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1 Introduction

Nesterov’s method is a first order convex minimization method with convergence
rateO(1/k2), see e.g. [4, 3]. The method can be used with either smooth or nons-
mooth convex optimization problems. For constrained minimization, if the projec-
tion onto the constraints set is easy to compute, a projectedgradient variant of the
Nesterov method can be derived, see e.g. [1, 7].

In this paper we apply Nesterov’s method to the domain decomposition. The
model problem is the Poisson equation. As a first order optimization method, the
Nesterov method needs, per iteration, only matrix/vector multiplcations while stan-
dard domain decomposition methods need matrices inversionthrough solution to
linear systems, see e.g. [5, 6]. The Nesterov method is therefore well-suited for
Graphics Processing Unit (GPU) architecture for which the (direct of iterative) lin-
ear solvers using complete or incomplete factorizations are inefficient, see, e.g., [2].
Moreover, the Nesterov method can be (theroetically) used for domain decomposi-
tion of nonsmooth problems (i.e. problems withL1 terms)

The paper is organized as follows. In the next section we recall the Nesterov
method for convex programming problem. The model (Poisson)problem and the
domain decomposition are presented in Section 3. The Nesterov domain decompo-
sition method is presented in Section 4 followed by preliminary numerical experi-
ments in Section 5.

2 Nesterov’s Method

Let F be a convex function defined on a finite dimensional spaceX . The subgradient
of F at x is defined by

∂F(x) = {p ∈ X | F(y)≥ F(x)+(p,y− x), ∀y ∈ domF}.

If F is differentiable, then∂F(x) = {∇F(x)}.
Let δ > 0 and assume thatF is convex, lower-semicontinous function onX . It is

easy to show that the problem

1LIMOS, Universit́e Blaise Pascal – CNRS UMR 6158, F-63000 Clermont-Ferrand, France,e-
mail:{andzembe}{koko}@isima.fr ·2 LMNO, Universit́e de Caen – CNRS UMR, F-14032
Caen, France e-mail:sassi@univ-caen.fr

1



2 Firmin Andzembe, Jonas Koko, and Taoufik Sassi

min
y

δF(y)+
1
2
‖ y− x ‖2

always has a unique solution, verifying the equation

δ∂F(y)+ y− x ∋ 0

that is, formally
y = (I +δ∂F)−1(x).

The mapping(I + δ∂F)−1, called ”proximal map ofδF”, is well defined and
uniquely defined. IfK is a closed and convex set andF = 1K (i.e. F is the char-
acteristic function ofK), then(I +δ∂F)−1 is a projection ontoK.

Consider the following optimization problem

min
x

Φ(x) = F(x)+G(x), (1)

where we assume that

• F is C 1,1, i.e. the gradient∇F is Lipschitz with some constantL;
• G is ”simple” in the sens that the ”prox” operator(I+δ∂G)−1 is easy to compute

(e.g. projection)

The most straightforward Nesterov method is the projected gradient (Beck and
teboulle [1]), an adaptation of the gradient descent algorithm due to Nesterov [4].
The projected gradient method is outline in Algorithm 1. Therate of convergence
of Algorithm 1 is given by the following theorem due to Beck and Teboulle [1].

Theorem 1. Let {xk} be the sequence generated by Algorithm 1 with δ = 1/L. Then

Φ(xk)−Φ(x∗)≤
L
2k

‖ x0− x∗ ‖2,

for any k ≥ 1 and for any x∗ solution of the minimization problem (1).

Algorithm 1 Nesterov’s projected gradient algorithm
1. k = 0. Choosex0 andδ > 0

2. k ≥ 0. Computexk+1 = (I +δ∂G)−1(xk −δ∇F(xk))

To overcome the slow rate of convergence of Algorithm 1, Nesterov proposes in
[3] an acceleration variant of the gradient descent. For solving minimization prob-
lems of the form (1), Beck and Teboulle propose Algorithm 2, variant of the Nes-
terov accelerated algorithm.

