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1 Introduction

The neutron transport equation allows to describe the ardlux density in a re-
actor core. It depends on 7 variables: 3 for the space, 2 éomtbtion direction, 1
for the energy (or the speed), and 1 for the time. The energghle is discretized
using the multigroup theory [4]. TH@\ transport equations are obtained by devel-
oping the neutron flux on the spherical harmonics from ord&y OrderN. This
approach is very time-consuming. The simplifiggd (SPy) transport theory [14]
was developed to address this issue. The two fundamentatlingges to obtain the
SR\ equations are that locally, the angular flux has a planar sstnysrand that the
axis system evolves slowly. The neutron flux and the scatjesioss sections are
then developped on the Legendre polynomials. The ddderodd, and the number
of SAy odd (resp. even) momentslﬂgﬁ.

Let #, the domain of studies, be a bounded, open subsBfpWith a piecewise
smooth boundary. LéB + 1 be the number of energy groups, andjet {0, .., G}.

In the time-independent case, the multigr&@ equations read i:

T3p9+grad (He?) = zg,#gsgigpg/’ |
HTdivpd+T8¢% = 544958°0% + X9 Y5 oM7 ¢
1)

Solve in(p9, ¢?) | {

For each energy group:

o 9= (g, ¢,..)T ¢ R (resp.p9 = (p§,p3,..)T € (R%)"7") denotes the vector
containing all the even (resp. odd) moments of the neutron flu

o T (resp.T9) € R"7* %" denotes the even (resp. odd) removal matrix, such that:
T¢ = diag (030,032, ) T3 = diag (031,033, ) wheregy are proportional to
the macroscdpic removal cross sections. '

. Sg/g (resp.Sg/g) € R" <" denotes the even (resp. odd) scattering matrix, such
that:S9 = diag (og(fg, %, ) sg° = diag (agfg, 0%, ", ) whereagﬁg

are proportional to the macroscopic group-transfer cressms.

oM € R "3 is such thatM{ x| = 608 .0V0} (With & the Kronecker sym-
bol), so thatV{¢® = (vyof ¢,0,...)T. v¥ is the number of neutrons emitted per
fission andcr%J the macroscopic fission cross sectiggis the fission spectrum.
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N+1., N+1

eHe Rz *Z issuch thatly = &/ + & 1.

We must fix boundary conditions (BC) @7, such as Dirichlet BCg? = 0 (zero
flux), Neumann BCp¥.n = 0 (reflection), or Robin BC (void or isotropic albedo,
[2]). From now on, we set zero flux BC.

For simplicity reasons, we will focus on the one-sp&Bd approximationG+ 1 =

1). From this study, one can easily deduce the multigig@pcase [4], for which
we use the Gauss-Seidel method on the energy groups. Thp-gemsfer terms
disappear and we can skip thgesuperscript. We havgo = 1. The linear system
(1) corresponds to a set of coupled diffusion equafioh®reover, Egs (1) can be
written in a primal form, with the even moments of the neutilar as unknowns:

~H"div (T, grad (He) ) +Teq = )\le ®,inZ,9=0,0n0%. (2)

Due to the structure of Eqs (2), we remark that Egs (1) agtealirespond to a gen-
eralized eigenproblem, whehleacts as the inverse of an eigenvalue with associated
eigenfluxg. One can apply the Krein-Rutman theorem [9] to Eqgs (1): thesjalal
solution is necessarily positive, and it is the eigenfunttissociated to the largest
eigenvaluee; 1 = max, A, which is in addition simple. More precisekgss char-
acterizes the physical state of the core reactor:

o if keff = 1: The nuclear chain reaction is self-sustaining. The mgastritical;

o if kert > 1: The chain reaction races. The reactor is supercritical;

e if ket < 1: The chain reaction vanishes. The reactor is subcritical.

2 The one-domain algorithm

As we look for the smallest eigenval(iess) 1, it can be computed by the inverse
power iteration algorithm. After some initial guess is pd®d, at iteratiorm—+ 1,
we deducép™t, ™1 KT L) from (p™, ™ KT ) by solving Egs (1) with a source
term. Set in a domai#, the inverse power iteration algorithm reads:

Set(p?, ¢°, k), m=0.
Until convergence, dan<+ m+1

Solve in(p™?, @™ 1):
Top™*+grad (He™!) =0,inZ,

HT divp™ 1+ Te ™! = (KT ) "M @™, in £, (3)
@™ =0,0n0%.

Compute nﬁfl =K [o(vor @2/ [(vor @t vor g).
End

1 Note that theSP; equations are similar to the neutron mixed diffusion equti
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Above, the Egs (3) with unknowr{p™1, ™) model the so-called source solver,
with a source term equal (& ;) ~1sT', wheres]' = voy . The updated valui*
is inferred as follows: assuming that convergence is aeligive.

