
Overlapping domain decomposition methods

with FreeFem++

Pierre Jolivet1,3, Frédéric Hecht1, Frédéric Nataf1, and Christophe Prud’homme2

1 Introduction

Developping an efficient and versatile framework for finite elements domain de-

composition methods can be a hard task because of the mathematical genericity of

finite element spaces, the complexity of handling arbitrary meshes and so on. The

purpose of this note is to present one way to implement such a framework in the

context of overlapping decompositions. In section 2, the basics for one-level over-

lapping methods is introduced, in section 3, a second level is added to the original

framework to ensure scalability using a portable C++ library, and section 4 gathers

some numerical results. FreeFem++ will be used for the computations of finite

element matrices, right hand side and mesh generation, but the work here is also

applicable to other Domain-Specific (Embedded) Language such as deal.II [3],

Feel++ [12], GetFem++...

2 One-level methods

Let Ω ⊂R
d (d = 2 or 3) be a domain whose associated mesh can be partitioned into

N non-overlapping meshes {Ti}16i6N using graph partitioners such as METIS [10]

or SCOTCH [5]. Let V be the finite element space spanned by the finite set of n

basis functions {φi}16i6n defined on Ω , and {Vi}16i6N be the local finite element

spaces defined on the domains associated to each {Ti}16i6N . Typical finite element

discretizations of a symmetric, coercive bilinear form a : V ×V → R yield the fol-

lowing system to solve :

Ax = b, (1)

where (Ai j)16i, j6n
= a(φ j,φi), and (bi)16i6n = (f ,φi), f being in the dual space V ∗.

Let an integer δ be the level of overlap:
{
T δ

i

}
16i6N

is an overlapping decomposi-

tion and if we consider the restrictions {Ri}16i6N from V to
{

V δ
i

}
16i6N

, the local

finite element spaces on
{
T δ

i

}
16i6N

, and a local partition of unity {Di}16i6N such

that

1 Laboratoire Jacques-Louis Lions, CNRS UMR 7598, Université Pierre et Marie Curie, 75005

Paris, France, e-mail: {jolivet}{hecht}{nataf}@ann.jussieu.fr · 2 Institut de

Recherche Mathématique Avancée, CNRS UMR 7501, Université de Strasbourg, 7 rue René

Descartes, 67084 Strasbourg Cedex, France, e-mail: prudhomme@unistra.fr · 3 Laboratoire

Jean Kuntzmann, CNRS UMR 5224, Université Joseph Fourier, 51 rue des Mathématiques, BP53,

38041 Grenoble Cedex 9, France, e-mail: jolivet@imag.fr

1

2 Pierre Jolivet et al.

N

∑
j=1

RT
j D jR j = I . (2)

Then a common one-level preconditioner for system (1) introducted in [4] is

P
−1
RAS =

N

∑
i=1

RT
i Di(RiART

i)
−1Ri . (3)

The global matrix A is never assembled, instead, we build locally Aδ+1
i the stiffness

matrix yielded by the discretization of a on V δ+1
i , and we remove the columns and

rows associated to degrees of freedom lying on elements of T
δ+1

i \T δ
i , this yields

Ai = RiART
i . The distributed sparse matrix-vector product Ax for x ∈ R

n can be

computed using point-to-point communications and the partition of unity without

having to store the global distributed matrix A. Indeed, using (2), if one looks at the

local components of Ax, that is RiAx, then one can write, introducing Oi the set of

neighboring subdomains to i, i.e.
{

j : T δ
i ∩T δ

j 6= /0
}

:

RiAx =
N

∑
j=1

RiART
j D jR jx (4)

= AiDiRix+ ∑
j∈Oi

RiR
T
j A jD jR jx . (5)

since it can be checked that

∀x ∈ R
n
, RiART

j D jR jx = RiR
T
j R jART

j D jR jx (6)

The sparse matrix-sparse matrix products RiR
T
j are nothing else than point-to-point

communications from neighbors j to i.

