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Abstract The governing equations for flow and transport in porous media are de-
rived assuming conservation of mass. To ensure stability ofthe simulations signif-
icant attention is given to ensure that the discrete system retains the conservation
property. Due to discretization errors and parameter uncertainty it is natural to con-
sider an inexact solution strategy for the resulting systemof equations. However
most linear solvers are not designed by the same principles as the underlying dis-
cretization and will thus not produce inexact solutions that preserve the conserva-
tion property. In this work we illustrate how inexact yet conservative linear solvers
can be realized for porous media applications. The linear solver is formulated as a
multi-level control volume methods and produces a conservative flux field for all
approximated solutions.
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1 Introduction

Simulation models of flow and transport in geological porousmedia are character-
ized by a high degree of uncertainty due to both discretization errors and incomplete
measurements of physical parameters. In the context of linear solvers this seemingly
mandates the use of inexact strategies, where a solution is sought with an accuracy
similar to that of the overall computational model. Since the solution of linear sys-
tems often consumes a substantial part of the total simulation time, inexact solvers
can yield considerable computational savings. However thederivation of the contin-
uous model is based on conservation of mass, and this property must be preserved
in the discrete system for the results to be physically meaningful. The discretization
schemes commonly applied are conservative by construction, but unless the linear
solver is designed specifically to produce solutions that, even if inexact, conserve
mass the inexact solution may not yield a stable overall simulation strategy. For this
reason linear systems are commonly solved to an accuracy that is much higher than
mandated by known discretization errors and parameter uncertainties.

The key to producing physically meaningful inexact solutions is to design the
linear solver by the same principles as the discretization scheme. Herein we will
explore these ideas in the context of two-phase flow in a horizontal porous media.
The phases denoted water (w) and oil (o) are immiscible and incompressible with a
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velocity given by Darcy’s law

uα =−λαK∇p, α = w,o. (1)

Here the phase mobilitiesλw andλo, represent fluid viscosity and rock-fluid inter-
action. FurthermoreK is the permeability andp is the fluid pressure. Of particular
importance to this paper are the properties of the permeability, which commonly
possesses sharp contrasts of several orders of magnitude and spatial correlation
structures on a continuum of length scales. Conservation ofmass for each phase
is expressed as

φ
∂Sα
∂ t

+∇ ·uα = qα , α = w,o, (2)

whereφ represents porosity,Sα is the volume fraction of phaseα and qα is the
source term. The saturations are assumed to fill the pore volume, that isSw+So = 1.
Thus when (2) for the two phases are added to get an equation for conservation of
total mass, the saturations are eliminated. This gives a linear elliptic equation for the
pressure, which can be written

∇ ·uT =−∇ · (λT K∇p) = qT . (3)

Here uT = uw + uo is the total velocity,λT = λw + λo is the total mobility and
qT = qw +qo is the total source term.

2 Discretization

In the rest of the paper we describe the construction of an inexact linear solver for
(3) which preserves the conservation property ofuT . The solver is formulated in
terms of a novel multi-level control volume method which is briefly described next.
More details can be found in [6].

2.1 A hierarchy of control volume discretizations

In applications conservation of mass is considered an essential property that should
be preserved during discretization. To that end a cell centered control volume
method is applied for the spatial discretization. A discrete Darcy’s law is constructed
as in [1]

uh,α =−λU
α Th ph, (4)

whereuh,α is the discrete phase velocities for phaseα, Th is a matrix of transmis-
sibilities andph is a cell centered approximation of the pressure. The mobilities,
λU

α , are discretized by phase-wise upstream weighting. A discrete equation for the
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pressure is found by

Dh((λU
w +λU

o )Th ph) = Ah ph = qh, (5)

whereDh is the discrete divergence,Ah is the system matrix andqh represents dis-
crete sources. We note that (5) can be considered a Petrov-Galerkin discretization
of (3), with piece-wise constants on the cells as test functions and shape functions
defined by the specific control volume method. When (5) has beensolved forph, (2)
for the water phase is discretized by an explicit method withupstream weighting of
the mobilities.

