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1 Introduction

The neutron transport equation allows to describe the neutron flux density in a re-
actor core. It depends on 7 variables: 3 for the space, 2 for the motion direction, 1
for the energy (or the speed), and 1 for the time. The energy variable is discretized
using the multigroup theory [4]. ThePN transport equations are obtained by devel-
oping the neutron flux on the spherical harmonics from order 0to orderN. This
approach is very time-consuming. The simplifiedPN (SPN) transport theory [14]
was developed to address this issue. The two fundamental hypotheses to obtain the
SPN equations are that locally, the angular flux has a planar symmetry; and that the
axis system evolves slowly. The neutron flux and the scattering cross sections are
then developped on the Legendre polynomials. The orderN is odd, and the number
of SPN odd (resp. even) moments isN+1

2 .
Let R, the domain of studies, be a bounded, open subset ofR

3, with a piecewise
smooth boundary. LetG+1 be the number of energy groups, and letg ∈ {0, ..,G}.
In the time-independent case, the multigroupSPN equations read inR:
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T . νg is the number of neutrons emitted per
fission andσg

f the macroscopic fission cross section.χg is the fission spectrum.

1 CEA Saclay, DEN/DANS/DM2S/SERMA/LLPR, F-91191 Gif-sur-Yvette Cedex, e-mail:
{Erell.Jamelot}{Anne-Marie.Baudron}{Jean-Jacques.Lautard}@cea.
fr ·2 POEMS Laboratory, ENSTA ParisTech, 828, bd des Maréchaux,91762 Palaiseau Cedex,
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• H ∈ R
N+1

2 ×
N+1

2 is such thatHk,l = δk,l + δk,l−1.

We must fix boundary conditions (BC) on∂R, such as Dirichlet BC:φg = 0 (zero
flux), Neumann BC:pg.n = 0 (reflection), or Robin BC (void or isotropic albedo,
[2]). From now on, we set zero flux BC.
For simplicity reasons, we will focus on the one-speedSPN approximation (G+1=
1). From this study, one can easily deduce the multigroupSPN case [4], for which
we use the Gauss-Seidel method on the energy groups. The group-transfer terms
disappear and we can skip theg superscript. We haveχ0 = 1. The linear system
(1) corresponds to a set of coupled diffusion equations1. Moreover, Eqs (1) can be
written in a primal form, with the even moments of the neutronflux as unknowns:

−HT div
(

T
−1
o grad (Hφ)

)

+Te φ =
1
λ
M f φ , in R, φ = 0, on∂R. (2)

Due to the structure of Eqs (2), we remark that Eqs (1) actually correspond to a gen-
eralized eigenproblem, whereλ acts as the inverse of an eigenvalue with associated
eigenfluxφ . One can apply the Krein-Rutman theorem [9] to Eqs (1): the physical
solution is necessarily positive, and it is the eigenfunction associated to the largest
eigenvalueke f f = maxλ λ , which is in addition simple. More precisely,ke f f char-
acterizes the physical state of the core reactor:
• if ke f f = 1: The nuclear chain reaction is self-sustaining. The reactor is critical;
• if ke f f > 1: The chain reaction races. The reactor is supercritical;
• if ke f f < 1: The chain reaction vanishes. The reactor is subcritical.

2 The one-domain algorithm

As we look for the smallest eigenvalue(ke f f )
−1, it can be computed by the inverse

power iteration algorithm. After some initial guess is provided, at iterationm+ 1,
we deduce(pm+1,φm+1,km+1

e f f ) from (pm,φm,km
e f f ) by solving Eqs (1) with a source

term. Set in a domainR, the inverse power iteration algorithm reads:

Set(p0,φ0,k0
e f f ), m = 0.

Until convergence, do:m← m+1
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


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End

1 Note that theSP1 equations are similar to the neutron mixed diffusion equations.
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Above, the Eqs (3) with unknowns(pm+1,φm+1) model the so-called source solver,
with a source term equal to(km

e f f )
−1sm

f , wheresm
f = νσ f φm

0 . The updated valuekm+1
e f f

is inferred as follows: assuming that convergence is achieved, i.e.

H
T divpm+1+Te φm+1 = (km+1

e f f )−1sm+1
f , (4)

one can write(km+1
e f f )−1sm+1

f = (km
e f f )

−1sm
f and, multiplying this equation bysm+1

f
and integrating over the domain of computationR, we obtain the equation below
(3). The convergence criterion is usually set on|km+1

e f f − km
e f f |, and ||sm+1

f − sm
f ||.

The inverse power iterations are called the outer iterations as opposed to the inner
iterations, which correspond to the iterations of the source solver, with a sourceS.
It reads:

Solve in(p,φ) :







To p+grad (Hφ ) = 0, in R,
H

T divp+Te φ = S, in R,
φ = 0, on∂R.

(5)

In the MINOS solver [1, 2], these equations are solved with Raviart-Thomas-
Nédélec FE (RTN FE) on a Cartesian or hexagonal mesh. In order to reduce memory
size and time computation, we encoded a DD method to solve (5), studied below.