In FreeFem++, stiffness matrices such as Aδ+1
i and right-hand sides are assembled

as follows (a simple 2D Laplacian is considered here):

mesh Th; // Th is a local 2D mesh
(
for example T

δ+1
i

)

fespace Vh(Th, Pk); // Vh is a local finite element space

varf a(u, v) = int2d(dx(u) * dx(v) + dy(u) * dy(v))

+ int2d(f * v) + BC;

matrix A = a(Vh, Vh); // A is a sparse matrix stored in the CSR format

Vh rhs; // rhs is a function lying in the FE space Vh

rhs[] = a(0, Vh); // Its values are set to solve Ax = rhs

The mesh Th can either be created on the fly by FreeFem++, or it can be loaded

from a file generated offline by Gmsh [6], for example when dealing with com-

plex geometries. By default, FreeFem++ handles continuous piecewise linear,

quadratic, cubic, quartic finite elements, and other traditionnal FE like Raviart-

Thomas 1, Morley, ... The boundary conditions depend on the label set on the

mesh. For example, if one wants to impose penalized homogeneous Dirichlet bound-

ary conditions on the label 1 of the boundary of Th, then one just has to add

Overlapping domain decomposition methods with FreeFem++ 3

+ on(1, u = 0) in the definition of the varf. For a more detailed intro-

duction to FreeFem++ with abundant examples, interested readers should visit

http://www.freefem.org/ff++ or see [9].

The partition of unity Di is built using a continuous piecewise linear approximation

of

χi =
χ̃i

χ̃i + ∑
j∈Oi

χ̃ j

∣∣
T δ

i ∩T δ
j

, (7)

where χ̃i is defined as

χ̃i =

{
1 on all vertices of Ti

1−
m

δ
on all vertices of T m

i \T
m−1

i ∀m ∈ [1;δ] .
(8)

3 Two-level methods

It is well known that one-level domain decomposition methods as depicted in sec-

tion 2 do suffer from poor conditioning when used with many subdomains, [16]. In

this section, we present a new C++ library, independent of the finite element back-

end used, that assembles efficiently a coarse operator that will be used in section

4 to ensure scalability of our framework. The theoretical foundations for the con-

struction of the coarse operator are presented in [14]. From a practical point of view,

after building each local solver Ai, three dependent operators are needed :

1. the deflation matrix Z,

2. the coarse operator E = ZT AZ,

3. the actual precontioner P
−1
A-DEF1 = P

−1
RAS(I −AZE−1ZT)+ZE−1ZT , thorougly

studied in [15].

In [14], the deflation matrix is defined as :

Z =
[
RT

1 W1 RT
2 W2 · · · RT

NWN

]
∈ R

n ×R
∑N

i=1 νi (9)

where {
Wi =

[
DiΛi1 DiΛi2 · · · DiΛiνi

]
∈ R

ni ×R
νi
}

16i6N
(10)

νi is a threshold criterion used to select the eigenvectors Λi associated to the smallest

eigenvalues in magnitude of the following local generalized eigenvalue problem:

Aδ
i Λi = λiDiR

T
i,0Ri,0Aδ

i DiΛi

where Aδ
i is the matrix yielded by the discretization of a on V δ

i , and Ri,0 is the restric-

tion operator from T δ
i to the overlap T δ

i ∩
(
∪ j∈Oi

T δ
j

)
. In FreeFem++, sparse

eigenvalue problems are solved either with SLEPc [8] or ARPACK [11]. The latter

seems to yield better performance in our simulations. Given, for each MPI process,

4 Pierre Jolivet et al.

the local matrix Ai, the local partition of unity Di, the set of eigenvalues
{

Λi j

}
16 j6νi

and the set of neighboring subdomains Oi, our library assembles E without having

to assemble A and to store Z, and computes its LU or LDLT factorization using either

MUMPS [1, 2], PARDISO [13] or PaStiX [7]. Moreover, all linear algebra related

computations (e.g. sparse matrix-vector products) within our library are performed

using Intel MKL, or can use user-supplied functions, for example those from within

the finite element Domain-Specific (Embedded) Language. Assembling E is done

in two steps: local computations and then renumbering.

