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1 Introduction

We consider two different aspects of FETI-DP domain decomposition methods [8,
23]. In the first part, we describe an adaptive construction of coarse spaces from
local eigenvalue problems for the solution of heterogeneous, e.g., multiscale, prob-
lems. This strategy of constructing a coarse space is implemented using a deflation
approach. In the second part, we introduce new domain decomposition approaches
for nonlinear problems. These methods are based on a decomposition of the nonlin-
ear problem before linearization.

2 A Deflation Method

The coarse space of iterative substructuring methods such as FETI-DP or BDDC
methods [8, 1, 23] can be enhanced by additional constraintsusing projections; see,
e.g., [15]. The solution of a symmetric positive (semi-)definite systemFλ = d using
the deflation method [19] also known as projector preconditioning [6], consists of
the computation ofλ from

M−1(I −P)TFλ = M−1(I −P)Td

by the conjugate gradient method using a projection of the formP=U(UTFU)−1UTF
and a preconditionerM−1. It is equivalent to solvingFλ = d by conjugate gradients
using the symmetric preconditionerM−1

PP = (I −P)M−1(I −P)T . With λ := PF−1d
the solutionλ ∗ of the original problem is then computed asλ ∗ = λ + λ . If we
include the computation ofλ into the iteration, we obtain the balancing precondi-
tioner [17, 7]M−1

BP = (I −P)M−1(I −P)T +U(UTFU)−1UT . We then obtain the
solution directly without an additional correctionλ .

For details on the deflation method or the balancing preconditioner applied to the
FETI-DP or BDDC method, see [15].
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For a new coarse space for FETI-DP methods applied to almost incompressible
linear elasticity in 3D implemented by deflation, see [11].

3 Coarse Spaces from Local Eigenvalue Problems

Let Ω ⊂ R
2, be a bounded polyhedral domain, let∂ΩD ⊂ ∂Ω be a closed subset

of positive measure, and∂ΩN := ∂Ω \∂ΩD be its complement. We impose homo-
geneous Dirichlet and general Neumann boundary conditionson these two subsets,
respectively, and introduce the Sobolev spaceH1

0(Ω ,∂ΩD) := {v ∈ H1(Ω) : v =
0 on∂ΩD}. We consider the piecewise linear conforming finite elementapproxi-
mation of the scalar diffusion problem:
Find u ∈ H1

0(Ω ,∂ΩD), such thata(u,v) = f (v) ∀v ∈ H1
0(Ω ,∂ΩD). Here, we use

a(u,v) :=
∫

Ω ρ(x)∇u · ∇v dx and f (v) :=
∫

Ω f v dx+
∫

∂ΩN
gNv ds, where gN is

the boundary data defined on∂ΩN. We assumeρ(x) > 0 for x ∈ Ω and thatρ is
piecewise constant onΩ . As a second model problem, we consider the problem of
linear elasticity. For the compressible case we use the standard variational formu-
lation to find a displacementu ∈ (H1

0(Ω ,∂ΩD))
2, such thata(u,v) = f (v) ∀v ∈

(H1
0(Ω ,∂ΩD))

2, where a(u,v) :=
∫

Ω G(x)ε(u) : ε(v) + G(x)β (x)div(u)div(v)dx.
The material parametersG and β will be expressed byG = E

1+ν andβ = ν
1−2ν ,

using Young’s modulusE and Poisson’s ratioν . The finite element space is de-
noted byVh. We decomposeΩ into N nonoverlapping subdomainsΩi , i = 1, . . . ,N,
where eachΩi is the union of shape-regular and triangular finite elementswith el-
ement nodes on the boundaries of neighboring subdomains matching across the in-
terfaceΓ := (∪N

i=1∂Ωi)\∂Ω . The diameter of a subdomainΩi is Hi or generically
H := maxi Hi .

Our goal is to solve multiscale, heterogenous problems withcoefficient distribu-
tions as shown in Fig. 1 efficiently using the FETI-DP or BDDC method. Here, we
have highly varying coefficients inside subdomains.

