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1 Introduction

Consider a two-dimensional domain Ω , and the boundary value problem

L u :=−div(ν(x)∇u)+ div(b(x)u)+η(x)u = f , (1)

with homogeneous boundary condition u = 0 on the boundary ∂Ω . The Ventcell-

Schwarz iterative method has been introduced in [9] for the resolution of (1) in

parallel. A nonoverlapping decomposition of Ω into two subdomains Ω j is given,

with common boundary Γ . The algorithm defines a sequence of solutions un
j of

equation (1) in Ω j, related by two transmission conditions, for (i, j) = (1,2) or

(2,1):

(ν∂n j
−

1

2
b ·n j +Λ)un

j = (−ν∂ni
+

1

2
b ·ni +Λ)un−1

i on Γ .

The boundary operator Λ involves second order derivatives along the boundary. In

the case where Γ is a vertical line, it can be written as Λφ = pφ − q∂y(ν∂yφ), with

two real parameters p and q to be chosen adequately. By Lax-Milgram theorem, if

ν ≥ ν0 > 0 and η + 1
2
div(b)> 0, the well-posedness of the boundary value problem

is ensured as soon as p and q are positive. If q = 0, Λ reduces to Robin operator,

first used in [10]. Numerical evidences with a finite element scheme were given in

[9] that these transmission conditions outperform significantly the Robin-Schwarz

algorithm . Further analysis has been conducted in [5] in a model case, where the

coefficients p and q were obtained by optimization of the convergence factor of the

algorithm, defined for two half planes, in the Fourier variables. Asymptotic values

in terms of the discretization parameters were given (see Section 4).

The discrete counterpart of the algorithm in the Robin case q = 0 has been an-

alyzed first in [1] and extended in [3] and [2] in the finite volume framework. For

an analysis in the finite element context see [6]. The study of the Ventcell case

(p,q > 0) is, as far as we know, new. The scheme is fully described for the first time

in this paper, and simulations are presented. The error analysis and the proofs of

well-posedness and convergence will appear in an extended paper [7].

The first step, in section 2, is to write a finite volume scheme for the discretization

of the subdomain problem. We use a two point flux approximation for the diffusive

flux and a family of discrete convective fluxes as in [4], specially designed to handle

the boundary condition. The discretisation of the boundary operator appearing in (1)
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is performed. Non conforming meshes on the interface are considered as they can

be useful for local refinement, see [8] for large scale computations.

The discrete Schwarz algorithm is described in section 3. In opposition to the

Robin case, the convective flux on the interface has to be modified to get the con-

vergence towards the approximation of (1) on Ω .

Finally, numerical examples illustrate the properties of the scheme , among which

the improvement of the algorithm over the Robin algorithm.

2 Finite volume discretization for Ventcell transmission

condition

We first introduce the necessary tools for finite volume design in the case of elliptic

equation with mixed boundary conditions, Dirichlet on ΓD ⊂ ∂Ω and possibly Vent-

cell (2) on Γ ⊂ ∂Ω (see [3] for the standard part of the notations).

Admissible Meshes Let Ω be an open polygonal set, M a family of polygonal

control volumes such that Ω̄ = ∪K∈MK, with K ∩ L = /0 if K 6= L. M is an admis-

sible finite volume mesh if there exists a family of points (xK)K∈M that satisfies

(xK,xL) ⊥ σ if σ = ∂ K ∩ ∂ L. If all control volumes K are triangles, the family of

circumcenters of the triangles satisfies this orthogonality condition. The set of all

edges σ of control volumes is denoted by E . It is divided into three sets: the edges

located inside the domain Ω , E int = {σ ∈ E /σ = ∂ K ∩∂ L}, the edges E D located

on an external Dirichlet boundary ΓD, and the edges E Γ located on Γ . Finally, for

any K in M, E K stands for the edges of its boundary ∂ K.

For any σ ∈ E K, nKσ is the outward-pointing unit vector orthogonal to σ ,

dK,σ > 0 the distance from xK to σ , dσ = dK,σ if σ ∈ E D ∪E Γ and dσ = dK,σ +dL,σ

is the distance between xK and xL if σ = ∂ K∩∂ L ∈ E int .

Let |E Γ | be the cardinality of E Γ , the edges of E Γ are reordered as {σi}, with

σi ∩σi+1 reduced to a single point denoted by x
i+ 1

2
. The control volume associated

to σi is denoted by Ki.

For each K ∈M or σ ⊂ Γ , |K| denotes the area of K, and |σ | is the length of σ .

The complete admissible finite volume mesh for the boundary value problem is

T =M∪E Γ . Figure 1 summarizes these notations.