The sharp contrasts and long correlation structures of the permeability is reflected
in the discretization matrixAh, thus solving (5) is time consuming. Discretization
errors and uncertainties in the permeability make the linear system a prime candidate
for an inexact linear solver. However, (5) was derived by requiring conservation of
mass, and unless this is reflected in the inexact solution, conservation errors will
in worst case grow exponentially in the time propagation of (2). The linear solver
should therefore be constructed to produce a discrete flux field that, even if inexact,
satisfies (5). Furthermore an efficient solution strategy for (5) should invoke coarse
solvers to account for the global dependencies of the equation.

An inexact two-level method which retains the conservationproperty can be real-
ized within the framework of the multiscale finite volume (MSFV) method [3], see
also [7]. The domain is partitioned into a coarse grid and a coarse shape function
ψH is constructed for each coarse cell to account for fine-scalevariabilities in the
permeability. Coarse test functionsφH are defined as piece-wise constants on the
coarse cells. A coarse linear system is then defined as

(ΦT
HAhΨH)pH = AH pH = ΦT

Hqh. (6)

Here ΦH andΨH are column matrices of test and shape functions, respectively,
andAH is the coarse discretization. It is important to note the similarity between
(5) and (6), in that both are obtained by applying Petrov-Galerkin techniques. In
this way the coarse linear system retains the conservation property of the fine-scale
discretization. Specifically it will produce conservativecoarse fluxes in the sense
that the fluxes into a coarse cell match the sources within thecell. When projected
to the fine scale the inexact fluxes will not be conservative. This is remedied by a
post-processing step where local fine-scale problems are solved within each coarse
cell [3]. The boundary conditions are the projection of the conservative coarse fluxes
to the fine scale.
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2.2 Multi-level flux post-processing

The two-level method outlined above amounts to an inexact linear solver that can
also be applied as a preconditioner within an iterative solver. However it is natural
to seek multi-level methods to realize efficient residual smoothing strategies. Also
when multiple grid levels are available, adaptive upscaling can be applied during the
simulation. Finally, the MSFV method is known to be unstablein cases where the
coarse grid does not follow anisotropy patterns in the permeability [5]. This can be
remedied by an unstructured coarsening strategy that is currently under development
but for this approach to be robust multiple coarsening stepswith mild upscaling
ratios should be applied.

Since (6) has the same properties as (5) in terms of sparsity pattern and con-
servation property, a further coarsening of the system can easily be constructed by
recursion. However, for the multi-level method to be applicable as a conservative
inexact linear solver, multi-level post-processing is needed, and specifically local
Neumann problems must be solved. For the coarser levels the discretization of Neu-
mann boundary conditions is not available, and this has in practice limited control
volume linear solvers to two grid levels. In the following wewill outline how the
multi-level post-processing can be realized, a thorough explanation is given in [6].

As for the two-level method, the post-processing is performed by solving local
problems that are confined to single cells on the coarser level. When conservative
fluxes on coarse faces are known these can be mapped to any finerlevel via the
shape functions, specifically they can be mapped one level down to form bound-
ary conditions for the local problems. In this way the flux discretization on coarse
boundaries is replaced by known fluxes. However there will befaces interior to the
coarse cell with exterior cells in their flux discretization, in conflict with the goal of
a local post-processing. The exterior cells are eliminatedby considering groups of
cells that are centered around vertexes on the boundary of the coarse cell and have
common support for their basis functions, as illustrated inFig. 1. The exterior cells
can be replaced by the known fluxes over the boundary by formulating and solving
a local linear system. When the number of exterior cells and the number of known
fluxes are equal, the elimination is straightforward. If there are more exterior cells

