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1 Introduction

We consider two different aspects of FETI-DP domain decaitipm methods [8,
23]. In the first part, we describe an adaptive constructioooarse spaces from
local eigenvalue problems for the solution of heterogesgelg., multiscale, prob-
lems. This strategy of constructing a coarse space is ingiézd using a deflation
approach. In the second part, we introduce new domain deasitigm approaches
for nonlinear problems. These methods are based on a desdiop®f the nonlin-
ear problem before linearization.

2 A Deflation Method

The coarse space of iterative substructuring methods suéte@l-DP or BDDC
methods [8, 1, 23] can be enhanced by additional constrasing projections; see,
e.g., [15]. The solution of a symmetric positive (semi-)digdi systenFA = d using
the deflation method [19] also known as projector precoowiitig [6], consists of
the computation oA from

M1 -P)TFA =M1 -P)"d

by the conjugate gradient method using a projection of taf=U (UTFU)tUTF
and a preconditionavi 1. It is equivalent to solvingF A = d by conjugate gradients
using the symmetric preconditionkls2 = (I —P)M~(1 —P)T. With A := PFd
the solutionA* of the original problem is then computed &8 = A + A. If we
include the computation of into the iteration, we obtain the balancing precondi-
tioner [17, 7]Mga = (I —P)M~1(1 = P)T +U(UTFU)~tUT. We then obtain the
solution directly without an additional correctidn

For details on the deflation method or the balancing prectiomgir applied to the
FETI-DP or BDDC method, see [15].
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For a new coarse space for FETI-DP methods applied to almosiripressible
linear elasticity in 3D implemented by deflation, see [11].

3 Coarse Spaces from Local Eigenvalue Problems

Let Q c R?, be a bounded polyhedral domain, B2p c dQ be a closed subset
of positive measure, andlQy := dQ \ dQp be its complement. We impose homo-
geneous Dirichlet and general Neumann boundary conditinrikese two subsets,
respectively, and introduce the Sobolev speigéQ,dQp) := {ve H}(Q):v=
00ondQp}. We consider the piecewise linear conforming finite elenaggroxi-
mation of the scalar diffusion problem:

Find u € H3(Q,0Qp), such thata(u,v) = f(v) Ve H}(Q,0Qp). Here, we use
a(u,v) == [op(X)Uu-Ov dxand f(v) := [, fv dX+ [5,9vV dS wheregy is
the boundary data defined @Q2y. We assume(x) > 0 for x € Q and thatp is
piecewise constant of2. As a second model problem, we consider the problem of
linear elasticity. For the compressible case we use thelatdrvariational formu-
lation to find a displacement € (H3(Q,9Qp))?, such thata(u,v) = f(v) W e
(H3(Q,00Qp))2, wherea(u,v) := [, G(X)&(u) : £(v) + G(x)B(X)div(u)div(v)dx.
The material parametels and 3 will be expressed by = 1% andB = %,
using Young’s modulu€ and Poisson’s ratiw. The finite element space is de-
noted byV". We decompos€ into N nonoverlapping subdomait®, i =1,...,N,
where each; is the union of shape-regular and triangular finite elemeuitts el-
ement nodes on the boundaries of neighboring subdomairchimgtacross the in-
terfacel” := (Ui'\'zlin) \ 0Q. The diameter of a subdomai®, is H; or generically

H := max H;.

Our goal is to solve multiscale, heterogenous problems edg#fficient distribu-
tions as shown in Fig. 1 efficiently using the FETI-DP or BDD@&thod. Here, we
have highly varying coefficients inside subdomains.

In the following, we will use a new approach to obtain indegemce of the
coefficient jumps by solving local eigenvalue problems andching the coarse
space with eigenvectors. For other approaches, designedrtain classes of coef-
ficients; see, e.g., [14, 22]. Similar approaches have bsed for Schwarz meth-
ods in [9, 5, 4]. Another approach to create adaptive cograees was introduced
in [18].

