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1 Introduction
Fast elliptic solvers are a key ingredient of massively parallel Particle-in-Cell (PIC)
and Vlasov simulation codes for fusion plasmas. This applies for both, the gyroki-
netic and fully kinetic models. The currently available most efficient solver for large
elliptic problems is the multigrid method, especially the geometric multigrid method
which requires detailed information of the geometry for its discretization.

In this paper, we consider a structured triangulation of a hexagonal domain for an
elliptic partial differential equation and its parallel solver. The matrix-vector mul-
tiplication is the key component of iterative methods such as CGM, GMRES, and
the multigrid method. Many researchers have developed parallel solvers for partial
differential equations on unstructured triangular meshes. In this paper, we consider
a new approach to handle a structured grid of a regular hexagonal domain with reg-
ular triangle elements. We classify nodes as either real or ghost ones and find that
the required steps of data communication to assign the values on the ghost nodes is
five. We show that the matrix-vector multiplication of this approach has an almost
perfect scaling property.

The multigrid method is a well-known, fast and efficient algorithm to solve many
classes of problems [1, 4, 5]. In general, the ratio of the communication costs to
computation costs increases when the grid level is decreased, i.e., the communica-
tion costs are high on the coarser levels in comparison to the computation costs.
Since, the multiplicative multigrid algorithm is applied on each level, the bottleneck
of the parallel multigrid lies on the coarser levels, including the exact solver at the
coarsest level. The additive multigrid method could combine all the data communi-
cation for the different levels in one single step. However, this version can be used
only for preconditioner and need almost the double amount of iterations generally.
The multiplicative version can be used as a solver and as a preconditioner, so we
consider the multiplicative version only.

The feasible coarsest level of operation of the parallel multigrid method depends
on the number of cores. The number of degrees of freedom (DoF) of the coarsest
level problem will be increased as the number of cores is increased. To improve
the performance of the parallel multigrid method, we consider reducing the number
of executing cores to one (the simplest case) after gathering data from all cores on
a certain level. This algorithm avoids the coarsest level limitation and numerical
experiments on large numbers of cores show very good performance improvement.
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A different way to improve the performance of the parallel multigrid method is
to use a scalable solver on the coarsest level. A good candidate for the coarsest level
solver is the two-level domain decomposition method because these methods are
intrinsically parallel and their required number of iterations does not depend on the
number of sub-domains (cores). We consider BDDC [2] and FETI-DP [3] because
these are well-known two-level non-overlapping domain decomposition methods
and show very good performance for many problems.

In this paper we investigate the scaling properties of the multigrid method with
gathering data, BDDC, and FETI-DP on a massively parallel computer.

2 Model problem and its parallelization
We consider the Poisson type second order elliptic partial differential equations on
a regular hexagonal domain Ω with Dirichlet boundary conditions

c(x,y)u−∇ ·a(x,y)∇u = f , in Ω ,
u = 0, on ∂Ω , (1)

where f ∈ L2(Ω), c(x,y) is a non-negative function and a(x,y) is a uniformly posi-
tive and bounded function. It is well known that the Eq. (1) has a unique solution.

The second-order elliptic problem (1) is equivalent to: find u ∈ H1
0 (Ω) such that

aE(u,v) =
∫

Ω
c(x,y)uvdx+

∫
Ω

a(x,y)∇u ·∇vdx =
∫

Ω
f vdx (2)

for any test function v ∈ H1
0 (Ω) where H1

0 (Ω) is the space of the first differentiable
functions in Ω with zero values on the boundary ∂Ω .

We consider a piecewise linear finite element space defined on a triangulation
with regular triangles. This triangulation generate a structured grid and can be ap-
plied to a D-shape Tokamak interior region with conformal mapping. Let h1 and
Th1 ≡ T1 be given, where T1 is a partition of Ω into triangles and h1 is the maxi-
mum diameter of the elements of T1. For each integer 1 < k ≤ J, let hk = 2−(k−1)h1
and the sequence of triangulations Thk ≡Tk be constructed by the nested-mesh sub-
division method, i.e., let Tk be constructed by connecting the midpoints of the edges
of the triangles in Tk−1, and let ThJ ≡ TJ be the finest grid.