Fig. 1 Parts of cells with
common support for their ba-
sis functions centered around
a vertex at the boundary of
a coarse cell. Fluxes (ar-
rows) and cells close to the
boundary of a coarse cell
(bold). Cells 3-5 are outside
the coarse cell and must be
eliminated from the flux ex-
pression foru2 usingu1 and
u3 (which are known) and
their sub-fluxes.
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than there are boundary conditions (respectively 3 and 2 in Fig. 1), additional equa-
tions can be obtained by splitting the boundary fluxes into sub-fluxes on a finer grid
level and computing higher order moments of the fluxes based on these. Note that on
the finest level the elimination is straightforward since a boundary discretization is
available there; thus the splitting into sub-fluxes is available when needed. A linear
system is then solved around all vertexes on the boundary, and the results are used
to formulate a local system within the coarse cell that is solved to get conservative
fluxes.

This methodology provides conservative fluxes for all faceson all grid levels
even if the accompanying pressure is inexact. We make two comments on the ap-
proach: firstly the only pair of pressure and fluxes which satisfies both the dis-
crete flux law (4) and the conservation equation (5) is the exact solution. The post-
processed fluxes possess the conservation property, but they cannot be computed
from the inexact pressures via (4). The post-processed fluxes can be thought of as
being exact for a modified permeability field, in accordance with an uncertainty in
this parameter. Secondly the post-processing is not applicable unless the inexact so-
lution preserves the conservation property of the continuous problem. This not only
requires the construction of coarse problems as described above, but also a careful
treatment of the right hand side of the linear system. To be specific, the right hand
side should be coarsened according to the Schur complement formulation of the
multi-level method [8]. The multi-level method with this special coarsening can be
applied as a correction to the residual of any inexact solution. The corrected solution
will in general still be inexact, but it will possess the structure necessary to apply
the post-processing.

2.3 Error control

With the post-processing outlined above, we can obtain solutions that are inexact but
still honor the conservation property. There are two natural criteria for controlling
the linear solver. The simplest option is to terminate the iterations when a desired re-
duction of the relative residual is achieved and then apply post-processing to obtain
a mass conserving flux field. However, even though the post-processing produces a
velocity field without conservation errors a reduction of the relative residual gives
little control of the accuracy of the fluxes. A more nuanced notion of error can be
derived from [4], where we find the expression

‖K−1/2(u−u∗
h)‖ ≤ inf

s∈H1
‖K−1/2(u∗

h −K∇s)‖+ sup
β∈H1,‖β=1‖

(∇ · (u−u∗
h),β ), (7)

whereu is the true flux andu∗
h is the post-processed flux field. The last term eval-

uates to zero since the post-processed and exact fluxes have the same divergence.
The triangular inequality applied on the first term gives
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‖K−1/2(u−u∗
h)‖ ≤ ‖K−1/2(u∗

h −K∇p∗h)‖+ inf
s∈H1

‖K1/2∇(p∗h − s)‖, (8)

with p∗h representing the inexact pressure. The first term on the right hand side of
(8) is immediately computable, and can be interpreted as theerror stemming from
the linear solver. We denote this termeLS. The second term is identified as the dis-
cretization error, denoteded . To give reasonable estimates for the gradient ofp∗h in
heterogeneous media, we compute this from face pressures that are reconstructed
from the fine-scale discretization. The estimate (8) can employed to control the lin-
ear solution process by terminating the iterations when theerror from the linear
solver is smaller than the discretization error, at which point it can be argued that it
makes little sense to improve the inexact solution.

3 Numerical results

In this section we illustrate the utility of the conservative framework by coupling an
inexact multi-level linear solver for the pressure equation to a non-linear transport
problem. The computational grid is Cartesian, with 34 cells in each direction. The
permeability is taken from the bottom layer of the 10th SPE comparative solution
project (SPE10) [2], which is characterized by long and highly permeable channels
and sharp contrasts of 6 orders of magnitude. The medium is initially filled with oil.
Water is injected in the lower left corner of the grid, and a production well is placed
in the middle of the domain.

