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Abstract Domain decomposition methods for the Stokes problem areldegd
under a more general framework, which allows both contiistemd discontinuous
pressure functions and more flexibility in the constructibthe coarse problem. For
the case of discontinuous pressure functions, a coarséepnoblated to only primal
velocity unknowns is shown to give scalability in both duabgrimal types of
domain decomposition methods. The two formulations argvatio have the same
extreme eigenvalues and the ratio of the two extreme eidigewaveakly depends
on the local problem size. This property results in a goodabdéty in both the
primal and dual formulations for the case with discontiru@uessure functions.
The primal formulation can also be applied to the case withtinaous pressure
functions and various numerical experiments are carrigdmpresent promising
features of our approach.
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1 Introduction

We consider the following incompressible Stokes probleimd Fu, p) € [H3(Q)]9 x
L3(Q) such that
—Au+0p =T,
O-u=0, (1)

wheref € [L?(Q)]9 andd is the dimension of the problem doma i.e.,d = 2 or
3. The domaim? is assumed to be polygonal/polyhedral. The spﬂ&:@(z) is the
set of square integrable functions up to first weak derieativith zero trace on the
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boundary ofQ andLS(Q) is the set of square integrable functions with zero average
over the domai.

To find an approximate solution, a pair of inf-sup stable érdtement spaces,
(V,Py), is introduced such that c [H3(Q)]¢ andPy C L3(Q). In this work, we
assume that functions in the velocity spatere continuous. On the other hand,
we can choos§0 as discontinuous functions or as continuous functionssscet
ement boundaries. A general framework of domain decomipasdgorithms will
be considered for both cases of pressure functions.

There have been considerable researches on domain dedbompoethods for
the Stokes problem. Algorithms based on iterative substringy methods have been
developed in Marini and Quarteroni [15], Bramble and Pasfi$ Ronquist [17],
and Le Tallec and Patra [10]. Balancing Neumann-Neumarorighgns were stud-
ied by Pavarino and Widlund [16] and Goldfeld [5]. Later FEOWP and BDDC
methods were developed in the works by Li [11] and by Li and Iwid [13].
What's common in all these previous studies is that the indefStokes problem
is reduced to a positive definite system using the benignpsudesapproach. The
benign subspace approach requires a compatibility camditf the velocity on the
subdomain boundary as well as some primal pressure unkn@manspared to el-
liptic problems, nonoverlapping domain decompositioroathms for the Stokes
problem needed careful and quite complicated constructitime coarse problem.

In recent works, more advanced algorithms were developedidoess smaller
and more practical coarse problems. In the works by Kim, laee, Park [8, 7],
a coarse problem with only primal velocity unknowns was &gpto the Stokes
problem with a scalable condition number bound for both dunal primal forms
of domain decomposition methods. In that approach a lumpedopditioner is
employed. In the work by Sistek et. al. [18], extensive nuoaexperiments were
carried out for the primal form of the Stokes problem with thomous pressure finite
element functions. Similarly to [8, 7], only primal velogiinknowns are employed
in their approaches. The dual form was further extendedd@dmtinuous pressure
functions with a scalable condition number bound in the wayru and Li [12].

In the following, we introduce a general framework of domdéctomposition
methods for the Stokes problem and present both primal aadddumain decom-
position algorithms along with estimate of their conditmmmbers. Throughout the
paperC is a generic positive constant independent of any mesh gdessand the
number of subdomains.

2 Domain decomposition algorithms

We consider the pair of finite element spa¢@sh). Before we proceed the con-
struction of domain decomposition algorithms, we relaxdherage free condition
on the pressure functions and consider the PaiP), where the pressure functions
in P are not necessarily average-free over the domiBy relaxing the average-
free condition on the pressure functions, the function® iare fully decoupled
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across element boundaries when discontinuous pressucidios are considered.
For that case, we thus have no global pressure componerabeibime null compo-
nent on the resulting algebraic system.

We introduce a non-overlapping subdomain partit{@ } and decompose the

function spaces into
N N
V= |_|Vi, P= |_|PI7
i= =

whereV; andP are restrictions oY andP into Q;, respectively. We note that when
the pressure functions iR are discontinuou® is identical toP. In the following,
we assume that the pressure function® @re discontinuous and we later consider
the case of continuous pressure functions.