In the following, we will use a new approach to obtain independence of the
coefficient jumps by solving local eigenvalue problems and enriching the coarse
space with eigenvectors. For other approaches, designed for certain classes of coef-
ficients; see, e.g., [14, 22]. Similar approaches have been used for Schwarz meth-
ods in [9, 5, 4]. Another approach to create adaptive coarse spaces was introduced
in [18].
Let E

i j be an edge between the subdomainsΩi andΩ j and letS(i)
E i j ,ρ be the Schur

complement that results after eliminating all variables except of the dual displace-

ment degrees of freedom on the edge. Lets(i)
E i j ,ρ(u,v) := uTS(i)

Ei j ,ρv be the correspond-

ing bilinear form and letmE i j ,ρ(u,v) :=
∫
E i j ρu·v ds. In the case where the Poincaré

constant depends on a large jump in the coefficients, we solvethe following gener-
alized eigenvalue problem on the edge: Findu∈Vh(E i j ) such that

s(i)
E i j ,ρ(u,v) = µmE i j ,ρ(u,v) ∀v∈Vh(E i j ). (1)
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Fig. 1 Microstructures obtained from electron backscatter diffraction (EBSD/FIB). Courtesy of
Prof. Dr.-Ing. J̈org Schr̈oder, Essen, Germany, originating from a cooperation with ThyssenKrupp
Steel. We have set the coefficientE1 = 1 for white andE2 = 1e+06 for black. An interpolated
value is used for the different shades of gray. Left: gray scale image. Right: binary image. See
Tab. 6 for the numerical results.

We do not need to solve this problem for all but only for the smallest eigenvalues
and corresponding eigenvectors. Let the eigenvalues 0= µ1 ≤ . . .≤ µnEi j

be sorted

in ascending order. For a given natural numberL ≤ nEi j and for every subdomain,

we define the projectionI (l)L v := ∑L
k=1mE i j ,ρ(u

(l)
k ,v)u(l)k , l = i, j, whereu(l)k are the

eigenvectors of (1) corresponding to the eigenvaluesµk. In our FETI-DP algorithm
and the corresponding condition number estimate, we need toforce the projected

jumps across the interface to be zero to obtainI (i)L v(i) = I (i)L v( j) andI ( j)
L v(i) = I ( j)

L v( j).

Let v(i)
E i j be the restriction ofv(i) to the edgeE i j . To guarantee this equality, we

enforce the constraintmE i j ,ρ(u
(l)
k ,v(i)

E i j − v( j)
E i j ) = 0 for k = 1, . . . ,L and l = i, j. We

enrich our coarse space with the eigenvectors multiplied with the mass matrix cor-
responding tomE i j ,ρ and extended by zero on the remaining part of the interface
as columns ofU . We do this for each subdomain, for each edge of the subdomain,
and for each eigenvector of the generalized eigenvalue problem for that edge with
an eigenvalue smaller than a chosen toleranceToleig.

The next theorem is proven in [13] under certain technical assumptions.

Theorem 1.The condition number for our FETI-DP method satisfies

κ(M̂−1F)≤C
(

1+ log
(η

h

))2
(

1+
1

ηµL+1

)
,

whereM̂−1 = M−1
PP or M̂−1 = M−1

BP. Here, C> 0 is a constant independent of H, h,
andη .

Next, we present numerical results for certain exemplary coefficient distributions.
We useM−1

BP choosingM−1 as the Dirichlet preconditioner. We subdivide the unit
square into square subdomains and consider a coefficient distribution with different
numbers of channels cutting through subdomain edges; see Fig. 2. We first present
our results for the scalar case followed by the results for linear elasticity with discon-
tinuous coefficients. At the end of this section, we also present our results obtained
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for the linear elastic deformation of the microstructures shown in Fig. 1. In our ta-
bles, we denote the FETI-DP algorithm using only vertices asprimal constraints as
“Algorithm A”; see [23, p. 170]. When the coarse space is enhanced using eigen-
vectors obtained from local eigenvalue problems the corresponding columns are
denoted by “Adaptive”. The additional constraints are implemented using deflation
or balancing. They could also be implemented using a transformation of basis. Our
stopping criterion is the relative reduction of the preconditioned residual by 1e−10.

All experiments for the diffusion equation with heterogeneous coefficients inside
subdomains are carried out with homogeneous Dirichlet boundary conditions on
∂Ω and a constant right hand sidef = 1/10. For one channel for each subdomain,
we have a quasi-monotone coefficient; cf. [21]. In this case,which is depicted in
Fig. 2 (middle), on each interior edge, the eigenvector of the eigenvalue zero is
added to the coarse space. On interior edges which do not intersect a channel with a
high coefficient the resulting constraint is a standard edgeaverage. On interior edges
intersected by a channel the constraint is a weighted edge average, cf. also [14], up
to a multiplicative constant. This results in eight adaptive constraints; see Tab. 1.
The case of three channels results in 20 adaptive constraints.
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Fig. 2 Domain decomposition in nine subdomains (left). The coefficient distribution is depicted
for one channel (middle) and three channels (right). Here, black corresponds to a high coefficient
and white corresponds toρ = 1 (middle/right).