Let &' be an edge between the subdomdhsand Q; and IetSf;i)j be the Schur
complement that results after eliminating all variablesept of the dual displace-
ment degrees of freedom on the edge.sl;étp(u,v) =u’ Sf)@'li oV be the correspond-
ing bilinear form and lemgij ,(u,v) == [4i bu~v ds In the case where the Poinéar
constant depends on a large jump in the coefficients, we sloéviollowing gener-

alized eigenvalue problem on the edge: FindV"(&£') such that

Sel (W) = Mg y(uy)  We Ve, 1)
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Fig. 1 Microstructures obtained from electron backscatter diffeac(EBSD/FIB). Courtesy of
Prof. Dr.-Ing. &rg Schbder, Essen, Germany, originating from a cooperation with Ty&sep
Steel. We have set the coefficidgf = 1 for white andE; = 1le+ 06 for black. An interpolated
value is used for the different shades of gray. Left: gray scakge. Right: binary image. See
Tab. 6 for the numerical results.

We do not need to solve this problem for all but only for the Besa eigenvalues
and corresponding eigenvectors. Let the eigenvalueg@ < ... < Hing, be sorted

in ascending order. For a given natural numbet ng; and for every subdomain,

we define the projectionf')v = zkzlmgij‘p<ul((l),V)Ul((l), I =1i,j, whereul((') are the
eigenvectors of (1) corresponding to the eigenvajuesn our FETI-DP algorithm
and the corresponding condition number estimate, we neéafde the projected
jumps across the interface to be zero to obtdir® = 1v(i) andlVvi) =1y,
Let VEL?J be the restriction of/!) to the edge4'l. To guarantee this equality, we
enforce the constrainhgijﬁp(us),v(y'(?j —viji)j) =0fork=1,....,Landl =i,j. We
enrich our coarse space with the eigenvectors multipligd thie mass matrix cor-
responding tangij , and extended by zero on the remaining part of the interface
as columns otJ. We do this for each subdomain, for each edge of the subdomain
and for each eigenvector of the generalized eigenvaludgmofor that edge with
an eigenvalue smaller than a chosen toleraiudgy.

The next theorem is proven in [13] under certain technicsliagptions.

Theorem 1.The condition number for our FETI-DP method satisfies

i) <c(1iog(1)) (14 1),

whereM 1 = M52} or M~ = Mg2. Here, C> O'is a constant independent of H, h,
andn.

Next, we present numerical results for certain exemplasffiment distributions.
We useMg? choosingM~* as the Dirichlet preconditioner. We subdivide the unit
square into square subdomains and consider a coefficignbdison with different
numbers of channels cutting through subdomain edges; ge@.RiVe first present
our results for the scalar case followed by the results fierdr elasticity with discon-
tinuous coefficients. At the end of this section, we alsogmesur results obtained
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for the linear elastic deformation of the microstructurksven in Fig. 1. In our ta-
bles, we denote the FETI-DP algorithm using only verticeprasal constraints as
“Algorithm A’; see [23, p. 170]. When the coarse space is enkdrusing eigen-
vectors obtained from local eigenvalue problems the cpaoeding columns are
denoted by “Adaptive”. The additional constraints are iempénted using deflation
or balancing. They could also be implemented using a tramsftion of basis. Our
stopping criterion is the relative reduction of the predtoded residual by é— 10.

All experiments for the diffusion equation with heterogeus coefficients inside
subdomains are carried out with homogeneous Dirichlet Bamnconditions on
0Q and a constant right hand side= 1/10. For one channel for each subdomain,
we have a quasi-monotone coefficient; cf. [21]. In this cadgch is depicted in
Fig. 2 (middle), on each interior edge, the eigenvector ef éflgenvalue zero is
added to the coarse space. On interior edges which do natéctea channel with a
high coefficient the resulting constraint is a standard edgeage. On interior edges
intersected by a channel the constraint is a weighted edgage, cf. also [14], up
to a multiplicative constant. This results in eight adaptbonstraints; see Tab. 1.
The case of three channels results in 20 adaptive constraint
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Fig. 2 Domain decomposition in nine subdomains (left). The coefficigsttidution is depicted
for one channel (middle) and three channels (right). Heagkbtorresponds to a high coefficient
and white corresponds = 1 (middle/right).

In Tab. 2, for three channels, we see that the condition nuoieg the enriched
coarse space stays bounded if we change the copgras{1,...,1e+ 06}. More-
over, the number of adaptive constraints approaches aflimgrowing contrast.