2.1 Dual formulation

In this subsection, we will present dual formulation of thek&s problem follow-
ing FETI-DP methods [3, 4] After we decouple the function¥ijnwe select some
primal unknowns among the velocity unknowns on the subdorbaundary and
enforce strong continuity on them. We use the notatigrfor the primal unknowns
and use the notatiom, for the remaining decoupled unknowns on the subdomain
interface. We calli, dual unknowns. We denote hy the velocity unknowns inte-
rior to each subdomains. We denote the subspaces with umewgwu,, andup
by Vi, Va, andVp, respectively and denote the subspace with unkndwnga, ur )
by V, which has velocity unknowns that are partially coupledasithe subdomain
interfaces. In the dual formulation, continuity on the dgaled dual unknowns,
is enforced weakly using Lagrange multiplidrend the following algebraic system
will be solved:

Find (uj,ua, p,um,A) € (M,Va,Vr,P,A) such that

Ki Kia B Kp 0 u fi
K|TA Kaa BZ Kan J-Ar ua fA
B B 0 By O p|=1]10 (2)
K’y K Bf Knm 0O up fn
0 Jbh 0O 0 O A 0

HereA is the space of Lagrange multiplieksandJ, is the Boolean matrix which
implements weak continuity on the dual velocity unknowns In the above alge-
braic system, the unknowitg;,ux, p) are fully decoupled across subdomain inter-
faces and can be eliminated by solving local Stokes probsardshe unknownsp
then can be eliminated by solving a global coarse problerterAhe elimination
process, we obtain the resulting equatiormon

FaA =d. 3)
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Here we stress that our formulation uses only primal veyaaitknowns in contrast
to the previous approaches[11, 13] which required bothoigiand pressure primal
unknowns satisfying a certain inf-sup stability.

The matrixFy is symmetric and semi-positive definite dn We note thafy has
null components due to fully redundant Lagrange multigligt

I At =0

and relaxing the average-free condition on the pressureawks. The null compo-
nentA,y caused by relaxing average-free condition can be calailatesubstitut-
ing (uj,ua, p,um,A) = (0,0,1p,0,Any ) into (2) to obtain

Ble-i-J-Ar/\nuH =0
and by usinglaDaJ} =, A is given by
Anul = —JaDaBA 1.

Here we note thdD, is the diagonal matrix with its entries determined by

DA(X):WX’

where_#x is the number of subdomains sharing the nede
We introduce the subspace

Ac={A €A A Lndl(3]), ATAn =0},

whereFy is positive definite. In our dual formulation, the equati@hié solved on
the subspaca. by the preconditioned conjugate gradient method with theviang
lumped preconditioner

Mgt =3aDaKaaDaJd}.

About the performance of the proposed preconditioner, waiokihe following
condition number estimate [8, 9, 6]:

Theorem 1. In 2D when up are selected as edge averages and in 3D when up are
selected as face averages, we obtain that

H
-1 <ct
k(Mg “Fg) <C b
and in 2D when up; are selected as values at corners we obtain that
H H
K (Mg *Fg) < CF log(1+ F)’

where H /h is the number of elements across each subdomain.
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We note that the same bound was obtained for the ellipticlpnodwith the lumped
preconditioner and the same set of primal unknowns, see [14]

2.2 Primal formulation

We will now develop the primal counterpart to the dual foratidn. We recall the
pair of finite_element spaces in the dual formulatiovi, P), where the velocity
functions inV are partially coupled across the subdomain interfaces lemgres-
sure functions irP are fully decoupled across the subdomain interfaces. Weéhese

notations o
~ K B ~
A= J:=(Jr 0
(é‘f o)’ (32 0),

whereA is the matrix obtained from the Galerkin approximation @& 8tokes prob-
lem for the pair of finite element spacgé,P) andJ is the zero extension of the
operatorJ, on the pair(V,P). Using these notations, the dual algebraic system in
(3) is written into

JAHTA =d.

For the primal counterpart to the dual formulation, we idtroe the pai(\7, P)
and obtain the algebraic equation in the primal form:
Find (T, p) € (V,P) such that

(55)(5)- (o) @

By using the extension o
R:V -V,

we can express the primal form in terms of block matrices apgzkin the dual

TEEIE@E-0 e

We use the notatioA for the matrix in the primal form,

~ (KB
A (£9).

For the primal form, using the expression in (5) we desigrp)rita‘s:onditioneM,;l
S0 thaﬂvlglﬂ andMJle have the same set of eigenvalues except zero and one. The
form of the prezconditionelvl,;l is obtained as
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v-i_ (R'DO) (K B\ (DRO
PV 0 1/J\BTO 01)

whereD is a diagonal matrix given by

_(Da0
o- (%2).

We note that the null componentin the primal fornfiis p) = (0,1) and the matrix
A is indefinite. The matrix equation (4) of the primal form idvenl by GMRES
methods combined with the preconditiorlkérr;l on the subspace which is orthog-
onal to the null componertti, p) = (0,1). About the convergence of the GMRES
iteration, we proved the following results:

Theorem 2. The eigenvalues of Mglﬂ and My 1R, are the same except zero and
one.