HT dIme+l+T (pm+l kem+1 lg’ﬂ—Fl (4)

one can write K1) ~1s™ = (k1 ) ~1sP and, multiplying this equation bgf**
and integrating over the domain of computati@h we obtain the equation below
(3). The convergence criterion is usually set &} — KT (|, and||sf*™ — sT|.
The inverse power iterations are called the outer iteratemopposed to the inner
iterations, which correspond to the iterations of the sewaver, with a sourcg.

It reads:

Top+grad (He) =0, inZ,
Solvein(p, @) : HTdivp+Te = S, in %, (5)
¢ =0,0n0Z.

In the MINOS solver [1, 2], these equations are solved witlvi&&Thomas-
Nédélec FE (RTN FE) on a Cartesian or hexagonal mesh. kr todeduce memory
size and time computation, we encoded a DD method to solyst(&ied below.

3 Optimized Schwarz method

In order to use non overlapping subdomains, we chose the Sezhterative al-
gorithm with Robin interface conditions to exchange infatron [11]. Let us
split 2 in two non-overlapping subdomairg; and %,: # = %1 U %> such that
PN %> = 0. We define the interfacE = %1 N %». Let n; be the outward unit
normal vector t@%;, and(pi, @) = (p, ¥),% - The Schwarz algorithm reads [5]:

Set(p?, ¢°)i=12,n=0.
Until convergence, dan < n+1

q

Top™™* +grad (H(g”“) =Q,in%,i=1,2,
HT divpM™ 4+ Teg™™t = S in%,i = 1,2,
= 0,0n0%N0%,i = 1,2, (6)
pi. n1+altpl”+1_—p n2+orlqo2 onl‘
Pl Lo+ ap@t = —pf Y ng + ag!, onr.

n+1 n+1)

Solve in(p;

End

Here, the Robin parameters are matriaes R *"*: hence the Robin interface
condition can couple all harmonics. The discretization g E6) with RTN FE is
described in [7] for the&SP, case. Compared to the Schur complement method [10],
this method requires less modifications, and rather easypteiment, provided one
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has at hand a subdomain solver for the source problem. Onerihyado ensure
the data transfer between the subdomains given by the actedonditions. The
n(+1) superscript indicates that we can use either the additiev&z method
(ASM), or the multiplicative Schwarz method (MSM). We shalva [6, 7] the
convergence of the sequem{eﬁ*l, qq”*l)izlvz, n>0to(p,®)s--12 (in the case
o1 = ap). It is well known that the convergence rate depends highlyhe Robin
matrices(d;)i—1,2. In order to choose them optimally and automatically, weiedr
out an asymptotic study, a la Nataf and Nier [12]. For 8® case, we obtained
thata; = (or,o‘:%j)1/2(0,,1‘:%1_)*1/2 [7]. We refer to [6] for the computations of the
SRy caseN > 1. In this case, the Robin matricés;)i—1 > are symmetric positive
definite, and they depend on the removal cross sectionss/alfe?;)—»1. In the
multigroup case, the cross sections depend moreover onéngyegroups and so do
the (ai)i=1,2. Let us see next how this algorithm modifies the eigenvalgerahm.

4 The multi-domains algorithm

Applying the Schwarz iterative method to algorithm (3), @rationm+ 1, we
should compute the solution to the source solver iteratiwehich yields in prin-
ciple nested outemf+ m+ 1) and inner (index) iterations. However, numerical
experiments show that the inverse power algorithm leadgliieal convergence:
a single inner iteration is sufficient. So, the resultingoaidym contains only one
level of iteration (with indexm). The inverse power algorithm with DD reads then:

Set((p?, qqo)i:l,Za kgff), m=0.
Until convergence, dan<+ m+1

Solve in(p™, @™ 1)i_1 5, with j = 2,1:
Top™™ +grad (Hg™?!) = 0,in%,
H divp™ 4+ Te @™t = (KT ) "M ¢, in %,

pMhni+aig™t = —prjn(H)-”J i q"J’m(H)' onf,
@™t =0,0n0% N0%.

(7)

Computekgii' = kit 571 [ (vor @62/ 52y [ (vor @ vor ¢fy).