In Tab. 3 we see that for an increasing number of subdomaidschannels
the condition number remains bounded. The number of adaptinstraints grows
roughly in proportion to the number of subdomains and chisnméote that the
adaptive algorithm witfTolejg = 1 chooses only constraints on subdomains, where
the Dirichlet boundary does not intersect the inclusions. SDbdomains with
Dirichlet boundary conditions that do not intersect therctes, six constraints, and
on all inner subdomains, 8 constraints are chosen. Linependent constraints
are detected using the modified Gram-Schmidt method andveino

Next, we test our algorithm on linear elasticity problemstwgertain distribu-
tions of varying coefficients inside subdomains. We impaz@dgeneous Dirichlet
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Algorithm A Adaptive Method  |# Adaptive Size of
# Channels{H/h| condition #its condition #its |constraints I
1 6 | 9.5532+04 7 1.0412 3 8 84
12 | 1.196%+ 05 7 1.1547 4 8 156
18 | 1.333%+05 7 1.2519 4 8 228
24| 14416+ 05 8 1.3325 4 8 300
30 | 1.519%+ 05 8 1.4011 5 8 372
3 14| 39.2087 6 1.0387 2 20 180
28 | 1.343%e+05| 10 1.1507 3 20 348
42 | 1.3884+05| 11 1.2471 3 20 516
56 | 1.8408&+05| 14 1.3272 3 20 684
70 | 1.9298+05| 13 1.3954 3 20 852

Table 1 Scalar diffusion, one and three channels for each subdomaifige2 (right). We have
p = 1le+06 in the channel, and = 1 elsewhere. The number of additional constraints is clearly de
termined by the structure of the heterogeneity and indepédéme mesh size./H = 3. Tolgjg=1.

Algorithm A Adaptive Method  |# AdaptivgSize of

pP2/p1 condition #its condition #its |constraints I

1 3.2068 5 1.6467 5 4 348

10 5.5781 7 1.5697 7 4 348
le+ 02| 19.9519 9 1.4604 7 8 348
1le+ 03| 1.5891e+ 02 9 1.1506 4 20 348
le+ 04| 1.5476+ 03 11 1.1507 3 20 348
le+ 05| 1.5434+04| 12 1.1507 3 20 348
le+ 06| 1.343%e+05| 10 1.1507 3 20 348

Table 2 Scalar diffusion, three channels for each subdomain, see Fig®)( We havep = p,
in the channels, ang = p; = 1 elsewhereH /h = 28. The number of additional constraints is
bounded for increasing contrgst/p1. 1/H = 3. Tolejg=1.

Algorithm A Adaptive Method  |# Adaptive Size of
1/H| condition | #its condition | #its |[constraints I
2 1.1507 4 1.1507 4 0 114
3 |1.343%e+05| 10 1.1507 3 20 348
4 |2.3766+05| 16 1.1507 3 44 702
5 [3.020%+05| 45 1.1507 3 78 1176
6 |3.545%e+05| 51 1.1507 3 122 1770

Table 3 Scalar diffusion, three channels for each subdomain; see Fiig2)( Increasing number
of subdomains and channels. We have 1le+ 06 in the channel, and = 1 elsewheretH /h = 28.
Toleig=1.

boundary conditions only on the lower edge, iy~ 0, and a constant volume
force f = (1/10,1/10)". First we consider the example above with three channels
and with jumps irE instead ofp. Tab. 4 and 5 show the numerical results for a tol-
erance of one for the eigenvalues. Finally, we use a coeffidistribution obtained
from a steel microsection pattern with 15A50 pixels; see Fig. 1. We discretize the
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problem withH /h = 50 and ¥H = 3; see Tab. 6 for the numerical results, which
show the effectiveness of the adaptive algorithm.

Algorithm A Adaptive Method |# Adaptivg Size of
# Channels|H /h| condition | #its condition | #its |constraints I
3 14 |16.883%+05| 335 1.1517 8 123 372
28 |9.3377%+05| 348 1.3351 10 123 708
42 |1.0821e+06| 347 1.4993 10 123 1044

Table 4 Linear elasticity, three channels for each subdomain, see Figit2 coefficientE =
1e+ 06, outside the channdis= 1. Tolsjg = 1. The number of additional constraints is determined
by the structure of the heterogeneity and independent of tisé siee; YH = 3.

