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1 Introduction

Nesterov's method is a first order convex minimization mdthdgth convergence
rateO(1/k?), see e.g. [4, 3]. The method can be used with either smootbres-n
mooth convex optimization problems. For constrained mirétion, if the projec-
tion onto the constraints set is easy to compute, a projeptdient variant of the
Nesterov method can be derived, see e.g. [1, 7].

In this paper we apply Nesterov's method to the domain decsitipn. The
model problem is the Poisson equation. As a first order op#tiin method, the
Nesterov method needs, per iteration, only matrix/vectoltipications while stan-
dard domain decomposition methods need matrices invetkiromgh solution to
linear systems, see e.g. [5, 6]. The Nesterov method is firerevell-suited for
Graphics Processing Unit (GPU) architecture for which the (direct of iterative) lin-
ear solvers using complete or incomplete factorizatioasregfficient, see, e.g., [2].
Moreover, the Nesterov method can be (theroetically) useddmain decomposi-
tion of nonsmooth problems (i.e. problems withterms)

The paper is organized as follows. In the next section wellréza Nesterov
method for convex programming problem. The model (Poisgoolplem and the
domain decomposition are presented in Section 3. The Nestimain decompo-
sition method is presented in Section 4 followed by prelemnnumerical experi-
ments in Section 5.

2 Nesterov's Method

LetF be a convex function defined on a finite dimensional spacehe subgradient
of F atx is defined by

IF (X) ={pe X|F(y) > F(X)+ (p,y—Xx), Vy € domF }.

If F is differentiable, the@F (x) = {OF (x)}.
Let & > 0 and assume th&t is convex, lower-semicontinous function #nlt is
easy to show that the problem
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mindF ( )+1|| x||2
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always has a unique solution, verifying the equation
00F(y)+y—x30
that is, formally
y=(I+380F) ().

The mapping(l + 8dF)~1, called "proximal map of6F”, is well defined and
uniquely defined. 1K is a closed and convex set akd= 1k (i.e. F is the char-
acteristic function oK), then(l +8dF )~ is a projection ontd.

Consider the following optimization problem

mxin ®(x) = F(x)+G(x), (1)

where we assume that

e Fis%bl, ie. the gradienflF is Lipschitz with some constanht
e Gis simple”in the sens that the "prox” operatdr+ 6dG) ! is easy to compute
(e.g. projection)

The most straightforward Nesterov method is the projectedliignt (Beck and
teboulle [1]), an adaptation of the gradient descent dlgoridue to Nesterov [4].
The projected gradient method is outline in Algorithm 1. Thte of convergence
of Algorithm 1 is given by the following theorem due to Becldareboulle [1].

Theorem 1. Let {x} bethe sequence generated by Algorithm 1 with & = 1/L. Then
L
ky )« = 0 2
D)~ d(x') < o [ x|

for any k > 1 and for any x* solution of the minimization problem (1).

Algorithm 1 Nesterov’s projected gradient algorithm
1. k= 0. Choose? andé > 0

2. k> 0. Computext1 = (1 + 59G) (X — SOF (x¥))

To overcome the slow rate of convergence of Algorithm 1, Bi@st proposes in
[3] an acceleration variant of the gradient descent. Farisglminimization prob-
lems of the form (1), Beck and Teboulle propose Algorithm &;jant of the Nes-
terov accelerated algorithm.

The rate of convergence of Algorithm 2 is given by the follogitheorem due to

(1].
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Algorithm 2 Accelerated Nesterov’s Algorithm
k=0 X0, y'=xt;,=1,6>0

k>0 Computed andy* as follows

1. ZX=y—860F(y
2. X=(1+60G)"1(Z)

3. ter=3(1+,/1+42)

4o P =X (- D (X M

Theorem 2. For any minimizer x* of (1), the sequence {x<} generated by Algo-
rithm 2 with & = 1/L issuch that

D) — D(x) < 25

=~ (k—|—1)2 ” XO_X* ”27 (2)

forany k > 1.

3 Model problem and Domain Decomposition

Fig. 1 Domain decomposi-
tion of Q into two subdo- [0]] Q;
mains withS as the common
interface

3.1 Model problem

Let Q be a bounded domain iR? (d = 2,3) with Lipschitz-continuous boundary
I". We consider im2 the Poisson problem

—Au=f, inQ, 3)
u=0 onl. (4)
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Setting

V=H}Q), fv)= /Q fvdx anda(v,v) = /Q Ov- Ovdx,
the Poisson problem (3)-(4) can be reformulated as the ifadjwonvex minimiza-

tion problem
minJ(v) = %a(v,v) — f(v). (5)

veVv

3.2 Domain decomposition

Let {Q1, Q,} be a partition ofQ, as shown in Figure 1, and I8&= 0510052,
Vi =V|g and
[=rnow, Vi={veH(Q), v|r=0}.

It follows that

2

2 2
a(v,v) = ';ai(vi,vi), f(v) = ; fi(vi), J(v)= ;Ji (Vi)

and the minimization problem (5) becomes

(\r/ni/n) J1(v1) + J2(v2) (6)
[V] ;= (vi—V2)|s=00nS (7)

With the formulation (6)-(7), the continuity of the normadril/ative accrosSis en-
sured (implicitly) by the Lagrange multiplier associateithi(7). Indeed, if(uy, uy)
is the solution of the constrained optimization problem-(B) then there exists
A € L2(S) such that

ai(u,vi) = fi(vi)+ (=)' (A, w)s, Wi eV, i=12
(4, [u)s=0, Vuel?S),

or
—Au = fiinQ and oui _ (=1)'A onS
dni
so that
oup  dup

(8)

~ o om onp’
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3.3 Finite dimensional problem

Finite element or finite difference aproximations of thexabBoisson problem leads
to the quadratic forms

J(v) = TA.v. Tvi, i=12

were A, are symmetric positive definite matrices. Rpwe use the following de-

composition
| Vil
V| —
Vis

wherevis = Vs (the subvector of interface unknowns) and= vi/(o\s) (the sub-
vector of interior unknowns). Let us introduce the Bgtdefining the continuity
condition

K={(vi,v2) : [V]| =vis—Vos = 0}.