Composite meshes The subdomains Ω j are endowed with admissible meshes T j =

M j ∪E
j
Γ , with two different meshes on Γ . The meshes T1 and T2 are said to be

compatible if they coincide on Γ or equivalently if E
1
Γ = E

2
Γ . We then define E Γ =

E
1
Γ = E

2
Γ . Any non compatible couple of meshes (T1, T2) is made compatible by

redefining the edges on Γ : in the example of Grid # 2 in Fig. 2, #E K = 5 for any

control volume K ∈M1 touching Γ . An edge of E Γ is ∂ K1 ∩∂ K2 with Ki ∈ Ti.

Finally a composite mesh associated to Ω = Ω1 ∪ Ω2 is a quadruplet T =
(M,M1,M2,E Γ ) such that each mesh M j is an admissible mesh for Ω j, M1 and

M2 are compatible, and M= {K ∈M1 ∪M2}.
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Fig. 1 Notations for an admissible mesh

A two-points flux approximation for Ventcell boundary conditions On each

subdomain Ω j, we approximate the problem L u j = f with homogeneous Dirich-

let boundary condition on Γ
j

D = ∂Ω j ∩ ∂Ω , and Ventcell boundary condition on

Γ = ∂Ω1 ∩∂Ω2:

(ν∂n j
−

1

2
b ·n j +Λ)u j = g j. (2)

For sake of clarity, the dependency on the index of the subdomain Ω j will be omitted

in this paragraph.

We introduce two sets uM = (uK)K∈M and uE Γ = (uσ )σ∈E Γ
of unknowns,

one for the control volumes, one for the edges of the boundary E Γ . We define

uT = (uM,uE Γ ). The discrete volume equations will be obtained, first by integrat-

ing the volume equation on a control volume K, second by integrating the boundary

condition on the boundary control cell σi.

Equation on K ∈M

Integrating the equation (1) on the control volume K, we get:

∑
σ∈E K

(

−

∫

σ
ν∇u ·nKσ ds+

∫

σ
b ·nKσ uds

)

+

∫

K

ηudx =

∫

K

f (x)dx.

The volume term
∫

K
ηudx can be approximated by ηKuK with ηK = 1

|K|

∫

K
η . The

total flux in K is the sum on the edges of K of the diffusive fluxes−
∫

σ ν∇u ·nKσ ds

and the convective fluxes
∫

σ b · nKσ uds, that can be approximated respectively by

the discrete fluxes Fd
K,σ , Fc

K,σ to be defined below. Defining the total discrete flux on

the edge σ as FK,σ = Fd
K,σ +Fc

K,σ , the equation on K ∈M can be approximated by

∀K ∈M, ∑
σ∈E K

FK,σ + |K|ηKuK =
∫

K

f (x)dx. (3)
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We use the classical diffusive discrete flux

Fd
K,σ = |σ |νσ

uK − ūσ

dσ
with ūσ =







uL if σ = ∂ K∩∂ L ∈ E int ,
0 if σ ∈ E D,
uσ if σ ∈ E Γ ,

(4)

with νσ = 1
|σ |

∫

σ ν(s)ds or νσ = ν(xσ ), (xσ center of σ ) in the case of regular ν .

We introduce a general discrete convection flux in the form

Fc
K,σ =

1

2
|σ |bKσ (uK + ūσ)+

|σ |νσ

dσ
Bσ

(

dσ bKσ

νσ

)

(uK − ūσ), (5)

where bKσ = 1
|σ |

∫

σ b ·nKσ , and for all edge σ , Bσ is an even Lipschitz continuous

function such that

Bσ (0) = 0, Bσ (s)+ 1 > c > 0 for s 6= 0. (6)

This frame, introduced in [4], includes the centered scheme Bσ (s) := Bc(s) = 0,

the upwind scheme Bσ (s) := Bup(s) = 1
2
|s|, and the Scharfetter-Gummel scheme

Bσ (s) := BSG(s) = 1
2
( s

es−1
− s

e−s−1
)− 1. Each of these approximations can be seen

as a stabilization of the centered scheme. We will take advantage of this flexibility

in the convergence analysis of the algorithm (see Theorem 2).

Equation for σ ∈ E Γ . Integrate the Ventcell boundary condition (2) on the edge

σi ∈ E Γ to obtain

∫

σi

ν∇u ·nKiσi
ds−

1

2

∫

σi

b ·nKiσi
uds+ p

∫

σi

uds+ q [−ν∂yu]
x

i+ 1
2

x
i− 1

2

=

∫

σi

g(s)ds.