Let us define the piecewise linear finite element spaces

Vk = {v ∈C0(Ω) : v|K is linear for all K ∈ Tk}.

Then, the finite element discretization problem can be written as follows: find
uJ ∈VJ such that

aE(uJ ,v) =
∫

Ω
f vdx (3)

for any test function v ∈VJ , i.e., solve the linear system AJuJ = fJ .
Let us now consider the parallelization of the above problem. We use real and

ghost nodes on each core. The values on the real nodes are handled and updated
locally. The ghost nodes are the part of the distributed sub-domains located on other
cores whose values are needed for the local calculations. Hence, the values of the
ghost nodes are first updated by the cores to which they belong to as real nodes and
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Fig. 1 The subdomains on 24
cores and real (–, •) and ghost
(· · ·, ©) nodes on subdomains
according to the types

then transferred to the cores that need them. To reduce data communication during
matrix element computation, the computation of matrix elements on some cells can
be executed on several cores which have a node of the cell as a real node.

We consider the way to divide the hexagonal domain into sub-domains with the
same number of cores. Except for the single core case, we divide the hexagonal
domain in regular triangular sub-domains and each core handles one sub-domain.
Hence, feasible numbers of cores are limited to the numbers 6×4n for n= 0,1,2, . . ..
For each core we have to define what are real and ghost nodes on the common
boundary regions of the sub-domains. We determine the nodes on the common
boundary of the sub-domains as the real nodes of the sub-domain which are lo-
cated in the counterclockwise direction or in the outer direction from the center of
the domain as shown in Fig. 1. For our problem with a Dirichlet boundary condition
on the outer boundary, we can handle the boundary nodes as ghost ones. The values
of these boundary nodes are determined by the boundary condition and thus do not
have to be transferred bewteen cores.

We number the sub-domains beginning at the center and going outwards follow-
ing the counterclockwise direction. Each sub-domain can be further divided into
triangles; this process is called triangulation. In this process each line segment of
the sub-domain is divided into 2n parts. It can be shown that, independently of the
total number of sub-domains and triangulation chosen, there are just three domain
types. These give detailed information on the real and ghost nodes being connected
to other sub-domains and cells which are needed to compute the matrix elements
for the real nodes. To see how good the load balancing is, we measure the ratio
of the largest number of real nodes to the smallest number of real nodes which is
{2n(2n +3)}/{2n(2n +1)} which tends to ‘1’ as n is increased.

To get the values on the ghost nodes from the other cores for all sub-domains, we
implement certain communication steps. The communication steps are the dominat-
ing part of the parallelization process and thus a key issue for the performance of
the parallel code. The easiest way to implement the data communication would be
that every ghost node value is received from the core which handles it as a real node
value. However, such implementation would need several steps and the required
number would then vary among the different cores. So this approach could be used
for unstructured grids, but it would be too slow in our case. However, we solved the
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problem by using a sophisticated data communication routine which needs a fixed
number of steps for each core (that is, five).

Our dedicated data communication steps are as follows:

S1: Radial direction
S2: Counterclockwise rotational direction
S3: Clockwise rotational direction
S4: Radial direction (same as in S1)
S5: Mixed communications

3 Multigrid and domain decomposition methods
The motivation for the multigrid method is the fact that basic iterative methods, such
as Jacobi and Gauss-Seidel methods, reduce well the high-frequency error but have
difficulties to reduce the low-frequency error, which can be well approximated after
projection on the coarser level problem. The multigrid method consists of two main
steps, one is the smoothing operator and the other is the intergrid transfer operator.
The former has to be easy to be implemented and be able to reduce effectively the
high frequency error.

The other important operator is the intergrid transfer operator, which consists
of the prolongation and the restriction operator. The intergrid transfer operators on
triangular meshes have been studied in depth by many researchers, and their usage
is mature.