3 Optimized Schwarz method

In order to use non overlapping subdomains, we chose the Schwarz iterative al-
gorithm with Robin interface conditions to exchange information [11]. Let us
split R in two non-overlapping subdomainsR1 andR2: R = R1∪R2 such that
R1∩R2 = /0. We define the interfaceΓ = R1∩R2. Let ni be the outward unit
normal vector to∂Ri, and(pi,φi) = (p,φ)|Ri

. The Schwarz algorithm reads [5]:
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i )i=1,2, n = 0.
Until convergence, do:n← n+1
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H
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i +Te φn+1
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1 .n1+α1φn+1
1 = −pn

2.n2+α1φn
2 , onΓ ,

pn+1
2 .n2+α2φn+1

2 = −pn(+1)
1 .n1+α2φn(+1)

1 , onΓ .

(6)

End

Here, the Robin parameters are matricesαi ∈R
N+1

2 ×
N+1

2 : hence the Robin interface
condition can couple all harmonics. The discretization of Eqs (6) with RTN FE is
described in [7] for theSP1 case. Compared to the Schur complement method [10],
this method requires less modifications, and rather easy to implement, provided one
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has at hand a subdomain solver for the source problem. One hasonly to ensure
the data transfer between the subdomains given by the interface conditions. The
n(+1) superscript indicates that we can use either the additive Schwarz method
(ASM), or the multiplicative Schwarz method (MSM). We showed in [6, 7] the
convergence of the sequences(pn+1

i ,φn+1
i )i=1,2, n ≥ 0 to (p,φ)|Ri=1,2 (in the case

α1 = α2). It is well known that the convergence rate depends highly on the Robin
matrices(αi)i=1,2. In order to choose them optimally and automatically, we carried
out an asymptotic study, à la Nataf and Nier [12]. For theSP1 case, we obtained
that αi = (σr,0|R j

)1/2(σr,1|R j
)−1/2 [7]. We refer to [6] for the computations of the

SPN case,N > 1. In this case, the Robin matrices(αi)i=1,2 are symmetric positive
definite, and they depend on the removal cross sections values in (R j) j=2,1. In the
multigroup case, the cross sections depend moreover on the energy groups and so do
the(αi)i=1,2. Let us see next how this algorithm modifies the eigenvalue algorithm.

4 The multi-domains algorithm

Applying the Schwarz iterative method to algorithm (3), at iteration m + 1, we
should compute the solution to the source solver iteratively, which yields in prin-
ciple nested outer (m← m+1) and inner (indexn) iterations. However, numerical
experiments show that the inverse power algorithm leads theglobal convergence:
a single inner iteration is sufficient. So, the resulting algorithm contains only one
level of iteration (with indexm). The inverse power algorithm with DD reads then:

Set((p0
i ,φ0

i )i=1,2,k0
e f f ), m = 0.

Until convergence, do:m← m+1

Solve in(pm+1
i ,φm+1

i )i=1,2, with j = 2,1:


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
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i +grad
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i
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H
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pm+1
i .ni+αiφm+1
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(7)

Compute:km+1
e f f = km

e f f ∑2
i=1

∫

Ri
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i,0 )2/ ∑2
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∫
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i,0 νσ f φm
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End

At iteration m + 1, convergence is measured on the source, expressed as a vec-
tor s f : εm+1

f = maxdo f |(s
m+1
f − sm

f )do f |/(
1
N ∑do f |(s

m+1
f )do f |). Iterations stop when

εm+1
f ≤ ε f , whereε f is given by the user. Let us test our method.
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5 Results

To perform computations, we use the MINOS solver [1, 2] of theAPOLLO3r2

neutronics code. The cross sections come from experimentalmeasurements. They
take constant values per unit mesh which can be very different from one mesh to
another: we face highly heterogeneous problems. We use the following notations:
• Nc: The number of cores.
• NDD: The 3D cartesian (Nx

DD, Ny
DD ,Nz

DD) decomposition.
• Nout : The number of outer iterations to achieve convergence.
• Err.: The (unsigned) difference between the computed and the converged eigen-
values, either sequentially or in parallel, times 10−5.
•CPU : The CPU time spent within the MINOS solver, given in seconds.
• E f f . (Tab. 3 and 2 only): The efficiency (in %): namely,T1/(Nc×TN), whereT1

is the total sequential CPU time with a single domain, andTN is the parallel CPU
time onNc cores withNc subdomains.

For Tab. 1 and 3, we used Intel Xeon L5640 processors with an infiniband net-
work. For Tab. 2, computations were carried out on the Titanecomputer, hosted by
the CCRT (the CEA Supercomputing Center). For each test, we report, above the re-
sults Tables, a resulting(x,y) normalized power distribution map of the calculation
(Fig. 1, 2, 3).

The results presented in Tab. 1 concern a 3D model of a pressurized water reactor
(PWR) core of capacity 900 MWe. We performed computations ona mono-core, on
the diffusion approximation, with two energy groups (G+1= 2) andRT N0 FE. The
mesh is of size(289×289×60), which yields more than 40M unknowns. We set
ε f = 10−5. In order to validate our optimization choice, we ran the MSM(with N
subdomains), from 1 up to 17340 subdomains.