It is obvious that is closed and convex. The finite dimensional constrained opt
mization problem is therefore

min  J(vy,Vp) = ziJ. vi). (9)

(v1,v2)eK

4 Nesterov domain decomposition method

Let us introduce the functions

G is the characteristic function &f. The finite dimensional (constrained) minimiza-
tion problem (9) can be rewritten as the following convexamstrained minimiza-
tion problem

mVinF (V) +G(v) (10)

Note thatF is a convex function an@ is a charactersitic function of a closed convex
set. Then the proximal map+ 69G) L is easy to compute. Indeed, for= (py, p2)

- 1 -
(1+60G) *(p) =argminz || 4—p||* +6G(q) = (B, F2)
where

i=1,2, (11)

ﬁ' o Pii
" | 3(pys+ p2s)
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the projection of(ps, p2) onto toK. The minimization problem can then be solved
by the Nesterov Algorithm 2. The resulting domain decomgimsimethod is de-
scribed in Algorithm 3. The parallelizability of the methimdobvious.

Algorithm 3 Nesterov domain decomposition algorithm
k=0 W, ot=uw,t1=18=1/L

k>0: Computel andg<! as follows
1 Z=d'-d(Ad—b),i=12
2. uk:[ 2 ],i:l,Z

' (Zs+2)/2

3. ter=3(1+4/1+4))

4. g =u (- DU U e i = 1,2,

Since the domain decomposition is an optimization basedutinps in a coeffi-
cientis not an issue. If in (3), the Laplacian operator isaegd by - (o (X)0u(x)),
then the continuity condition, i.e. (11), does not changéden8) becomes

dul . dUZ

A=—01— =02—
10”1 25“2,

assumingyi = a|q,, i = 1,2.

In the case of a decomposition with intersection of more tiiamsubdomains,
a special procedure must be carried out to ensure the cagtoandition (11). For
instance, in the case of an intersection of four subdomauith, { pis}i—1.. 4 the
value ofp at the corner of each subdomain, we must have

pos—P1s=0, pPass—p2s=0, pPas—p3s=0.

A straightforward calculation (using optimality conditi®) yields

12 .
Pis = Z[legs, i=1....,4

5 Numerical experiments

The domain decomposition algorithm presented in the pusvsactions was imple-
mented in Fortran 90, on a Linux cluster, using an MP! librake useP? finite

element method for the discretization. The Lipschitz cantst is approximated
in the initialization step using the power method. Indeed,the model problem
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L = p(A), the spectral radius of the Laplacian matrix. The stoppirgerion is
(J(uK) = I(U1)) /h < 1076 whereh is the size of the mesh.

We consider the domai® = (0, 1) x (0, 1) and the right-hand side in (3) is
adjusted such that the exact solutioru{g,y) = (x— 1)ysin(x) cog2my). Table 1
shows the number of iterations and CPU times (in secondsefegral mesh sizes
and number of sub-domains. The CPU times given include thexapation ofL by
the power method. We notice that, for the largest probles 1/256), the standard
speed-up (i.e. the number of degrees of freedom is constaite the number of
sub-domains varies) obtained with the projected gradidgrthm 3 is significant:
about 43 for 32 sub-domains.

In Table 2 we report the results for the scaled speed-ughieenumber of sub-
domains varies while the number of nodes in each sub-dom&epit fixed to 106
100 (10000 degrees of freedom). We notice that the numbeemaitions increases
with the number of sub-domains: the number of iterationsudtiplied by about 4
while the number of subdomains is multiplied by 36.

h=1/16]h=1/32h = 1/64]h = 1/128h = 1/256)
IT/CPU [ TT/CPU | IT/CPU| TT/CPU | IT/CPU
1 | 134/0.01|270/0.14 284/1.11 416/5.57|834/45.7¢
2 | 40/0.00 | 79/0.08|154/0.21 309/2.11|611/26.77
4 | 78/0.00 [109/0.08 159/0.30 312/1.28| 613/6.07
16 |122/0.03300/0.18 361/0.20 320/0.26| 847/2.10
32 |165/6.056310/6.14369/0.15 595/0.38| 637/1.05

Nsp

Table 1 Standard speed-uplspy := number of subdomaing;:= mesh size; IT:= number of iter-
ations; CPU:= CPU times in seconds.

Noll L] 4] 9] 16 25] 36
IT_||440|486|730| 974 |12181461
CPU||2.84(3.285.3214.4( 7.55| 8.76

Table 2 Scaled speed-up with 100100 nodes in each sub-domaMgp := number of subdo-
mains; IT:= number of iterations; CPU:= CPU times in seconds

6 Conclusion

A Nesterov domain decomposition algorithm for the Poissablem has been in-
troduced. The continuity condition on the interface is ecéd using projection.
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This approach is easy to implement and preliminary numkeigperiments show
that a significant speed-up is obtained. Neverthelessadisi¢éo eh-dependent algo-
rithm. Further work is under way to improve the algorithmggonditioning, restart-
ing strategy, etc.)
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