In Tab. 2, for three channels, we see that the condition number using the enriched
coarse space stays bounded if we change the contrastρ2 ∈ {1, . . . ,1e+06}. More-
over, the number of adaptive constraints approaches a limitfor growing contrast.

In Tab. 3 we see that for an increasing number of subdomains and channels
the condition number remains bounded. The number of adaptive constraints grows
roughly in proportion to the number of subdomains and channels. Note that the
adaptive algorithm withToleig = 1 chooses only constraints on subdomains, where
the Dirichlet boundary does not intersect the inclusions. On subdomains with
Dirichlet boundary conditions that do not intersect the channels, six constraints, and
on all inner subdomains, 8 constraints are chosen. Linearlydependent constraints
are detected using the modified Gram-Schmidt method and removed.

Next, we test our algorithm on linear elasticity problems with certain distribu-
tions of varying coefficients inside subdomains. We impose homogeneous Dirichlet
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Algorithm A Adaptive Method # AdaptiveSize of
# Channels H/h condition # its condition # its constraints Γ
1 6 9.5532e+04 7 1.0412 3 8 84

12 1.1969e+05 7 1.1547 4 8 156
18 1.3335e+05 7 1.2519 4 8 228
24 1.4416e+05 8 1.3325 4 8 300
30 1.5197e+05 8 1.4011 5 8 372

3 14 39.2087 6 1.0387 2 20 180
28 1.3431e+05 10 1.1507 3 20 348
42 1.3884e+05 11 1.2471 3 20 516
56 1.8408e+05 14 1.3272 3 20 684
70 1.9298e+05 13 1.3954 3 20 852

Table 1 Scalar diffusion, one and three channels for each subdomain, seeFig. 2 (right). We have
ρ = 1e+06 in the channel, andρ = 1 elsewhere. The number of additional constraints is clearly de-
termined by the structure of the heterogeneity and independent of the mesh size. 1/H = 3.Toleig=1.

Algorithm A Adaptive Method # AdaptiveSize of
ρ2/ρ1 condition # its condition # its constraints Γ

1 3.2068 5 1.6467 5 4 348
10 5.5781 7 1.5697 7 4 348

1e+02 19.9519 9 1.4604 7 8 348
1e+03 1.5891e+02 9 1.1506 4 20 348
1e+04 1.5476e+03 11 1.1507 3 20 348
1e+05 1.5434e+04 12 1.1507 3 20 348
1e+06 1.3431e+05 10 1.1507 3 20 348

Table 2 Scalar diffusion, three channels for each subdomain, see Fig. 2 (right). We haveρ = ρ2
in the channels, andρ = ρ1 = 1 elsewhere.H/h = 28. The number of additional constraints is
bounded for increasing contrastρ2/ρ1. 1/H = 3. Toleig=1.

Algorithm A Adaptive Method # AdaptiveSize of
1/H condition # its condition # its constraints Γ

2 1.1507 4 1.1507 4 0 114
3 1.3431e+05 10 1.1507 3 20 348
4 2.3766e+05 16 1.1507 3 44 702
5 3.0209e+05 45 1.1507 3 78 1176
6 3.5451e+05 51 1.1507 3 122 1770

Table 3 Scalar diffusion, three channels for each subdomain; see Fig. 2 (right). Increasing number
of subdomains and channels. We haveρ = 1e+06 in the channel, andρ = 1 elsewhere.H/h= 28.
Toleig=1.

boundary conditions only on the lower edge, i.e.,y = 0, and a constant volume
force f = (1/10,1/10)T . First we consider the example above with three channels
and with jumps inE instead ofρ . Tab. 4 and 5 show the numerical results for a tol-
erance of one for the eigenvalues. Finally, we use a coefficient distribution obtained
from a steel microsection pattern with 150×150 pixels; see Fig. 1. We discretize the
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problem withH/h = 50 and 1/H = 3; see Tab. 6 for the numerical results, which
show the effectiveness of the adaptive algorithm.

Algorithm A Adaptive Method # AdaptiveSize of
# Channels H/h condition # its condition # its constraints Γ
3 14 6.8833e+05 335 1.1517 8 123 372

28 9.3377e+05 348 1.3351 10 123 708
42 1.0821e+06 347 1.4993 10 123 1044

Table 4 Linear elasticity, three channels for each subdomain, see Fig. 2, with coefficientE =
1e+06, outside the channelsE = 1. Toleig= 1. The number of additional constraints is determined
by the structure of the heterogeneity and independent of the mesh size; 1/H = 3.