The phase velocities in (4) are discretized on the fine-scalegrid by a two-point
flux approximation. Periodic boundary conditions are assigned for simplicity. Three
levels of coarsening are applied, each with a ratio of 3 in each direction, and a direct
solver is invoked on the coarsest grid. Thus the coarse operator constitutes a four-
level multi-grid method. Updates of the saturation feed back to the pressure equation
via the mobilities, which are set toλw = S3

w andλo = 10S2
o, and thus the velocity

field must be updated regularly. The pressure time step is fixed at a tenth of the total
simulation time, while the time step for the saturation equation is decided by the
CFL criterion.

To solve the pressure equation, GMRES iteration preconditioned by the multi-
level method is applied. Four criteria for terminating the iterative solver are con-
sidered: Two consider the reduction of the relative residual, ε, and terminate the
iterations whenε < 5·10−5 andε < 10−5, respectively. The third criterion requires
that eLS < ed , which in this case corresponds to a value ofε of 10−6 − 10−8. All
these estimates apply post-processing to ensure the approximated flux field is con-
servative. Finally, we consider a solver with the same preconditioner, but where
post-processing is not applied after the iterations. In this case the fluxes must be
brought sufficiently close to being conservative by iterating on the solution. Note
that this is the strategy applied by a traditional linear solver. For the present setup,
a value ofε < 10−10 is needed to avoid severe stability issues due to conservation
errors.
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(a) ε < 5·10−5 (b) ε < 10−5

(c) eLS < ed (d) ε < 10−10, no p.p.

Fig. 2 Saturation profiles obtained with different stopping criteria for the linear solvers. Water
(light) is injected into a domain initially filled with oil (dark). Injection (O) and production (X)
wells are marked in (a). Periodic boundary conditions are applied.

Table 1 Total number of GMRES iterations needed to achieve desired tolerance level.

ε < 5·10−5 ε < 10−5 eLS < ed ε < 10−10, no p.p.

190 200 212 293

Snapshots of the saturation distributions with the respective control parameters
are shown in Fig. 2. All simulations predict the same large-scale pattern, and it is
only the loosest tolerance for the pressure solver that yields notable differences in
the saturation profile. The computational gains from applying post processing can
be seen from the number of iterations shown in Tab. 1. We observe that there is
considerable room for computational savings without sacrificing significant accu-
racy of the transport solution. We reiterate that this is dueto the post-processing,
which facilitates inexact yet conservative flux fields. Somecaution is needed when
deciding the stopping criterion for the linear solver as theaccuracy necessary to get
reasonable transport solution is highly dependent on the simulation setup. Note that
if the post-processing is not applied the accuracy to produce a flux field that makes
the transport solver behaves stable increases significantly. The tolerance necessary
will be different for other simulations, and in practice theonly options to obtain
stable simulations are to iterate until the exact solution is found, or to apply an
inexact solver and somehow tackle conservation errors in the transport solver. We
also remark that the performance of all preconditioners suffers from the Cartesian
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coarse grids that leads to strong heterogeneities within the coarse cells. This will be
amended by an unstructured coarsening procedure currentlyunder development.

4 Concluding remarks

In this paper we have considered the application of an inexact linear solver for
porous media flow with the special property that it provide a set of fluxes that
exactly satisfy a conservation law, even if the associated pressure that drives the
flux was approximated. The solver was formulated as a multi-level control volume
discretization, and we considered the coupling of the solver with a non-linear trans-
port problem. Since the approximated flux field possessed theconservation prop-
erty, considerable computational savings were possible without sacrificing stability
or significant accuracy in the transport simulation.

For simulation of realistic applications there will alwaysbe a trade-off between
accuracy and computational effort, and this balance is particularly well articulated
when control parameters for linear solvers are decided. We have shown in this paper
that the linear solver should not be considered a stand-alone part of the overall sim-
ulation tool. Instead it should be in accordance with the same principles as guided
the choice of the disrcetization scheme. The resulting solver will provide solutions
that even if approximated are physically meaningful, enhancing the robustness of
the simulator.
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