Theorem 3. The GMRES iteration applied to the primal form converges and its
convergenceis determined by € and d, where

E= e
LV /\n‘ax//\min +1
and d is purple the dimension of invariant subspaces of eigenvalues of Mglﬂ.

By Theorem 2 and Theorem 1, all nonzero eigenvalueksgﬂfﬂ is real and pos-
itive. Application ofM,;l to the primal form results in a two-level nonoverlapping
Schwarz method, which applies an indefinite preconditie@em indefinite prob-
lem in contrast to the dual form where a positive definite ira¢rsolved with the
preconditioned conjugate gradient method. Under the ast'sumthatMglA is di-
agonalizable, the error reduction factor in the GMRES ttereis determined by

lexll2 < Ce“|leo]l2,

wheree is defined in Theorem 3 argj is the error in thé-th iterate.

3 Application to continuous pressure functions

Algorithms in the previous section were developed for thie p&,P), where pres-
sure functions inP are discontinuous across element boundaries. We will apply
the algorithms to the case with continuous pressure fumstion contrast to the
case with discontinuous pressure functions, we have naihtained the bound of
eigenvalues. Instead we perform numerical experimentsmratious settings to see
promising features of our algorithms applied to the casé wiintinuous pressure
functions.
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We consider the paitV, P) where both velocity and pressure functions are con-
tinuous. Here we again relax the average free condition erpthssure functions
as in the previous section. After we decompose the dorfiinto nonoverlap-
ping subdomaing Q;}, we obtain the decoupled velocity and pressure spaces and
denote thenV andP. Among those decoupled velocity unknowns on the subdo-
main interfaces we select some primal unknowns and enfareegscontinuity on
them. We denote the resulting partially coupled velocitgcspbyV. For the pres-
sure functions, we can do similarly and denote the parta@lypled pressure space
by P. About the pressure functions, we may not select the primghawns. For
that case, we still use the same notatynvhich is identical tdP.

After introducing these functions spaces, we obtain algielsystem in the pri-

mal form as N N
KBT\ [0\ [T
Bo/\p/ \O

and in the dual form as

KgTjJO u T
BO 0J pl_|o
0o oA ol
0J, 0 0/ \4p 0

whereAy andAp are Lagrange multipliers for implementing weak continwty
decoupled velocity unknowns and decoupled pressure unksiawspectively,

JuU=0, J,p=0.

We introduce the following notations:

~ [(KBT o (3o
A: ~ = u
(55) 7= (53)

“(2) (9 ()

In addition, We introduce an extension operator
R :VxP—VxP.
The algebraic system in the primal form is then written as
RAR'X = f
and the algebraic system in the dual form after eliminati@tess is written as
JAITA =g

For each algebraic system, we introduce preconditioners
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M,*=RDAT'DR", My!=JDADJ,

whereD is a diagonal matrix with its entries defined similarly asdvef

For the preconditioned matricdsl,glRAﬁT andMy 1JA-1JT, we can prove the
same result in Theorem 2. On the other hand, when the preswtons are dis-
continuous the resulting matrdA 137 of the dual form is indefinite. Analysis of
the condition number bound can not be done as in the preveni®a.

For the case with the continuous pressure functions, we &sept the discrete
problem with the following block matrices

Kii B;r| Kir BF| 0] f|
By 0 Br O p|

Kri B;r,— Krr BIII' ur o fr
Bri O Br O Pr 0

For that case, an improvement can be done by reducing theettigeroblem into
the problem on the interface unknowfs-, pr) and then by applying the dual and
primal algorithms to the reduced interface problem. Theicédn on the interface
problemis called static condensation. We then observetiratual form and primal
form applied to that interface problem are similar to a FIPR-algorithm with
the Dirichlet preconditioner and a BDDC algorithm [2], restively. Compared
to the work by Li and Tu [12], our formulation employs LagrangqultipliersAr
to enforce continuity on the decoupled presspre while pr itself is treated as
Lagrange multipliers in their work. Compared to [18], oummal formulation is
identical to that approach when only primal velocity unkmsvare selected.

In numerical experiments, we present performance of thregrand dual forms
regarding to the selection of primal unknowns and the staticlensation.

4 Numerical results

We present numerical results when the algorithm for the alrfiorm is applied to
the Stokes problem discretized withl, P), where both the velocity and pressure
functions are continuous. We refer [8, 9, 6, 7] for numeregberiments of the
algorithms in Section 2, when discontinuous pressure fonstare considered.

In the following numerical experiments, we consiteth) — P;(h) for 2D prob-
lems andQ2(h) — Q1(h) for 3D problems. The domai® is square/cubic and is
decomposed into uniform square/cubic subdomains. In thé&kE#literation, the
stop condition is when the relative residual norm is reduned factor of 16. For
primal unknowns, we denote lyg, ve, andvf the velocity unknowns at corners, ve-
locity averages over edges, velocity averages over fagggectively, and we denote
by pc the pressure unknowns at corners.