End

At iteration m+ 1, convergence is measured on the source, expressed as a vec-
tor s¢: £ = maxsor | (S — SMaof| / (% Taof |(ST™)aot ). Iterations stop when

e?““ < €1, wheregs is given by the user. Let us test our method.
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5 Results

To perform computations, we use the MINOS solver [1, 2] of AROLLO3®?
neutronics code. The cross sections come from experimergasurements. They
take constant values per unit mesh which can be very diftédrem one mesh to
another: we face highly heterogeneous problems. We useliba/ing notations:

e Nc: The number of cores.

e Npp: The D cartesian i, Nbp ,N3p) decomposition.

e Noit: The number of outer iterations to achieve convergence.

e Err.: The (unsigned) difference between the computed and thescged eigen-
values, either sequentially or in parallel, times 20

e CPU: The CPU time spent within the MINOS solver, given in seconds

e Eff. (Tab. 3 and 2 only): The efficiency (in %): namely,/ (Nc x Tn), whereT;
is the total sequential CPU time with a single domain, &qds the parallel CPU
time onNc cores withNc subdomains.

For Tab. 1 and 3, we used Intel Xeon L5640 processors with fariband net-
work. For Tab. 2, computations were carried out on the Titaraputer, hosted by
the CCRT (the CEA Supercomputing Center). For each testep@t, above the re-
sults Tables, a resulting, y) normalized power distribution map of the calculation
(Fig. 1, 2, 3).

The results presented in Tab. 1 concerendodel of a pressurized water reactor
(PWR) core of capacity 900 MWe. We performed computationa nrono-core, on
the diffusion approximation, with two energy grou@&+{ 1 = 2) andRT Ny FE. The
mesh is of siz€289x 289x 60), which yields more than 40M unknowns. We set
gt = 107°. In order to validate our optimization choice, we ran the M8bith N
subdomains), from 1 up to 17 340 subdomains.

Fig. 1 Power distribution map
of the PWR core computation,
run with the diffusion approx-
imation, 2 energy groups,
RTNp FE, MSM.

ForN < 4335, the number of outer iterations does not increase namchimore-
over the accuracy is steady. Fde> 1156, theCPU time increase is probably caused
by the use of a table to store the subdomains, for which thésuhkin access is not

2 APOLLO3 is a trademark registered in France
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Table 1 Results of the PWR core computation (diffusion, 2 energygsoRT Ny, MSM).

N Nop (X,,2) Nout Err. x10°° CPU (s)
1 (1,1,1) 381 Qo 230

17 (17,1, 1) 382 Qo 199
289 (17,17,1) 393 Qo 210
1156 (17,17, 4) 392 Qo 252
2890 (17,17, 10) 390 Qo 382
4335 (17,17, 15) 394 Qo 499
8670 (17,17, 30) 405 Qo 660
17340 (17,17, 60) 450 Q1 1255

optimized yet. On the other hand, the method seems robusteheur optimized
choice of the Robin parameters is validated in the diffusiase.

We consider now a3 model of a plate-fuel reactor (PFR) core. We performed
computations on th&Ps approximation, with 4 energy groups {1 = 4) andRT Ny
FE. The mesh is of size 364364 x 100, which yields 638M unknowns. We set
& =5107°. We ran the ASM oNc cores withNc subdomains.

W N
APOLLO3 ; \!I
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) 5 ) 5 o
O ) () (D o
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Fig.2 Power distribution map PR DO0D=R
of the PFR core computation, ._.DDDB..

run with theSP; approxima- BN =
tion, 4 energy groupsRT Ny HEEE
FE, ASM. -

Table 2 Results of the PFR core computatid@®, 4 energy groupsRT Ng, ASM).

Nc Nop (X,Y,2) Nout Err. x107> CPU (s) Eff.

1 (1,1,1) 649 Qo 12272 100%
2 (2,1,1) 645 Qo 6468 95%
4 (2,2,1) 644 Qo 3783 81%
8 (2,2,2) 649 Qo 2269 67%
16 (2,2, 4) 649 Qo 1045 73%
32 (4,4,2) 654 Q4 504 76%
64 (4,4, 4) 643 Q3 303 63%
128 (8,8,2) 649 Q2 123 155%

Our DD method converges nicely to the sequential solutiocesthe error on the
eigenvalue is always smaller than 5P0Moreover, the number of outer iterations
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is quite steady: the optimized choice of the Robin paramédgwalidated in the
SR\ case. The method scales quite well, from 67% up to 155% effigien 128
cores. To explain this last result, we suppose that the camation traffic was low,
second that some computations were performed in the memachec

In[6, 7], we give results which show that choosing randomiRatatrices leads
to worse results: the number of outer iterations increaasterf, and the accuracy
deteriorates: in practice, it is important to optimize trebid matrices.