Algorithm A Adaptive Method  |# AdaptiveSize of

E,/E1 | condition #its condition #its |constraints I

1 6.2497 22 1.9264 12 33 708

10 15.7940 27 1.8460 12 34 708
le+02] 1.0256+02| 39 1.9836 13 65 708
le+03/9.4413%+02| 61 1.3398 9 90 708
le+04]9.349+03| 117 1.3363 9 99 708
le+05/9.3373+04| 191 1.3352 9 111 708
le+06] 9.3377%+05| 348 1.3351 10 123 708

Table 5 Linear elasticity, three channels for each subdomain, see Fig)/l2= 28. The number
of additional constraints is bounded for increasing conteagk;. 1/H = 3, Tolejg=1.

Problem Coarse spagel /h| condition| # its |# Adaptive constrain{Size of

Fig. 1 (leff) Adaptive | 50 (216171 | 24 114 1236
Algorithm A| 50 |> 3e+ 05|> 250 0 1236

Fig. 1 (right) Adaptive | 50 | 10.2617 | 22 114 1236
Algorithm A| 50 |> 1le+ 06|> 250 0 1236

Table 6 Results for linear elasticity using the coefficient distribatfor the heterogenous problem
from the gray scale image in Fig. 1.

4 Domain decomposition methods for nonlinear problems

The traditional domain decomposition approach to nonlipeablems can be char-
acterized by a geometric decomposition after lineariratitere, we solve a given
nonlinear, discretized problem
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Au)=0 2)

by using a Newton-type methatktd) = u® — a® 5u® with a suitable step length
a®. In each iteration we have to solve the linearized sysiiiu®®)su® =
A(u®) which can be done by overlapping or nonoverlaping domainmigosition
methods, e.g., FETI-1, FETI-DP, BDDC, or overlapping Sctaw&uch approaches
are typically named NK-DD (Newton-Krylov-Domain-Decongiton), i.e., NK-
FETI-DP, NK-Schwarz, etc.

Alternative approaches to the traditional DD approach cactaracterized by
linearization after a geometric decomposition (here dethas DD-NK, i.e., FETI-
DP-NK). Such methods can be interpreted also in the confexbminear precon-
ditioning, as, e.g., performed in the ASPIN approach, sgenRich can be viewed
as solving a nonlinear equatid®A(u)) = 0 by a Newton method instead of (2).
The nonlinear preconditioné&s is constructed from a nonlinear additive Schwarz
(AS) method. The ASPIN approach can be classified as an AS-Bitkad and has
been shown to be more robust and highly scalable, e.g., evéigh Reynolds flow
problems. Recently, the ASPIN approach has successfugly applied in nonlinear
structural mechanics [12].

In this paper, we will present new approaches for nonovpitep nonlinear DD
methods, i.e., versions of nonlinear FETI-DP methods. Wedigcuss two differ-
ent strategies of nonlinear dual primal FETI methods, naNwinear-FETI-DP-1
(Linearization first) and Nonlinear-FETI-DP-2 (Eliminati first).

Nonlinear, nonoverlapping domain decomposition methag tbeen used, in
the special case of two subdomains, in multiphysics cogpéry., in fluid-structrure
interaction; see [3]. Recently, a nonlinear FETI domainoaegosition approach for
nonlinear problems from elasticity was suggested by PegRssl, and Gosselet [20].
A simple linear/nonlinear strategy was used in [16] fortleitnaterials with strongly
localized nonlinearities.

Let Q;,i =1,...,N, be a decomposition of our domaén into nonoverlapping
subdomains. We denote the associated local finite elemacespyW and the
product space bW =W x ... x Wy. We defineV c W as the subspace of functions
from W which are continuous in all interface variables betweerdsuoiains. We
consider the minimization of a global nonlinear energy fiorcJ, operating oW,

0= argminJ(¥).
vew
Using our decomposition d® we can build local nonlinear energy functiohs =
1,...,N, operating oW, and equivalently solve

u=argmins!!, 3 (v)

under the linear continuity constraiBu = 0. Here,B is a linear jump operator,
which enforces continuity in all interface variables. Asthoint using a variational
formulation and standard dualization technique, leads astonlinear saddle point
problem
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K(u)+BTA = f
Bu =0,

whereK (u)T := (Ky(up)T,...,Kn(un)T) and 7= (f],.... fl).