Algorithm A Adaptive Method # AdaptiveSize of
E2/E1 condition # its condition # its constraints Γ

1 6.2497 22 1.9264 12 33 708
10 15.7940 27 1.8460 12 34 708

1e+02 1.0256e+02 39 1.9836 13 65 708
1e+03 9.4413e+02 61 1.3398 9 90 708
1e+04 9.3490e+03 117 1.3363 9 99 708
1e+05 9.3373e+04 191 1.3352 9 111 708
1e+06 9.3377e+05 348 1.3351 10 123 708

Table 5 Linear elasticity, three channels for each subdomain, see Fig. 2, H/h= 28. The number
of additional constraints is bounded for increasing contrastE2/E1. 1/H = 3, Toleig=1.

Problem Coarse spaceH/h condition # its # Adaptive constraintsSize ofΓ
Fig. 1 (left) Adaptive 50 21.6171 24 114 1236

Algorithm A 50 > 3e+05 > 250 0 1236
Fig. 1 (right) Adaptive 50 10.2617 22 114 1236

Algorithm A 50 > 1e+06 > 250 0 1236

Table 6 Results for linear elasticity using the coefficient distribution for the heterogenous problem
from the gray scale image in Fig. 1.

4 Domain decomposition methods for nonlinear problems

The traditional domain decomposition approach to nonlinear problems can be char-
acterized by a geometric decomposition after linearization. Here, we solve a given
nonlinear, discretized problem
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A(u) = 0 (2)

by using a Newton-type methodu(k+1) = u(k)−α(k)δu(k) with a suitable step length
α(k). In each iteration we have to solve the linearized systemDA(u(k))δu(k) =
A(u(k)) which can be done by overlapping or nonoverlaping domain decomposition
methods, e.g., FETI-1, FETI-DP, BDDC, or overlapping Schwarz. Such approaches
are typically named NK-DD (Newton-Krylov-Domain-Decomposition), i.e., NK-
FETI-DP, NK-Schwarz, etc.

Alternative approaches to the traditional DD approach can be characterized by
linearization after a geometric decomposition (here denoted as DD-NK, i.e., FETI-
DP-NK). Such methods can be interpreted also in the context of nonlinear precon-
ditioning, as, e.g., performed in the ASPIN approach, see [2], which can be viewed
as solving a nonlinear equationG(A(u)) = 0 by a Newton method instead of (2).
The nonlinear preconditionerG is constructed from a nonlinear additive Schwarz
(AS) method. The ASPIN approach can be classified as an AS-NK method and has
been shown to be more robust and highly scalable, e.g., even for high Reynolds flow
problems. Recently, the ASPIN approach has successfully been applied in nonlinear
structural mechanics [12].

In this paper, we will present new approaches for nonoverlapping, nonlinear DD
methods, i.e., versions of nonlinear FETI-DP methods. We will discuss two differ-
ent strategies of nonlinear dual primal FETI methods, namedNonlinear-FETI-DP-1
(Linearization first) and Nonlinear-FETI-DP-2 (Elimination first).

Nonlinear, nonoverlapping domain decomposition methods have been used, in
the special case of two subdomains, in multiphysics coupling, e.g., in fluid-structrure
interaction; see [3]. Recently, a nonlinear FETI domain decomposition approach for
nonlinear problems from elasticity was suggested by Pebrel, Rey, and Gosselet [20].
A simple linear/nonlinear strategy was used in [16] for brittle materials with strongly
localized nonlinearities.

Let Ωi , i = 1, . . . ,N, be a decomposition of our domainΩ into nonoverlapping
subdomains. We denote the associated local finite element spaces byWi and the
product space byW =W1× . . .×WN. We defineŴ ⊂W as the subspace of functions
from W which are continuous in all interface variables between subdomains. We
consider the minimization of a global nonlinear energy function Ĵ, operating on̂W,

û= argmin
v̂∈Ŵ

Ĵ(v̂).