Define the discrete 1D flux F
i+ 1

2
as an approximation of −ν ∂u

∂y
(x

i+ 1
2
), given by

F
i+ 1

2
=−ν(x

i+ 1
2
)

uσi+1
− uσi

d(xi+1,xi)
for i = 0, · · · , |E Γ |, (7)

with the convention uσ0
= 0 and uσ|EΓ |+1

= 0. We obtain for all σ ∈ E Γ the equation

−FK,σ +
1

2
bKσ mσ uσ +(Λ EΓ uE Γ )σ =

∫

σ
g(s)ds, (8)

where the discrete boundary operator Λ E Γ is defined by

(Λ E Γ uE Γ )σ = p|σ |uσ − q(F
i+ 1

2
−F

i− 1
2
), for σ = σi. (9)

Properties of the scheme
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By construction Λ E Γ is a symmetric and positive definite matrix. Therefore clas-

sical a priori estimates together with assumptions (6), induce the well-posedness of

the scheme (3)-(8), see [7]. Furthermore, the scheme is of order 1.

3 A discrete Schwarz algorithm for Ventcell transmission

conditions

Discrete Schwarz algorithm Given a composite mesh T = (M,M1,M2,E Γ ), the

discrete Schwarz algorithm consists, with suitable initial data, in finding for all n ≥

1, the solutions uT j ,n = (uM j ,n,uE
j
Γ ,n) of the linear system

∀K ∈M j , ∑
σ∈E K

(FK,σ )
n
j + |K|ηK(uK)

n
j =

∫

K

f (x)dx, (10-a)

∀σ ∈ E Γ ,
−(FK,σ )

n
j +

1

2
|σ |bK j ,σ (uσ )

n
j +(Λ E Γ uE

j
Γ ,n)σ

= (FK,σ )
n−1
i −

1

2
|σ |bKi,σ (uσ )

n−1
i +(Λ E Γ uE

i
Γ ,n−1)σ .

(10-b)

Limit of the discrete Schwarz algorithm Assume that the algorithm (10) con-

verges as n tends to infinity. The limit uT j ,∞ = (uM j ,∞,uE
j
Γ ,∞) is solution of the

scheme

∀K ∈M j, ∑
σ∈E K

(FK,σ )
∞
j + |K|ηK(uK)

∞
j =

∫

K

f (x)dx, (11-a)

∀σ ∈ E Γ ,
−(FK,σ )

∞
j +

1

2
|σ |bK j ,σ (uσ )

∞
j +(Λ E

j
Γ uE Γ ,∞)σ

= (FK,σ )
∞
i −

1

2
|σ |bKi,σ (uσ )

∞
i +(Λ E Γ uE

i
Γ ,∞)σ .

(11-b)

The expected limit However, we expect the convergence towards the classical two

point flux finite volume scheme, associated to the mesh M for the problem (1) on

Ω , which consists in finding uM = (uK)K∈M solution of the discrete problem

∀K ∈M, ∑
σ∈E K

FK,σ + |K|ηKuK =

∫

K

f (x)dx. (12)

If the composite mesh M is non admissible in the neighborhood of Γ (Figure 2

right), the solution uM still approximates the solution u of (1), but with an error of

order size(M)
1
2 only (See [3]).

The solutions of the schemes (12) and (11) can coincide only when the fluxes in

(11) are modified, as stated in the next theorem.
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Theorem 1. Let uM be the solution of (12), with a convective flux in (5) defined by

a function Bσ , satisfying

Bσ (0) = 0, Bσ (s)>−1+
1

2
|s|. (13)

Define for σ ∈ E the functions B̄σ by

B̄σ (s) =

{

Bσ (s) if σ 6∈ E Γ ,
1
2
(1−Bσ(2s))± 1

2

√

(1− s+Bσ(2s))(1+ s+Bσ(2s)) if σ ∈ E Γ .

(14)

Then, for this modified choice of fluxes B̄σ , there exists uT j ,∞ = (uM j ,∞,uE Γ ,∞) for

j = 1,2, solution of (11), and uMK = u
M j

K for K ∈M j.

Proof. Let u
M j ,∞
K = uK for all K ∈M j. First for K such that E K ∩E Γ = /0, equation

(11-a) is nothing but equation (12). However, the construction of the edge unknowns

uE
j
Γ requires some care.

For σ ∈ E Γ , equation (11-b) written for ( j, i) = (1,2) and (2,1) yields

Λ E Γ uE
1
Γ ,∞ = Λ E Γ uE

2
Γ ,∞.

Thus, using the invertibility of Λ E Γ , we obtain that uE
1
Γ ,∞ = uE

2
Γ ,∞ = uE Γ ,∞ and

(FK,σ )
∞
1 =−(FK,σ )

∞
2 . Finally equation (11-a) coincides with equation (12) if

FK,σ = (FK,σ )
∞
1 . (15)

Define dK1σ , dK2σ and s by s =
bK1σ dK1σ

νK1σ
=−

bK2σ dK2σ

νK2σ
=

bK1σ dK1K2
2νσ

. We then have

for j=1,2

(FK,σ )
∞
j =

|σ |νK jσ

dK jσ
(u∞

K j
− u∞

σ )(1+ B̄σ(s))+
1

2
|σ |bK jσ (u

∞
K j
+ u∞

σ ).