• first, compute local vector-sparse matrix-vector triple products which will be

used to assemble the diagonal blocks of E . For a given row in E , off-diagonal val-

ues are computed using local sparse matrix-vector products coupled with point-

to-point communications with the neighboring subdomains: the sparsity pattern

of the coarse operator is similar to the dual graph of the mesh partitioning (hence

it is denser in 3D than in 2D),

• then, renumber the local entries computed previously in the distributed matrix E .

Only few processes are in charge of renumbering entries into E . Those processes

will be refered to in the rest of this note as master processes. Any non master pro-

cess has to send the rows it has previously computed to a specific master process.

The master processes are then able to place the entries received at the right row and

column indices. To allow an easy incremental matrix construction, E is assembled

using the COO format. If need be, it is converted afterwards to the CSR format.

Note here that MUMPS only supports the COO format while PARDISO and PaStiX

work with the CSR format.

After renumbering, the master processes are also the one in charge of computing the

factorization of the coarse operator. The number of master processes is a runtime

constant, and our library is in charge of creating the corresponding MPI commu-

nicators. Even with “large” coarse operators of sizes of around 100000× 100000,

less than few tens of master processes usually perform the job quite well: comput-

ing all entries, renumbering and performing numerical factorization take around 15

seconds when dealing with thousands of slave processes.

A routine is then callable to solve the equation Ex = y for an arbitrary y ∈ R∑N
i=1 νi ,

which in our case is used at each iteration of our Krylov method preconditioned

by P
−1
A-DEF1. Once again, the deflation matrix Z is not stored as the products

ZT x ∈ R∑N
i=1 νi and Zy ∈ R

n can be computed explicitely with a global matrix-free

method (we only use the local Wi plus point-to-point communications with neigh-

boring subdomains).

4 Numerical results

Results in this section were obtained on Curie, a Tier-0 system for PRACE com-

posed of 5040 nodes made of 2 eight-core Intel Sandy Bridge processors clocked

Overlapping domain decomposition methods with FreeFem++ 5

at 2.7 GHz. The interconnect is an InfiniBand QDR full fat tree network. We want

here to assess the capability of our framework to scale:

1. strongly: for a given global mesh, the number of subdomains increases while

local mesh sizes are kept constant (i.e. local problems get smaller and smaller),

2. weakly: for a given global mesh, the number of subdomains increases while local

mesh sizes are refined (i.e. local problems have a constant size).

We don’t time the generation of the mesh and partition of unity. Assembly and fac-

torization of the local stiffness matrices, resolution of the generalized eigenvalue

problems, construction of the coarse operator and time elapsed for the convergence

of the Krylov method are the important procedures here. The Krylov method used

is the GMRES, it is stopped when the relative residual error is inferior to ε = 10−6

in 2D, and 10−8 in 3D. All the following results where obtained using a LDLT fac-

torization of the local solvers Aδ
i and the coarse operator E using MUMPS (with a

MPI communicator set to respectively MPI COMM SELF or the communicator cre-

ated by our library binding master processes).

First, the system of linear elasticity with highly heterogeneous elastic moduli

is solved with a minimal geometric overlap of one mesh element. Its variational

formulation reads:
∫

Ω
λ ∇ ·u∇ · v+ 2µε(u)Tε(v)+

∫

Ω
f · v+

∫

∂Ω
g · v (11)

where

• λ and µ are the Lamé parameters such that µ =
E

2(1+ν)
and λ =

Eν

(1+ν)(1− 2ν)
(E being Young’s modulus and ν Poisson’s ratio). They are chosen to vary be-

tween two sets of values, (E1,ν1) = (2 ·1011
,0.25), and (E2,ν2) = (108

,0.4).
• ε is the linearized strain tensor and f the volumetric forces (here, we just consider

gravity).

