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1 Introduction

For many applications in mechanics or fluid dynamics, onalrieeuse different
discretizations in different regions of the computatiodaimain to match with the
physical scales. Mortar methods [2] are domain decomjpposiéichniques based on
a weak coupling between subdomains and enable the use ofmonming grids.
On the other hand, optimized Schwarz methods [4, 11, 9, hdged on Robin
or Ventcel transmission conditions and motivated by thespisyof the underlying
problem, greatly enhance the information exchange betagletiomains and lead to
robust and fast algorithms. Moreover, the Ventcel conditieduce dramatically the
convergence factor of the Schwarz algorithm compared tarRainditions [7, 5].

In the finite element case, the NICEM method [6, 8], a new fater cement
using Robin conditions and corresponding to an equililoratertar approach (i.e.
there is no master and slave sides) has been developed foa&dype methods.

In this paper we extend this approach to Ventcel conditions.

We first consider the problem at the continuous level: tirsdich that

(d=Au=1f inQ (1)
u=0 ondQ, (2

where Q is a €% (or convex polygon in 2D or polyhedron in 3D) domain of
IRY, d = 2 or 3, andf is given inL?(Q). We assume tha® is decomposed into

K non-overlapping subdomain® = Uﬁzlﬁk. We suppose that the subdomains
QK. 1<k <K are eitherg’>! or polygons in 2D or polyhedrons in 3D. Lag be

the outward normal fron2K. We also assume that this decomposition is geomet-
rically conforming. We introducéd ! the interface of two adjacent subdomains,
rt=90Q*XnaQ’. An optimized Schwarz algorithm for problem (1)-(2) is

(ld—a)urt = f in QK
wlt= 0  ondQknaQ
Bro(Ug™) = Bi(u]) onrke
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where (% ¢) 1<k r<k k¢ iS the chosen transmission operator on the interface be-
tween subdomain€k and Q*:

Robin case: % ¢ = ond +a¢
Ventcel case %y ¢ = onp +ap — BAy ¢,

whereA, , stands for the Laplace-Beltrami operatorfoff, anda, 8 > 0 are given.
In order to match Ventcel conditions in the non-conformiigctete case, we need
to introduce a new independent entity representing the alaerivative of the solu-
tion on the interface as in the NICEM method [6, 8]. We thusai§etrov Galerkin
approach instead of Galerkin approximations as in stanuartiar methods.

In Sect. 2 we recall the method at the continuous level. Th&ect. 3, we present
the method in the non-conforming discrete case and theedes@igorithm with
Ventcel transmission conditions. We finally present in Sédimulations for two
and twenty-five subdomains. The numerical analysis will tieedin future paper.

2 Definition of the problem
The variational statement of the problem (1)-(2) is: Rinel H&(Q) such that

/Q (OuDv+uv) dx = /Q fvdx, YveH3(Q). (3)
We introduce the spadel(QK) defined by

H1(QY) = {¢ e HY(QY), ¢ =0 overdQNaIQ~}.

In order to glue non-conforming grids with Ventcel transsies conditions, denot-
ing by v theK-tuple (vy, ...,k ), we introduce the following constrained space,

K K
7 ={(v,q) € | [THHQY) ) x | [TH 202" |,
B k=1 k=1
vk = v, andgy = —q, over %, vk (}. (4)
Then, problem (3) is equivalent to the following one [8]: &ifu, p) € ¥ such that

K K
Z /Qk(DukEleJruka) dx — z H-1/2(a0k) < Pko Vk >H1/2(90k)
k=1 k=1

K, K
= kakdX, Vv e H*l(_Q k) .
k; / Qx kEll

Being equivalent with (1)-(2), wheng = dn, u overd QK, this problem is well posed.
Let us describe the method in the non-conforming discrege.ca
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3 Non-conforming discrete case with Ventcel conditions

3.1 Local problem

We introduce now the discrete spaces. E@&is provided with its own mestX,
such thaT_(*)k = UTEghkT, 1<k<K.ForT e ZX lethr be the diameter oT
andh the discretization parametdn= max <x<x hx with h, = maxreyhk hr. We

suppose thaﬁhk is uniformly regular and that the sets belonging to the meshe
are of simplicial type (triangles or tetrahedra). L&t (T) denote the space of
all polynomials defined over T of total degree less than oretuM. The finite
elements are of lagrangian type, of cl&8. We define over eacke® two con-

forming space¥k andX¥ by : YK = {vix € ¥0(Q9), Vhkr € 2m(T), VT € T,
Xf'f ={Vhk € th, Vhkigoknao = 0}. The space of traces over each’ of elements

of Y is a finite element space denoted%ﬂ. With each interfacé ¢, we asso-

ciate a subspao&'f’ﬁ of @hk’é in the same spirit as in the mortar element method [2]
in 2D or [3, 1] for aP;-discretization in 3D.
More precisely, let7 be the restriction td¢ %‘ of the triangulationZX. In 2D,