Fig. 1 Power distribution map
of the PWR core computation,
run with the diffusion approx-
imation, 2 energy groups,
RTN0 FE, MSM.

ForN ≤ 4335, the number of outer iterations does not increase much,and more-
over the accuracy is steady. ForN ≥ 1156, theCPU time increase is probably caused
by the use of a table to store the subdomains, for which the subdomain access is not

2 APOLLO3 is a trademark registered in France
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Table 1 Results of the PWR core computation (diffusion, 2 energy groups,RTN0, MSM).

N NDD (x,y, z) Nout Err.×10−5 CPU (s)

1 (1, 1, 1) 381 0.0 230
17 (17, 1, 1) 382 0.0 199
289 (17, 17, 1) 393 0.0 210
1156 (17, 17, 4) 392 0.0 252
2890 (17, 17, 10) 390 0.0 382
4335 (17, 17, 15) 394 0.0 499
8670 (17, 17, 30) 405 0.0 660
17340 (17, 17, 60) 450 0.1 1255

optimized yet. On the other hand, the method seems robust: hence, our optimized
choice of the Robin parameters is validated in the diffusioncase.

We consider now a 3D model of a plate-fuel reactor (PFR) core. We performed
computations on theSP5 approximation, with 4 energy groups (G+1= 4) andRT N0

FE. The mesh is of size 364× 364× 100, which yields 638M unknowns. We set
ε f = 510−5. We ran the ASM onNc cores withNc subdomains.

Fig. 2 Power distribution map
of the PFR core computation,
run with theSP5 approxima-
tion, 4 energy groups,RT N0
FE, ASM.

Table 2 Results of the PFR core computation (SP5, 4 energy groups,RTN0, ASM).

Nc NDD (x,y, z) Nout Err.×10−5 CPU (s) Eff.

1 (1, 1, 1) 649 0.0 12272 100%
2 (2, 1, 1) 645 0.0 6468 95%
4 (2, 2, 1) 644 0.0 3783 81%
8 (2, 2, 2) 649 0.0 2269 67%
16 (2, 2, 4) 649 0.0 1045 73%
32 (4, 4, 2) 654 0.4 504 76%
64 (4, 4, 4) 643 0.3 303 63%
128 (8, 8, 2) 649 0.2 123 155%

Our DD method converges nicely to the sequential solution, since the error on the
eigenvalue is always smaller than 510−6. Moreover, the number of outer iterations
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is quite steady: the optimized choice of the Robin parameters is validated in the
SPN case. The method scales quite well, from 67% up to 155% efficiency on 128
cores. To explain this last result, we suppose that the communication traffic was low,
second that some computations were performed in the memory cache.

In [6, 7], we give results which show that choosing random Robin matrices leads
to worse results: the number of outer iterations increases faster, and the accuracy
deteriorates: in practice, it is important to optimize the Robin matrices.

The last results concern a 2D model of the Jules Horowitz reactor (JHR) core3,
dedicated to research, which is currently under construction. We performed compu-
tations on theSP1 approximation, with 6 energy groups (G+ 1= 6), andRT1 FE.
The mesh is of size 103×103, which represents more than 72M unknowns. We set
ε f = 510−4.

Fig. 3 Power distribution map
of the JHR core computation,
run with theSP1 approxima-
tion, 6 energy groups,RT1 FE,
ASM.

Table 3 Results of the JHR core computation (SP1, 6 energy groups,RT1, ASM).

Nc NDD (x,y, z) Nout Err.×10−5 CPU (s) Eff.

1 (1, 1) 639 0.0 1487 100%
2 (2, 1) 653 0.4 777 96%
4 (2, 2) 643 0.5 352 106%
8 (2, 4) 653 0.1 256 73%
16 (2, 8) 656 0.2 97 96%
32 (4, 8) 664 0.6 64 73%
64 (8, 8) 653 0.9 29 80%

For this last test, the physical geometry is not Cartesian. It probably explains why
the accuracy is not as good as for the other tests. The number of outer iterations is
quite steady while the efficiency is excellent. In the case of4 cores, the superlinear
efficiency is probably again a consequence of the amount of computations in the
memory cache.

3 http://www.cad.cea.fr/rjh/index.html
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6 Conclusions and perspectives

We presented a domain decomposition method based on the optimized Schwarz iter-
ative algorithm, to solve the mixed neutronsSPN equations with RTN FE. Numerical
experiments carried out with the MINOS solver show that the method is robust and
efficient both sequentially and in parallel, and that our optimized choice of the pa-
rameters of the Schwarz algorithm is satisfactory. Note that the number of iterations
to solve our problem increases only slightly with the numberof subdomains.
Let us finally mention some potential new research directions:
• The use of Ventcell interface conditions: introducing tangential derivatives in the
Robin interface condition [12, 8].
• The use of an overlapping DD method with a coarse grid solver,as done in [13].
Finally, let us mention that the MINOS solver can also solve source and kinetic
problems [3].
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