Using our decomposition ofΩ we can build local nonlinear energy functionsJi , i =
1, . . . ,N, operating onWi , and equivalently solve

u= argmin
v∈W

∑N
i=1Ji(vi)

under the linear continuity constraintBu= 0. Here,B is a linear jump operator,
which enforces continuity in all interface variables. At this point using a variational
formulation and standard dualization technique, leads us to a nonlinear saddle point
problem
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K(u)+BTλ = f
Bu = 0,

whereK(u)T := (K1(u1)
T , . . . ,KN(uN)

T) and f T := ( f T
1 , . . . , f T

N ).
Using the standard FETI-DP operatorRT

Π , see [14] for the notation, to perform
the partial assembly in the primal variables, we formulate the nonlinear FETI-DP
master system

RT
Π K(RΠ ũ)+BTλ − f̃ = 0

Bũ = 0,
(3)

where f̃ := RT
Π f , ũ ∈ W̃, and the Lagrange multipliersλ ∈ V. Here,B enforces

continuity in the dual unknowns. We can proceed in two different ways in order to
solve (3). We may linearize first and then reduce the result toLagrange multipliers
(Nonlinear-FETI-DP-1), or, using the implicit function theorem, we can use nonlin-
ear elimination and then linearization of the reduced nonlinear system (Nonlinear-
FETI-DP-NK-2).

We now consider the first approachNonlinear-FETI-DP-1(Linearize first). With
given initial values ˜u(0) ∈ W̃ andλ (0) ∈V, we can formulate the following Newton
iteration to solve problem (3),

(
ũ(k+1)

λ (k+1)

)
=

(
ũ(k)

λ (k)

)
−α(k)

(
δ ũ(k)

δλ (k)

)
,

with a suitable step lengthα(k). In each iteration we need to solve

(
RT

Π DK(RΠ ũ(k))RΠ BT

B 0

)(
δ ũ(k)

δλ (k)

)
=

(
RT

Π K(RΠ ũ(k))+BTλ (k)− f̃
Bũ(k)

)
. (4)

This system can be treated as in a standard FETI-DP framework, i.e., we can re-
duce (4) to the Lagrange multipliers. The difference to the standard NK-FETI-
DP iteration can be found on the right hand side of (4). Note that, as a result of
Bδ ũ(k) = Bũ(k), jumps in the Newton update will be present only if the initialvalue
has jumps.

In this paper, we have choosen the initial valueλ (0) = 0 and computed the initial
valueũ(0) by solving the nonlinear problem

RT
Π K(RΠ ũ(0))+BTλ (0)− f̃ = 0,

by some Newton-type iteration. Note, that here we solve local nonlinear subdomain
problems which are only coupled in the primal unknows.

Let us now consider the second approachNonlinear-FETI-DP-2(Eliminate first).
Instead of linearizing the nonlinear saddle point problem (3), we may perform a
nonlinear elimination of the variable ˜u first. To simplify our notation, let us define
the nonlinear operator
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K̃(ũ) = RT
Π K(RΠ ũ).

Under sufficient assumptions the first equation of (3) can be written as

ũ= K̃−1( f̃ −BTλ ), (5)

whereK̃−1 is the inverse map of̃K. Inserting (5) into the continuity condition in (3)
we obtain

F(λ ) = BK̃−1( f̃ −BTλ ) = 0. (6)

Again we use a Newton-type iteration to solve (6), and obtainthe iteration

λ (k+1) = λ (k)−α(k)(Dλ F(λ (k)))−1F(λ (k)).

We can computeDλ F(λ ) using the chain rule, the inverse function theorem, and
(5),

Dλ F(λ ) = Dλ (BK̃−1( f̃ −BTλ )) =−B(DK̃−1( f̃ −BTλ ))BT

= −B(DK̃(ũ))−1BT =−B(RT
Π (DK(RΠ ũ)RΠ )−1BT .

In each Newton step, we have to solve a nonlinear system with aFETI-DP-type
matrix on the left hand side andF(λ (k)) = BK̃−1( f̃ −BTλ (k)) on the right hand
side. On the right hand side nonlinear local problems have tobe solved which are
only coupled in the primal variables.

In contrast to a standard Newton-Krylov-FETI-DP approach,in our nonlinear
FETI-DP methods weakly coupled nonlinear local problems are solved. We expect
to reduce communication and to obtain a significantly improved performance espe-
cially for problems with localized nonlinearities.

Next, we introduce our nonlinear model problem and present numerical results
for our two nonlinear FETI-DP approaches. Let us define thep-Laplacian forp= 4
as

∆4v= div(|∇v|2∇v).

We test our algorithms for nonlinear model problems with andwithout localized
nonlinearities. For our experiments, we consider the unit squareΩ := [0,1]× [0,1] in
2D decomposed into square subdomainsΩi , i = 1, ...,N. We have chosen piecewise
linear triangular elements to discretize the variational formulations of (7) and (8).