7 has two end points that we denoteééandxﬁ") that belong to the set of vertices

of the corresponding triangulation 61 : xg‘[,xi‘é, ...mﬁ‘fl,xﬁ‘é. The spacéaf\/r'f"Z is

then the subspace of those element@r{ﬁi{ that are polynomials of degreeM — 1

over both[xs", ] and X’ Xt
In 3D, we suppose that all the vertices of the boundar'tf are connected to
zero, one, or two vertices in the interior Bf!. Let ¥, %, ¥ denote respectively
the set of all the vertices o’, the vertices in the interior df %, and the vertices
on the boundary of %/, Let S(.7) be the space of piecewise linear functions with
respect taZ which are continuous ofi*! and vanish on its boundary. We denote by
@,, a€ ¥ the finite element basis functions. Th@.7) = span{®,:ac ¥}. For
acV, letoa:=U{Te€T:acT}, Ja:={be ¥:bec ga},and N :=Ugcgy Na.
Let 7 be the set of triangleB € .7 which have all their vertices on the boundary of
<. ForT e 7, we denote by the only vertex ofl that has no interior neighbor.
Let .#¢ denote the verticesr of .4~ which belong to a triangle adjacent to a triangle
T € Z.. We introduce®, defined as follows:

d,, ac\N
Pat Y Ana®, ac. AN\ M
Oy = bed7Nao, .
¢aT+ z Ab,aT(Db‘i‘(Dcn a:aTef/%
bed“I/ﬁaaT

The weights are defined such that [Bka +Acp = 1 and|Top/Aca = |T2.a|Achs
for all boundary nodes € 9 connected to two interior nodesandb. HereT; 5
(resp.T ) denote the adjacent triangle dbc havinga (resp.b) as a vertex and its
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two others vertices od . For all boundary nodes< 97 connected to only one
interior nodea, the weights aré\¢ 5 =1

The spacalf’ is then defined by}’ := span{®,, a € %}. ThenW¥ is the
product space of th‘é/if’z over eactl such that™k* £ 0.

We introduce now the discrete problem. L&t , be the gradient operator on
%, We define the discrete constrained space as follows:

Th={(unp,) € <|‘|Xh> <k|E|1V\4l‘>

/rkf ((Pnk+ 0Unk) = (—Phe+ AUng)) ke + /rkf BUOxn (Unk — Un.e)Or Uhi e
7/5/' B (O Unk — O Une) Whie =0, Ve € VNV#’[}, %)
k.t
and the discrete problem is the following one : Fiug, p, ) € 7, such that

WWh = (Vi1 --Vhk) € M X

K K K
Oup kOVh k + UnkVh k) dX — / Vhds = / £V X 6
k; /Qk( hkOVh k + Un kVh k) k; | o PV k; o v (6)

Let us describe the algorithm in the discrete case.

3.2 Iterative algorithm

We restrict ourselves to the presentation of the algorith@D.

The recommended approach to find the solution of the prevdimasete problem
is a GMRES acceleration [12] of the iterative Schwarz athoni For the sake of
clarity, let us present the plain Jacobi algorithm appliedhte discrete Schwarz
algorithm : let(uf ., pf,) € X x W be a discrete approximation @i, p) in Q at
stepn. Then, (Ui, piicd) is the solution inxk x Wi of

/ (Duh OVhk + Uh K Vh k dX / p”*lvhvkds: / . ficVh kdX, Yh € Xfl.f, @)
JQk Q '
/r ((PET(1+ a UﬂJﬂl)lIJh,k,z + BUg U " Dw Whie) — /a - BUy,, Uﬂil‘/fh-,kl
k¢

= /rk-f ((—=Phe+aup ) hie +BOg W 0n , Ynke)

- / BUOg Un oWhke,  Ydhke EVV#’Z- (8)
ol
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An initial guess(gk ¢) is given on each interfadg ,, and by convention for the first
iterate, the right-hand side in (8) is given &y, .

4 Numerical results

In this part, we consider B finite element approximation. Problem (6) is a square
linear system, invertible in the various numerical testpeormed, the results pre-
sented below being some of them. We study the numerical @nadysis for problem
(6), as well as the convergence of the algorithm (7)-(8) Witntcel compared to
Robin (i.e.8 = 0) transmissions conditions.

We consider the initial problem with exact solutiofx,y) = x3y? + sin(xy). The
domain is the unit squar@ = (0,1) x (0, 1).

We decompos€ into non-overlapping subdomains with meshes generatad in a
independent manner. On Fig. 1, we consider the case of 2 owfiorening meshes
(on the left), and the case of 25 non-conforming meshes @right). In the sequel,
for the error curves versis the computed solution is the solution at convergence of
the discrete algorithm (7)-(8), with a stopping criteriantbel.? norm of the jumps
of the interface conditions that must be smaller than'40

4.1 Choice of the Ventcel parameters 3

In our numerical results, the Ventcel parameters are obdaby minimizing the
convergence factor (depending on the mesh size in that.¢agbg conforming two
subdomains case, with constant mesh kiaad an interface of length the optimal
theoretical values of the Ventcel parameter which minimize the convergence

