.8 million volume unknown§.&
M. for uand 232.3 M. fop) and 98.0 million facet unknowns (49.0 M. fag and
pr). Using 1200 subdomains, the assembly of the matrix tooke8r&ds and the
setup of the RDD preconditioner 33 seconds. The problem alasdin 12.9 min-
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utes with 399 iterations on 1200 processors. Recoveringdhuene DoFau, andpy,
from the facet DoFsirn, and pgh took 53 seconds.
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