First we solve the following equation for thep-Laplacian withp = 4 on the
complete domain, i.e.,

∆4u = −1 in Ω
u = 0 on∂Ω .

(7)

In our second set of numerical experiments we consider the (linear) Laplace
equation with nonlinear inclusions inside subdomains; seeFig. 3. The inclusions
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are surrounded by hulls of widthη . This configuration can be seen as a nonlin-
ear analog to the problem of [10]. We denote the hull on subdomain Ωi by Ωi,η

Fig. 3 DomainΩi with an inclusionΩi,I andη = H
8 .

and the inclusion byΩi,I = Ωi \Ωi,η . Furthermore we defineΩI =
⋃N

i=1 Ωi,I and
Ωη =

⋃N
i=1 Ωi,η .

We then solve

∆4u = −1 in ΩI

∆u = −1 in Ωη
u = 0 on∂Ω .

(8)

In our tests all vertices are primal and, additionally, we use primal edge con-
straints in our linear and nonlinear FETI-DP methods. We compare the traditional
NK-FETI-DP with our nonlinear FETI-DP variants. To performa fair comparison of
the computational cost, we consider the number of Krylov space iterations and the
number of linearizations separately. Each linearization includes the assembly of the
local tangential matrices and their LU-decomposition. Theresults for problems (7)
and (8) can be found in Tab. 7. The computational costs for thenew methods are
significantly lower for both problems, especially for the problem with local nonlin-
earities (p-Laplace inclusions). The number of global Krylov iterations is reduced
radically and therefore, in a parallel setting, also communication.

5 Conclusion

We have presented an approach for the construction of an adaptive coarse space in
FETI-DP algorithms by computing certain generalized eigenvalue problems. The
method is motivated directly from the theory, i.e., a Poincaré inequality needed in
the condition number estimate is now replaced by a computational bound.
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p-Laplace inclusions p-Laplace
# Krylov max. min. # Krylov max. min.

N Solver It. # Lin. cond. cond. It. # Lin. cond. cond.

NK-FETI-DP 33 14 1.00481.0001 72 18 1.13521.0608
4 Nonlinear-FETI-DP-2 5 14 1.28131.0000 8 19 1.06441.0604

Nonlinear-FETI-DP-1 5 15 1.28051.0001 12 20 1.06441.0604
NK-FETI-DP 105 15 1.47191.2914 164 20 1.46051.4107

16 Nonlinear-FETI-DP-2 21 18 1.42401.4233 32 29 1.42081.4012
Nonlinear-FETI-DP-1 28 18 1.42401.4233 40 24 1.42081.4108

NK-FETI-DP 164 17 1.56801.4264 226 22 1.53021.4895
64 Nonlinear-FETI-DP-2 30 20 1.52551.5197 52 33 2.12581.4878

Nonlinear-FETI-DP-1 40 20 1.52541.5197 52 26 2.12581.4850
NK-FETI-DP 190 19 1.58521.5281 268 24 1.68461.5394

256 Nonlinear-FETI-DP-2 31 22 1.56431.5412 44 34 2.15231.5237
Nonlinear-FETI-DP-1 42 22 1.56541.5406 55 28 2.15231.5375

NK-FETI-DP 209 21 1.57861.4939 293 26 1.98091.5642
1024Nonlinear-FETI-DP-2 31 24 1.58271.5409 45 35 2.16691.4921

Nonlinear-FETI-DP-1 43 24 1.58521.5409 56 30 2.16691.5560
NK-FETI-DP 215 23 1.57841.4972 330 28 2.53091.5657

4096Nonlinear-FETI-DP-2 19 25 1.57681.5451 45 37 2.17431.4890
Nonlinear-FETI-DP-1 41 26 1.59381.5451 45 31 2.17431.5588

Table 7 p-Laplaceis described in (7) andp-Laplace inclusionsis described in (8). Forp-Laplace
inclusions, see also Fig. 3. In both problems,H

h = 16; N is the number of subdomains;# Krylov
It. gives the sum of all Krylov-space iterations;# Lin. gives the sum of all linearizations (comput-
ing local tangential matrices and their LU-decomposition);min./max. condgive the maximal and
minimal condition number of the FETI-DP systems.

We have also presented approaches to construct nonlinear versions of the FETI-
DP method. In these methods, the coarse space takes an important role since it
can influence not only the convergence of the Krylov method but also that of the
Newton iteration. In the future, the use of an adaptive coarse space may therefore be
of special interest in this context.
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