Because of the overlap and the duplication of unkowns, increasing the number of

subdomains means that the number of unknowns increases also slightly, even though

the number of mesh elements (triangles or tetrahedra in the case of FreeFem++) is

the same. In 2D, we use piecewise cubic basis functions on an unstructured global

mesh made of 110 million elements, and in 3D, piecewise quadratic basis functions

on an unstructured global mesh made of 20 million elements. This yields a symmet-

ric system of roughly 1 billion unkowns in 2D and 80 million unknowns in 3D. The

geometry is a simple [0;1]d × [0;10] beam (d = 1 or 2) partitioned with METIS.

Solving the 2D problem initially on 1024 processes takes 227 seconds, on 8192

processes, it takes 31 seconds (quasioptimal speedup). With that many subdomains,

the coarse operator E is of size 121935× 121935. It is assembled and factorized

in 7 seconds by 12 master processes. For the 3D problem, it takes initially 373 sec-

onds. At peak performance, near 6144 processes, it takes 35 seconds (superoptimal

speedup). This time, the coarse operator is of size 92160×92160 and is assembled

and factorized by 16 master processes in 11 seconds.

6 Pierre Jolivet et al.

1 024
2 048

4 096
6 144

8 192

1

2

4

6

8

#processes

T
im

in
g
re
la
ti
v
e
to

1
0
2
4
p
ro
ce
ss
es

Linear speedup 10

15

20

25

1 024
2 048

4 096
6 144

8 192

1

2

4

6

8

#processes

Linear speedup 10

15

20

25

#
it
er
a
ti
o
n
s

Fig. 1 Linear elasticity test cases. 2D on the left, 3D on the right. Strong scaling

Moving on to the weak scaling propreties of our framework, the problem we

now solve is a scalar equation of diffusivity with highly heterogeneous coefficients

(varying from 1 to 105) on [0;1]d (d = 2 or 3). Its variational formulation reads:

∫

Ω
κ∇u ·∇v+

∫

Ω
f · v (12)

The targeted number of unkowns per subdomains is kept constant at approximately

800 thousands in 2D, and 120 thousands in 3D (once again with P3 and P2 finite

elements respectively).

1 024
2 048

4 096
6 144

8 192
12 288

0%

20%

40%

60%

80%

100%

#processes

W
ea
k
effi

ci
en
cy

re
la
ti
v
e
to

1
0
2
4
p
ro
ce
ss
es

844

10 176

1 024
2 048

4 096
6 144

8 192

0%

20%

40%

60%

80%

100%

#processes

130

1 051

#
d
.o
.f
.
(i
n
m
il
li
o
n
s)

Fig. 2 Diffusion equation test cases. 2D on the left, 3D on the right. Weak scaling

In 2D, the initial extended system (with the duplication of unkowns) is made of

800 million unkowns and is solved in 141 seconds. Scaling up to 12288 processes

yields a system of 10 billion unkowns solved in 172 seconds, hence an efficiency of
141
172

≈ 82%. In 3D, the initial system is made of 130 million unkowns and is solved

in 127 seconds. Scaling up to 8192 processes yields a system of 1 billion unkowns

solved in 152 seconds, hence an efficiency of 127
152

≈ 83%.

Overlapping domain decomposition methods with FreeFem++ 7

5 Conclusion

This note clearly shows that our framework scales on very large architectures for

solving linear positive definite systems using overlapping decompositions with

many subdomains. It is currently being extended to support nonlinear problems

(namely in the field of nonlinear elasticity) and we should be able to provide sim-

ilar functionalities for non-overlapping decompositions. It should be noted that the

heavy use of threaded (sparse) BLAS and LAPACK routines (via Intel MKL, PAR-

DISO, and the Reverse Communication Interface of ARPACK) has already helped

us to get a quick glance at how the framework performs using hybrid parallelism.