The main issue with the parallelization of the multigrid method is execution time
on the coarser level iterations. In general, the ratio of communication to computation
on a coarse level grid is larger than on a fine level grid. Because the multigrid method
works on both the coarse and fine grid levels, to get good scaling performance, we
might need to avoid operating on the coarser level if possible. Usually, the W -cycle
and the variable V -cycle multigrid methods require more work on the coarse level
problems, so we consider for parallelization only the V -cycle multigrid method.

In addition to the execution time on the coarser level, we have to consider the
solving time on the coarsest level. As a coarsest level solver, we can use either a
Krylov subspace method or a direct method. The solving time of both methods in-
creases with the problem size. So in considering the solution time of the coarsest
level we need to find the optimal coarsening level, as well as the ratio of the com-
munication to computation on each level.

From a certain level on, we can use a small number of cores to perform compu-
tations for the coarser levels. Among all the possible algorithms, let us consider the
one which executes only on one core after having gathered all data.

Such a multigrid algorithm variation can solve the coarsest level problem on
one core only, independent of the total number of cores. Instead of having only
one core solving the coarser level problems and other cores idling, we choose to
replicate the same computation on the coarser levels on each core; then we use
these results for computations on the finer level. In the variant which we use, we use
MPI Allreduce which may yield a better performance than using combinations
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of MPI Reduce and MPI Bcast, depending on the MPI implementation on the
given machine.

Let us now consider another well known parallel solver, namely the domain de-
composition method (DDM). The non-overlapping DDM is a natural method for
problems which have discontinuous coefficients or many parts and are akin to being
implemented on distributed memory computers. The non-overlapping DDM can be
characterized by how it handles the values on the inner-boundary (that is, the com-
mon boundary of the two sub-domains). The condition number of the two-level non-
overlapping DDM does not depend on the number of sub-domains. The BDDC and
FETI-DP methods are well developed two-level DDM and have good performance
when using a large number of sub-domains.

The BDDC algorithm [2] has been developed as an algorithm for substructuring,
based on the constrained energy minimization concept. We follow the algorithm of
[2] with a constraint matrix Cu which enforces equality of substructure DoF aver-
aged across edges and at individual DoF on substructure boundaries (corner).

The FETI-DP method [3] imposes the continuity on the corner nodes which in-
cludes more than two sub-domains and the continuity on the edge nodes by using the
Lagrange multipliers λ . By block Gauss elimination, we obtain the reduced system
Fλ = d and solve it with PCGM with the Dirichlet preconditioner, as in [3].

4 Numerical experiments
As a model problem, we choose the simplest one with c(x,y)= 0 and a(x,y)= 1.0 in
Eq. (1), i.e., the Poisson problem. To test the performance of our implementation, we
use the finite element discretization formula which is the same for the finite volume
discretization for this test problem. As a termination criterion for the solvers, we
define a reduction of the initial residual error on the finest level by a factor of 10−8.

The performance results reported in this paper were obtained on the HELIOS
machine. The HELIOS machine is located in the International Fusion Energy Re-
search Centre (IFERC) at Aomori, Japan. IFERC was built in the framework for
the EU(F4E)-Japan broader approach collaboration. The machine is made by 4410
Bullx B510 Blades nodes of two 8-core Intel Sandy-Bridge EP 2.7 GHz processors
with 64 GB memory and connected by Infiniband QDR. So it has a total of 70 560
cores total and 1.23 Petaflops Linpack performance.

We consider the multigrid method as a preconditioner of the preconditioned
CGM with a localized Gauss-Seidel smoother which use old values on the ghost
nodes. For the multigrid method, we use PCGM with the symmetric Gauss-Seidel
method as a solver on the coarsest level and run two pre- and post-smoothing itera-
tions for all cases.