In Tables 1 and 2, for the® Stokes problem we present iteration counts de-
pending on various sets of primal unknowns and the statideosation. As we
can see, the static condensation improves a lot the iteratbants with increasing
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the local problem sizél /h while adding more primal unknowns suchwesand pc
does not give much improvement. With increasing the numbsubdomains, we
can observe scalability for the cases with larger set of arimknownsyc+ ve or
VC + ve+ pc.

In Tables 3 and 4, for thel3Stokes problem we present iteration counts depend-
ing on various sets of primal unknowns and the static coretteots We observe
similar behaviors as in thel2case. The static condensation seems to be necessary
to obtain good performance increasing the local problem. gibout the selection
of primal unknowns, in B case the additional primal unknowr$ improve the
scalability on the number of subdomains much better tledn 2D case. Addingic
does not give much improvement on the performance whenasitrg the number
of subdomains and when increasing the local problem size.

Table 1 2D Stokes problem: iteration counts depending on the set afgdrunknowns and the
static condensation with increasihig’h and a fixed subdomain partitiddy = 3 x 3, WOS (without
static condensation)V'S (with static condensation)

Ve VC+Vve VC+ ve+ pc
H/h (WOS/WS) (WOS/WS) (WOS/WS)
2 45/27 40/25 14/14
3 58/24 46/24 22/15
4 69/25 59/21 28/16
5 78124 66/23 35/16
6 85/25 71/23 41/17
7 93/27 88/23 47117
8 94/26 90/22 48/18

Table 2 2D Stokes problem: iteration counts depending on the set afgdrunknowns and the
static condensation with increasimg and a fixed local problem sizd /h = 4, WOS (without
static condensation)V/'S (with static condensation)

vC vC+ve VC+ ve+ pc
Ny (WOS/WS) (WOS/WS) (WOS/WS)
32 69/25 59/21 28/16
42 92/30 71/24 29/16
52 108/34 70126 30/16
62 117/37 69/24 30/15
82 138/44 67/26 30/16
107 146/44 69/27 30/16
12 147/48 67/26 30/15

To analyze the performance of our method depending on thef ggtmal un-
knowns and the static condensation, we plot eigenvalughiisbn of the precon-
ditioned system matrix. In Figure 1, the eigenvalue distidns in D case are
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Table 3 3D Stokes problem: iteration counts depending on the set afgdrunknowns and the
static condensation with increasiktyh and a fixed subdomain partitiddy = 33, WOS (without
static condensation)V/'S (with static condensation)

e vc+ vf vc+ vf + pc

H/h (WOS/WS) (WOS/WS) (WOS/WS)
2 16/73 56/55 40/35

3 79175 70/55 60/40

4 98/76 77/51 73/43

5 118/74 97/52 94/43

6 134/73 120/53 117/44

7 143/75 146/54 142/45

8 149/77 171/55 167/47

Table 4 3D Stokes problem: iteration counts depending on the set aigdrunknowns and the
static condensation with increasimgy and a fixed local problem sizd /h = 4, WOS (without
static condensation)V/'S (with static condensation)

VC VC+ve vc+ve+pc
Ny (WOS/WS) (WOS/WS) (WOS/WS)
33 79175 70/55 60/40
43 109/94 77152 67/41
6° 203/147 79/51 68/41
8d 227/169 76/50 65/41
93 301/205 93/52 87/44
10 298/212 93/52 87/44
128 288/223 93/52 87/43

presented for various sets of primal unknowns and for thecasgth and without
the static condensation. Among the cases without the statidensation, we ob-
serve that all eigenvalues are real and positive for thefgatimal unknowns with
vc + ve+ pc. Adding ve, the eigenvalues become more clustered near one while
adding pc does not show much improvement. About the effeth@fstatic con-
densation, we see that the eigenvalues become less ctlisieae zero and more
clustered near one. For the cases with the static condensai stress that the real
part of most nonzero eigenvalues are positive numbers aay ftam zero. In Fig-
ure 2, we plot the eigenvalue distributions for tHe Stokes problem. We observe
similar behaviors as in thel2case. To summarize, when pressure functiong in
are continuous our algorithm with the set of primal unknowas vf and with the
static condensation gives good performance for De&se and addingc seems to
be not necessary to improve the performance.
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Fig. 1 2D Stokes problem:
Eigenvalue distribution de-
pending on the choice of pri-
mal unknowns and the static
condensation, left column
(without the static condensa-
tion) and right column (with
the static condensation).

Fig. 2 3D Stokes problem:
Eigenvalue distribution de-
pending on the choice of pri-
mal unknowns and the static
condensation, left column
(without the static condensa-
tion) and right column (with
the static condensation).
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