We are confident that using this novel paradigm, we can still improve our scaling

results in the near future by switching the value of OMP NUM THREADS to a value

greater than 1.

Acknowledgements This work has been supported in part by ANR through COSINUS program

(project PETALh no. ANR-10-COSI-0013 and projet HAMM no. ANR-10-COSI-0009). It was

granted access to the HPC resources of TGCC@CEA made available within the Distributed Euro-

pean Computing Initiative by the PRACE-2IP, receiving funding from the European Community’s

Seventh Framework Programme (FP7/2007-2013) under grant agreement RI-283493.

References

1. Amestoy, P., Duff, I., L’Excellent, J.Y., Koster, J.: A fully asynchronous multifrontal solver

using distributed dynamic scheduling. SIAM Journal on Matrix Analysis and Applications

23(1), 15–41 (2001)

2. Amestoy, P., Guermouche, A., L’Excellent, J.Y., Pralet, S.: Hybrid scheduling for the parallel

solution of linear systems. Parallel computing 32(2), 136–156 (2006)

3. Bangerth, W., Hartmann, R., Kanschat, G.: deal.II — a general-purpose object-oriented finite

element library. ACM Transactions on Mathematical Software 33(4), 24–27 (2007)

4. Cai, X.C., Sarkis, M.: Restricted additive Schwarz preconditioner for general sparse linear

systems. SIAM Journal on Scientific Computing 21(2), 792–797 (1999)

5. Chevalier, C., Pellegrini, F.: PT-Scotch: a tool for efficient parallel graph ordering. Parallel

Computing 34(6), 318–331 (2008)

6. Geuzaine, C., Remacle, J.F.: Gmsh: A 3-d finite element mesh generator with built-in pre-

and post-processing facilities. International Journal for Numerical Methods in Engineering

79(11), 1309–1331 (2009)

7. Hénon, P., Ramet, P., Roman, J.: PaStiX: a high performance parallel direct solver for sparse

symmetric positive definite systems. Parallel Computing 28(2), 301–321 (2002)

8. Hernandez, V., Roman, J., Vidal, V.: SLEPc: A scalable and flexible toolkit for the solution of

eigenvalue problems. ACM Transactions on Mathematical Software 31(3), 351–362 (2005)

9. Jolivet, P., Dolean, V., Hecht, F., Nataf, F., Prud’homme, C., Spillane, N.: High performance

domain decomposition methods on massively parallel architectures with FreeFem++. Journal

of Numerical Mathematics 20(4), 287–302 (2012)

10. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular

graphs. SIAM Journal on Scientific Computing 20(1), 359–392 (1998)

11. Lehoucq, R., Sorensen, D., Yang, C.: ARPACK users’ guide: solution of large-scale eigenvalue

problems with implicitly restarted Arnoldi methods, vol. 6. Society for Industrial and Applied

Mathematics (1998)

8 Pierre Jolivet et al.

12. Prud’homme, C., Chabannes, V., Doyeux, V., Ismail, M., Samake, A., Pena, G.: Feel++:

A computational framework for Galerkin methods and advanced numerical methods. In:

ESAIM: Proceedings, vol. 38, pp. 429–455 (2012)

13. Schenk, O., Gärtner, K.: Solving unsymmetric sparse systems of linear equations with PAR-

DISO. Future Generation Computer Systems 20(3), 475–487 (2004)

14. Spillane, N., Dolean, V., Hauret, P., Nataf, F., Pechstein, C., Scheichl, R.: A robust two-level

domain decomposition preconditioner for systems of PDEs. Comptes Rendus Mathematique

349(23), 1255–1259 (2011)

15. Tang, J., Nabben, R., Vuik, C., Erlangga, Y.: Comparison of two-level preconditioners derived

from deflation, domain decomposition and multigrid methods. Journal of Scientific Comput-

ing 39(3), 340–370 (2009)

16. Toselli, A., Widlund, O.: Domain decomposition methods — algorithms and theory, Series in

Computational Mathematics, vol. 34. Springer (2005)