We tested different data gathering levels on fixed numbers of cores. Without gath-
ering data, the feasible coarsest level of the multigrid algorithm is the level that has
at least more than one DoF per core. This level is the coarsest gathering level and de-
pends on the number of cores. For instance, the coarsest gathering level of 384 cores
is 5, of 1563 cores is 6, and 6144 cores is 7. Experimentally, setting the gathering
level to the coarsest one shown always best performance. After gathering the data,
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Fig. 2 The solution times
in seconds of the multigrid
method as a preconditioner
for the PCGM with the Gauss-
Seidel smoother with (–) and
without (. . .) gathering data as
a function of the number of
cores for domains with 2.2K
DoF (×), 8.5K DoF(•), 33.4K
DoF(+), and 132K DoF(◦)
per core

all the computations are performed on one core. In this coarsest gathering level, the
coarsest level does not impact performance as along as it is taken below level 6

In this paper, we use the simplest case only from the gathering level, all the
data of the coarse problem are gathered on one core. In the case of large coarse
problem, i.e., level greater than 6, a performance improvement could be expected
by distributing it on many cores instead of one. But it has not been tested.

Let us now consider the performance impact when gathering the data on each
core. To show that, we choose the coarsest level of the parallel algorithm as the
coarsest gathering level. In the case of not gathering data, we have to use the coarsest
gathering level as the coarsest level on which we solve the problem by using PCGM
exactly. We tested four different cases, 2.2K, 8.5K, 33K, and 132K DoF per core and
depicted the results in Fig. 2 which show that the gathering of the data is needed for
large number of cores. The solution time of the solver in this case has a significant
improvement for large numbers of cores and small number of DoF per core.

For a multigrid algorithm it is nearly impossible to fix the number of operations
per core while increasing the total problem size, so we consider a semi-weak scaling
by fixing the number of DoF of the finest level on each core. We tested six different
number of DoF of the finest level on each core; from 2.2K DoF to 2.1M DoF and
depicted the results in Table 1 together with the execution time (in bracket) of the
matrix-vector multiplication which is the basic operation for iterative solvers and
include the data communication step to update the values on the ghost nodes. The
data shows that the matrix-vector multiplication has a perfect weak scaling property
and the multigrid method as a preconditioner has really good semi-weak scaling
properties when the number of DoF per core is large (compare 527K DoF and 2.1M
DoF per core cases). Typically, the behaviour of multigrid algorithm implementa-
tions in weak scaling experiments is that they perform better as the number of DoF
per core is increased.

The required number of iterations of the FETI-DP and BDDC methods does not
depend on the number of sub-domains, but rather on the ratio of the mesh size of
the triangulation (fine level, h) to the size of the sub-domains (coarse level, H). This
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# cores 2.2K 8.5K 33.4K 132K 527K 2.1M
24 0.0034(0.000013) 0.0081(0.000055) 0.0356(0.00045) 0.1671(0.0031) 0.7046(0.0129) 2.824(0.052)
96 0.0075(0.000013) 0.0131(0.000056) 0.0406(0.00045) 0.1717(0.0031) 0.7114(0.0129) 2.825(0.051)

384 0.0104(0.000013) 0.0157(0.000056) 0.0502(0.00048) 0.2057(0.0031) 0.8397(0.0129) 3.327(0.052)
1536 0.0175(0.000013) 0.0244(0.000056) 0.0605(0.00051) 0.2209(0.0031) 0.8661(0.0129) 3.366(0.052)
6144 0.0633(0.000013) 0.0756(0.000056) 0.1192(0.00052) 0.3015(0.0031) 0.9476(0.0131) 3.471(0.052)
24576 0.5671(0.000014) 0.5630(0.000060) 0.6302(0.00054) 0.9105(0.0033) 1.6122(0.0141) 6.954(0.056)

Table 1 The solution times in seconds of the multigrid method as a preconditioner for the PCGM
with the Gauss-Seidel smoother and the execution times of the matrix-vector multiplication (in
bracket) according to the number of cores for domains with the several numbers of DoF per core

is shown in Table 2 where we list the required number of iterations of the FETI-DP
and DBBC methods.

h/H 1/8 1/16 1/32 1/64 1/128
# cores FETIDP BDDC FETIDP BDDC FETIDP BDDC FETIDP BDDC FETIDP BDDC
24 12 7 14 8 16 9 18 10 20 12
96 15 8 17 9 20 11 23 13 26 14
384 16 8 19 10 22 11 24 13 28 14
1536 16 8 20 10 23 11 26 13 29 14
6144 16 8 19 10 23 11 26 13 30 14
24576 16 8 19 9 23 11 26 13 29 14