Identifying (FK,σ )
∞
1 to −(FK,σ )

∞
2 defines u∞

σ , then (15) is equivalent to

Bσ (2s) = B̄σ (s)+
1

4
s2(1+ B̄σ(s))

−1. (16)

Hence, to express B̄σ (s) in terms of Bσ (s), we solve the equation X2 + (1 −
Bσ (2s))X +

(

1
4
s2 −Bσ (2s)

)

= 0, Under condition (13), there exists a unique so-

lution satisfying B̄σ (0) = 0, which is given in (14).

In this case, any solution of (11) is a solution of (12), which has a unique solution.

⊓⊔

Remark 1. Assumption (13) is satisfied by the upwind scheme, the Scharfetter-

Gummel scheme and the centered scheme if |s| < 1. In the case of the Scharfetter-

Gummel scheme, B̄σ = Bσ .
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Convergence of the Schwarz algorithm

Theorem 2. Let T j be two compatible meshes of Ω j, j = 1,2 and T the associated

composite mesh. With the assumptions in Theorem 1, the solution (uM j ,n) j=1,2 of

the discrete Schwarz algorithm (10) converges to uM solution of (12) as n tends to

infinity.

Hint on the proof. The proof is too long to be developed here, and will appear

in [7]. By Theorem 1 the convergence of the Schwarz algorithm is equivalent to the

convergence to 0 of the solution uT j ,n = (uM j ,n,uE
j
Γ ,n) of (10) when f is identically

zero. That convergence is then obtained by an extension of P.L. Lions trick in [10],

using the fact that Λ E Γ is a symmetric positive definite matrix.

4 Numerical experiments

The domain Ω =]−1,1[×]0,1[ is split into Ω1 =]−1,0[×]0,1[ and Ω2 =]0,1[×]0,1[
with an interface Γ at x = 0. We compare the convergence behaviour of the op-

timized Schwarz algorithm for Robin and Ventcell transmission conditions. Define

the mesh size on the interface, h=min(max(|σ |, σ ∈ E j), j = 1,2). Asymptotically

optimal parameters (for small h) are taken from [5]. They have been determined to

produce the smallest convergence factor over all frequencies supported by the grid.

Robin : p⋆ = h
− 1

2

2

√

2πν(b2
x + 4νη)

1
2 , q⋆ = 0.

Ventcell : p⋆ = h
− 1

4

2

4

√

νπ(b2
x+4νη)

3
2

2
, q∗ =

h
3
4

2

4

√

8ν

π3
(b2

x + 4νη)−
1
2 .

The corresponding theoretical convergence factor of the algorithm (i.e. the factor of

reduction of the L2 norm of the error in one iteration) is

Robin : 1−O(h
1
2 ), Ventcell : 1−O(h

1
4 ),

showing an improvement from Robin to Ventcell, since it is less dependent of the

size of the mesh.

We choose ν = 0.1, b = (1,1)t , η = 1. The source f is such that the exact solu-

tion of (1) is u(x,y) = sin(3πx)sin(3πy). The Scharfetter-Gummel scheme is used

for all edges. The algorithm is initialized with random data (uM j ,0) j=1,2. We illus-

trate our results on two families of grids presented in Figure 2, one is conforming

(Grid # 1), the other non conforming (Grid # 2) at the interface Γ . We draw the con-

vergence history for increasing mesh refinement, given by i = 3,4,5,6. We stopped

the algorithm as soon as
(

∑ j=1,2 ‖uM j ,n+1 −uM j ,n‖2
L2(Ω j)

) 1
2
≤ 10−7. We can see

the drastic improvement obtained by using the second order transmission condition,

for which the convergence lines seem almost independent of h. The numerical con-
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Fig. 2 (Left) A 6 ∗ 2i × 6 ∗ 2i square grid on both Ω1 and Ω2. (Right) A 4 ∗ 2i × 4 ∗ 2i grid on Ω1

and a 8 ∗ 2i × 8 ∗ 2i grid on Ω2. Robin vs Ventcell. L2 norm error w.r.t. iterations for increasing

mesh refinements.

vergence factor behaves in 1−O(hα) with α = 0.43 for Robin-Grid # 1, α = 0.44

for Robin-Grid # 2, α = 0.17 for Ventcell-Grid # 1, α = 0.19 for Ventcell-Grid # 2.
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