Using the standard FETI-DP opera@ﬁ, see [14] for the notation, to perform
the partial assembly in the primal variables, we formulat ionlinear FETI-DP
master system

RLK(Rp)+B™A —f =0 3)
B =0,

where f := RLf, (e W, and the Lagrange multiplierd € V. Here, B enforces
continuity in the dual unknowns. We can proceed in two défgrways in order to
solve (3). We may linearize first and then reduce the resulatgrange multipliers
(Nonlinear-FETI-DP-1), or, using the implicit functiongbrem, we can use nonlin-
ear elimination and then linearization of the reduced maar system (Nonlinear-
FETI-DP-NK-2).

We now consider the first approabtonlinear-FETI-DP-1(Linearize first). With
given initial valuesu® € W andA (@ eV, we can formulate the following Newton
iteration to solve problem (3),

G(k+1) Gk ® Sk
= —a
(}\(k+1)> <)\(k)> (5,\('0)’

with a suitable step length®). In each iteration we need to solve

RLDK(Rpa™)Ry BTY (800  (REK(RrG®)+BTAK — 4
B 0 SAK ) B - @

This system can be treated as in a standard FETI-DP frameiwerkwe can re-
duce (4) to the Lagrange multipliers. The difference to ttendard NK-FETI-
DP iteration can be found on the right hand side of (4). Not#,tas a result of
B5G® = B, jumps in the Newton update will be present only if the initialue
has jumps.

In this paper, we have choosen the initial vali® = 0 and computed the initial
valueut?) by solving the nonlinear problem

RLK(Rp©)+BTAO — f =0,

by some Newton-type iteration. Note, that here we solvel logalinear subdomain
problems which are only coupled in the primal unknows.

Let us now consider the second approBcmlinear-FETI-DP-ZEliminate first).
Instead of linearizing the nonlinear saddle point probl&) e may perform a
nonlinear elimination of the variablefirst. To simplify our notation, let us define
the nonlinear operator
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K(0) = RLK (R ).

Under sufficient assumptions the first equation of (3) can littem as
=K Y(f-B"A), (5)

whereK 1 is the inverse map df. Inserting (5) into the continuity condition in (3)
we obtain

F(A)=BK}(f-B"A)=0. (6)
Again we use a Newton-type iteration to solve (6), and obtaénteration
AKFD (k) a(k)(D)\F(A ON-1F(A 0y,

We can comput®, F(A) using the chain rule, the inverse function theorem, and

(5),

D,F(A) = Dy (BK 1(f—BTA)) = —B(DK 1(f —=BTA))BT
— —B(DK(()) BT = —B(R[, (DK(Rp t)Rr)1BT.

In each Newton step, we have to solve a nonlinear system wWiRBT-DP-type
matrix on the left hand side arfel(A(¥) = BK—1(f — BTA() on the right hand
side. On the right hand side nonlinear local problems haveetsolved which are
only coupled in the primal variables.

In contrast to a standard Newton-Krylov-FETI-DP approdohgur nonlinear
FETI-DP methods weakly coupled nonlinear local problenessaitved. We expect
to reduce communication and to obtain a significantly imptbgerformance espe-
cially for problems with localized nonlinearities.

Next, we introduce our nonlinear model problem and presantarical results
for our two nonlinear FETI-DP approaches. Let us definepdh@placian forp = 4
as

Agv = div(|Ov]20v).

We test our algorithms for nonlinear model problems with athout localized
nonlinearities. For our experiments, we consider the upiaseQ := [0,1] x [0,1] in
2D decomposed into square subdomdahg = 1,....N. We have chosen piecewise
linear triangular elements to discretize the variationatfulations of (7) and (8).