Table 2 The required number of iterations of FETI-DP and BDDC according to the number of
sub-domains and the ratio of the mesh size of the fine level (h) to the coarse level (H)

To implement the FETI-DP and BDDC methods, we have to solve local prob-
lems with Dirichlet and/or Neumann boundary conditions on each sub-domain and
one globally defined coarse level problem. Furthermore, we need to communicate
data with neighboring sub-domains and data on the coarse level. Solving the local
problems and communicating the data with neighboring sub-domains are performed
in parallel. So, these local steps do not alter the performance by changing the num-
ber of cores. Otherwise, the dimension of the global coarse level problem would
grow as the number of cores increases. The dimension of the coarse level problem
used for BDDC method is the same as of the coarsest gathering level used for the
multigrid method. And the dimension of the coarse level problem used for FETI-DP
method is one level below it.

We use the same gathering algorithm as in the multigrid method to solve the
global coarser level problem. In both FETI-DP and BDDC, every sub-domain has
some contributions to the matrices and vectors on the coarse level and uses the
solution of the coarse level problem. So, we gather these contributions on each core
using the MPI Allreduce and use the solution after solving the coarse problem
without any data communication.

To solve the local and global problems, we used two direct methods, the LA-
PACK (Intel MKL) library with dense matrix format and the IBM WSMP library
with sparse matrix format, and the multigrid method as an iterative method. For
large number of cores (more than 1536 cores), the global problems could be solved
by either the iterative method or parallelized direct methods only on a small number
of cores, due to the memory limitation. The solution time with parallel solver for
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the global problems could be reduced as same as progressively reduced cores on the
multigrid method.

For comparison to our previous results, we chose the solver which performes
best. We tested five different cases with fixed number of DoF per core, from 55 DoF
to 2200 DoF, and depicted the results in Table 3 together with the multigrid method.
Results in Table 3 show that the FETI-DP is faster than the latter even though the
DBBC requires a smaller number of iterations. These results also show that the weak
scaling property is improved as the number of DoF per core is increased.

DoF/core 55 170 590 2200
# cores MG FETI-DP BDDC MG FETI-DP BDDC MG FETI-DP BDDC MG FETI-DP BDDC

24 0.0009 0.0013 0.0014 0.0015 0.0020 0.0027 0.0019 0.0115 0.0216 0.0034 0.1007 0.2328
96 0.0022 0.0024 0.0028 0.0038 0.0034 0.0046 0.0054 0.0165 0.0298 0.0075 0.1287 0.3309
384 0.0043 0.0041 0.0067 0.0065 0.0057 0.0181 0.0080 0.0228 0.0439 0.0104 0.1414 0.3513

1536 0.0126 0.0131 0.0171 0.0152 0.0240 0.0367 0.0146 0.0512 0.0666 0.0175 0.1953 0.4056
6144 0.0582 0.0792 0.2954 0.0550 0.0988 0.3809 0.0584 0.1509 0.4849 0.0632 0.3864 1.2242
24576 0.5550 0.4961 1.8470 0.5762 0.5359 2.3163 0.5505 0.6883 2.3867 0.5671 1.0609 3.7620

Table 3 The solution times in seconds of the FETI-DP, the BDDC, and the multigrid method
(MG) as a function of the number of cores for domains with the number of DoF per core

The solution times of the FETI-DP and the multigrid method for the smallest
number of DoF per core cases (55 DoF per core) are almost the same. The multigrid
method with gathering data is faster than the FETI-DP method. The difference of
the solution time between the two methods increases as the number of DoF per core
is increased, except for the largest number of cores (24576 cores).

5 Conclusions
We investigated the performance of the multigrid method with gathering data,
BDDC, and FETI-DP on a regular hexagonal domain with regular triangulations
and concluded that the first is the fastest solver for such a problem.
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