\ 7

Fig. 1 Nonconforming domain decomposition in 2 domains (left), and 25alos (right)
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factor at the continuous level are [5]:

kigmx\/krzTinJrl*kt%in\/kunaxﬂLl
V2K Kin) (Va1 VWit 1) (Gt 1) VK 1 (K1) ot D)

B* — \/k,zmx-s-l—\/kﬁ,-n—s-l)%
- -
V20— Zin) (ot D) v/ R+ 1= (kB +1) /K1) *

wherekqin andknax are respectively the minimum and maximum frequencies which
can be represented on a grid with mesh s$izgiven bykqin = % andkmax = §. In

the non-conforming case, the mesh size is different for e#dh of the interface.
Thus, we consider the parameters given by (9) Wwithh;,, denoted bya™, 3™), or
with h = hy denoted b}(aM,BM), wherehy, andhy, are respectively the smallest
and highest step size on the interface. We consider also éhinRase with the

optimal theoretical value given by [5&tz = (()?+1) ((f=)?+1)) i

a* =

FNI

9)

4.2 Two subdomains case

In this part we consider the 2 non-conforming meshes on thefié&ig. 1. As the
problem (6) depends om,3, we consider two caseéa,3) = (0m,Bm) (case (M))
and(a, ) = (awm, Bw) (case (M)). In order to observe the error verlus computed
solution (solution of (6)) corresponds to the solution ainaygence of (7)-(8). The
solution with (a, 3) = (am, Bm) is different from the one wittia, 3) = (am, Bum).
We represent on Fig. 2 (left), for both cases, the relatiVerror (defined as in [8]),
and the relativé.? error versus the mesh sikein logarithmic scale. We start from
the 2 non-conforming meshes and then refine successivelyreash by dividing
the mesh size by two. We observe similar results for bothscaRee results show
that the relativeH?® error tends to zero at the same rate as the meshsize also
observe that the relatiMe? error tends to zero at the same ratéhdsWe represent
on Fig. 2 (right) the asymptotic performance with optimiaéhtcel (i.e.a = ay,

B = Bwm) or Robin (i.e.a = ag, B = 0) conditions, for the Schwarz algorithm (7)-(8)
and for the GMRES algorithm. We simulate directly the ereuations,f = 0, and
use a random initial guess so that all the frequency compstaea present. We plot
the numben, of iterations (taken to reduce the error by a factor)0ersush on

a log-log plot. The numerical results show the asymptotitaveor predicted by the
analysis given in [5]:

e N, = O(h%) for Robin (i.e.a = ag, B = 0) with Schwarz as an iterative solver,
e N, = O(h?lt) for Robin with GMRES (i.e. Schwarz used as a preconditigner)

e N, = O(h%) for Ventcel (i.e.a = ay, B = Bu) with Schwarz as an iterative solver,

o n, = O(h?lz) for Ventcel with GMRES.
We also observe that using Krylov acceleration (GMRES) oups the asymp-
totic performance by a square root.
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4.3 Twenty-five subdomains case

We now consider the 25 non-conforming meshes on the righigoflF-

In order to observe thel! error, each computed solution corresponds to the so-
lution at convergence of (7)-(8). We represent on Fig. 3)(kbk relativeH? error
versus the mesh sizein logarithmic scale. We start from the 25 non-conforming
meshes and then refine successively each mesh by dividingebk size by two.
The results show that the relatit# error tends to zero at the same rate as the mesh
sizeh. On Fig. 3 (right), we study the performance of the algorit{ij(8) with
Ventcel and Robin transmission conditions. We simulatedtly the error equa-
tions, f = 0, and use a random initial guess on the interfaces. We pidtithand
L™ errors versus the number of iterations. We observe thatuhear of iterations

—<— Robin (Schwarz)
—_— 2

2 Robin (GMRES)
10" [| —#— Ventcel (Schwarz)
hy4

—&— Ventcel (GMRES)
hie

—&— L2 relative error (m)
L2 relative error (M)

_,[| —&— H* relative error (m)

f| —+— H! relative error (M)

— 2

---h

iterations
D

Fig. 2 Decomposition in 2 subdomains: error analysis vers(ieft), and asymptotic number of
iterations required by the method with optimized Robin or ¥ehtonditions, when the method is
used as iterative solver, or used as preconditioner for a Kiylethod (GMRES)

107 i 10 . . . . : :

—+— H! relative error N Ventcel (L"~norm)
—h e TN —6&— Ventcel (H'-norm)
. N ~ Robin (L"-norm|
/ 0wl § SN ( ) ) ||
D N — — — Robin (H"-norm)
) N
N
10 e i
R <
-2 5 s N
10 " 1 il AN
" AN
10 . N 1
X\ N
L RN
N
B ) N
10 AN 4
v NN
1Y
107 10 . . . . . .
10° 107 10t 0 20 40 60 80 100 120 140
h number of iterations

Fig. 3 Decomposition in 25 subdomainis! error versush (left), and error versus iterations (in
theH! andL® norms) with optimized Robin or Ventcel conditions
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to obtain an error smaller than 19is by a factor 4 higher with optimized Robin
conditions compared to optimized Ventcel conditions. Téwitts are similar for the
H® andL® errors.
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