First we solve the following equation for the-Laplacian withp = 4 on the
complete domain, i.e.,

Aju=—1 in Q
u =20 onodQ. )

In our second set of numerical experiments we consider theafl) Laplace
equation with nonlinear inclusions inside subdomains; Kge 3. The inclusions
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are surrounded by hulls of width. This configuration can be seen as a nonlin-
ear analog to the problem of [10]. We denote the hull on suladio; by Q; ,

Fig. 3 DomainQ; with an inclusionQ; | andn =

and the inclusion by2;; = Q;\ Q; ,. Furthermore we defin@, = UiN:1 Q; and
Qp=UL Q.
We then solve

Agu=—1 in Q
Au = -1 inQp (8)
u =20 onoQ.

In our tests all vertices are primal and, additionally, we psimal edge con-
straints in our linear and nonlinear FETI-DP methods. We ama the traditional
NK-FETI-DP with our nonlinear FETI-DP variants. To perfoefiair comparison of
the computational cost, we consider the number of Krylowcepterations and the
number of linearizations separately. Each linearizatimfuides the assembly of the
local tangential matrices and their LU-decomposition. Tésults for problems (7)
and (8) can be found in Tab. 7. The computational costs fondve methods are
significantly lower for both problems, especially for th@lplem with local nonlin-
earities p-Laplace inclusions). The number of global Krylov iteraisois reduced
radically and therefore, in a parallel setting, also comitation.

5 Conclusion

We have presented an approach for the construction of anieglaparse space in
FETI-DP algorithms by computing certain generalized eigare problems. The
method is motivated directly from the theory, i.e., a Porédaequality needed in
the condition number estimate is now replaced by a compuatbound.
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p-Laplace inclusions p-Laplace
# Krylov max. | min. (|# Krylov max. | min.
N Solver It. # Lin.| cond. | cond. It. # Lin.| cond. | cond.
NK-FETI-DP 33 14 |1.00441.0001 72 18 |1.13521.0608
4 |Nonlinear-FETI-DP- 5 14 |1.28131.0000 8 19 |1.06441.0604
Nonlinear-FETI-DP- 5 15 |1.28041.0001 12 20 [1.06441.0604
NK-FETI-DP 105 15 |1.47191.2914| 164 20 |1.46091.4107

16 [Nonlinear-FETI-DP- 21 18 [1.424Q1.4233 32 29 [1.42081.4017
Nonlinear-FETI-DP- 28 18 |1.42401.4233 40 24 |1.42081.4108

NK-FETI-DP 164 17 (1.568Q1.4264| 226 22 [1.53021.4895
64 |Nonlinear-FETI-DP- 30 20 |1.52551.5197 52 33 |2.12581.4878
Nonlinear-FETI-DP- 40 20 |1.52541.5197 52 26 [2.12581.485(

NK-FETI-DP 190 19 |1.58521.5281| 268 24 |1.68461.5394
256 |Nonlinear-FETI-DP- 31 22 |1.56431.5417 44 34 |2.15231.5237
Nonlinear-FETI-DP- 42 22 |1.56541.5406 55 28 |2.15231.5375

NK-FETI-DP 209 21 |1.57861.4939 293 26 |1.98091.5647
1024 Nonlinear-FETI-DP- 31 24 |1.58271.5409 45 35 |2.16691.4921
Nonlinear-FETI-DP- 43 24 |1.58521.5409 56 30 |2.16691.556(

NK-FETI-DP 215 23 |1.57841.4974] 330 28 |2.53091.5657
409¢Nonlinear-FETI-DP- 19 25 |1.576§1.5451] 45 37 |2.17431.489(
Nonlinear-FETI-DP- 41 26 |1.59381.545] 45 31 |2.17431.5588§

Table 7 p-Laplaceis described in (7) ang-Laplace inclusionss described in (8). Fop-Laplace
inclusions see also Fig. 3. In both problem%,: 16; N is the number of subdomaing;Krylov

It. gives the sum of all Krylov-space iteratiorsLin. gives the sum of all linearizations (comput-
ing local tangential matrices and their LU-decompositioniy./max. condjive the maximal and
minimal condition number of the FETI-DP systems.

We have also presented approaches to construct nonlinessone of the FETI-
DP method. In these methods, the coarse space takes anampale since it
can influence not only the convergence of the Krylov methadaltso that of the
Newton iteration. In the future, the use of an adaptive @apsce may therefore be
of special interest in this context.
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