The last results concern 2model of the Jules Horowitz reactor (JHR) cire
dedicated to research, which is currently under constsacte performed compu-
tations on theSP; approximation, with 6 energy group& ¢ 1 = 6), andRT; FE.
The mesh is of size $0< 10°, which represents more than 72M unknowns. We set
g =5104,

Fig. 3 Power distribution map
of the JHR core computation,
run with theSP; approxima-
tion, 6 energy groups$3Ty FE,
ASM.

Table 3 Results of the JHR core computatid®P(, 6 energy groupsRT;, ASM).

Nc Nop (X,,2) Nouw  Emm. x10°% CPU(s) Eff.

1 1,1 639 QO 1487 100%
2 (2,1 653 Q4 777 96%
4 (2,2) 643 Q5 352 106%
8 (2,4) 653 Q1 256 73%
16 (2,8) 656 Q2 97 96%
32 (4,8) 664 06 64 73%
64 (8,8) 653 Q9 29 80%

For this last test, the physical geometry is not Cartestarobably explains why
the accuracy is not as good as for the other tests. The numbeitey iterations is
quite steady while the efficiency is excellent. In the casé obres, the superlinear
efficiency is probably again a consequence of the amount mipatations in the
memory cache.

Shttp://ww. cad. cea. fr/rjh/index. htn
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6 Conclusions and per spectives

We presented a domain decomposition method based on tieizngdi Schwarz iter-
ative algorithm, to solve the mixed neutrd®, equations with RTN FE. Numerical
experiments carried out with the MINOS solver show that tle¢had is robust and
efficient both sequentially and in parallel, and that ouiirojzted choice of the pa-
rameters of the Schwarz algorithm is satisfactory. Notettfmnumber of iterations
to solve our problem increases only slightly with the nuntdfesubdomains.

Let us finally mention some potential new research direstion

e The use of Ventcell interface conditions: introducing tamigal derivatives in the
Robin interface condition [12, 8].

e The use of an overlapping DD method with a coarse grid soagedone in [13].
Finally, let us mention that the MINOS solver can also solsarse and kinetic
problems [3].

References

1. Baudron, A.-M., Lautard, J.-J.: MINOS: A Simplifi€¥, solver for core calculations. Nuclear
Science and Engineeririp5, 250-263 (2007)

2. Baudron, A.-M., Lautard, J.-JSR\ core calculations in the APOLLO3 System. Mathematics
and Computational Methods Applied to Nuclear Science argirteering (M&C 2011), Latin
American Section (LAS) / American Nuclear Society (ANS) 12D

3. Baudron, A.-M., Lautard, J.-J., Maday, Y., Mula-HernandO.: Parareal for neutronic core
calculations. Twenty-first International Conference omiain Decomposition Methods (2012)

4. Duderstadt, J. J., Hamilton, L. J.: Nuclear reactor aislyJohn Wiley & Sons, Inc. (1976)

5. Guérin, P.: Méthodes de décomposition de domaine podormulation mixte duale du
probleme critique de la diffusion des neutrons. Univ. £afii (2007)

6. Jamelot, E., Baudron, A.-M., Lautard, J.-J.: Domain degasition for theSRy solver MINOS.
Transport Theory and Statistical Physids, 495-512 (2012)

7. Jamelot, E., Ciarlet, P. Jr: Fast non-overlapping Schwlamain decomposition methods for
solving the neutron diffusion equation. J. Comput. Pi2yd, 445-463 (2013)

8. Japhet, C., Nataf, F., Rogier, F.: The optimized order thowe application to convection dif-
fusion problems. Future Generation Computer Syst&8n48-30 (2001)

9. Krein, M. G., Rutman, M. A.: Linear operators leaving ingat a cone in a Banach space.
Amer. Math. Soc. Translation, Ser. 10, Functional analysis and measure theory, 199-325
(1962)

10. Lathuiliere, B.: Méthodes de décomposition de degiour les équations du transport sim-
plifie en neutronique. Univ. Bordeaux | (2010)

11. Lions, P.-L.: On the Schwarz alternating method IlI: aast for nonoverlapping subdomains.
Third International Symposium Domain Decomposition Mekhéor Partial Differential Equa-
tions (1990)

12. Nataf, F., Nier, F.: Convergence rate of some domainrdposition methods for overlapping
and nonoverlapping subdomains. Numer. M@8.357-377 (1997)

13. Nataf, F., Xiang, H., Dolean, V.: A two level domain deqmsition preconditioner based on
local Dirichlet-to-Neumann maps. C. R. Acad. Sci. Paris, 5848, 1163-1167 (2010)

14. Pomraning, G. C.: Asymptotic and variational derivasiof the simplified PN Equations.
Ann. Nucl. Energy?20, 9, 623—-637 (1993)