The rate of convergence of Algorithm 2 is given by the following theorem due to
[1].
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Algorithm 2 Accelerated Nesterov’s Algorithm
k = 0 x0, y1 = x0, t1 = 1, δ > 0

k ≥ 0 Computexk andyk as follows

1. zk = yk −δ∇F(yk)

2. xk = (I +δ∂G)−1(zk)

3. tk+1 =
1
2

(

1+
√

1+4t2
k

)

4. yk+1 = xk +(tk −1)(xk − xk−1)/tk+1

Theorem 2. For any minimizer x∗ of (1), the sequence {xk} generated by Algo-
rithm 2 with δ = 1/L is such that

Φ(xk)−Φ(x∗)≤
2L

(k+1)2 ‖ x0− x∗ ‖2, (2)

for any k ≥ 1.

3 Model problem and Domain Decomposition

Fig. 1 Domain decomposi-
tion of Ω into two subdo-
mains withS as the common
interface

Ω1

S

Ω2

3.1 Model problem

Let Ω be a bounded domain inRd (d = 2,3) with Lipschitz-continuous boundary
Γ . We consider inΩ the Poisson problem

−∆u = f , in Ω , (3)

u = 0 onΓ . (4)
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Setting

V = H1
0(Ω), f (v) =

∫

Ω
f vdx anda(v,v) =

∫

Ω
∇v ·∇vdx,

the Poisson problem (3)-(4) can be reformulated as the follwing convex minimiza-
tion problem

min
v∈V

J(v) =
1
2

a(v,v)− f (v). (5)

3.2 Domain decomposition

Let {Ω1, Ω2} be a partition ofΩ , as shown in Figure 1, and letS = ∂Ω̄1∩ ∂Ω̄2,
vi = v|Ωi and

Γi = Γ ∩∂Ωi, Vi =
{

v ∈ H1(Ωi), v|Γi = 0
}

.

It follows that

a(v,v) =
2

∑
i=1

ai(vi,vi), f (v) =
2

∑
i=1

fi(vi), J(v) =
2

∑
i=1

Ji(vi)

and the minimization problem (5) becomes

min
(v1,v2)

J1(v1)+ J2(v2) (6)

[v] := (v1− v2)|S = 0 onS. (7)

With the formulation (6)-(7), the continuity of the normal derivative accrossS is en-
sured (implicitly) by the Lagrange multiplier associated with (7). Indeed, if(u1,u2)
is the solution of the constrained optimization problem (6)-(7), then there exists
λ ∈ L2(S) such that

ai(ui,vi) = fi(vi)+(−1)i(λ ,vi)S, ∀vi ∈Vi, i = 1,2

(µ , [u])S = 0, ∀µ ∈ L2(S),

or

−∆ui = fi in Ωi and
∂ui

∂ni
= (−1)iλ on S

so that

λ =−
∂u1

∂n1
=

∂u2

∂n2
. (8)
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3.3 Finite dimensional problem

Finite element or finite difference aproximations of the above Poisson problem leads
to the quadratic forms

Ji(vi) =
1
2

vT
i Aivi − f T

i vi, i = 1,2.

wereAi are symmetric positive definite matrices. Forvi we use the following de-
composition

vi =

[

viI

viS

]

whereviS = vi|S (the subvector of interface unknowns) andviI = vi|(Ω\S) (the sub-
vector of interior unknowns). Let us introduce the setK, defining the continuity
condition

K = {(v1,v2) : [v] = v1S − v2S = 0}.

It is obvious thatK is closed and convex. The finite dimensional constrained opti-
mization problem is therefore

min
(v1,v2)∈K

J(v1,v2) =
2

∑
i=1

Ji(vi). (9)

4 Nesterov domain decomposition method

Let us introduce the functions

F(v) = J1(v1)+ J2(v2)

G(v) = 1K(v).

G is the characteristic function ofK. The finite dimensional (constrained) minimiza-
tion problem (9) can be rewritten as the following convex unconstrained minimiza-
tion problem

min
v

F(v)+G(v) (10)

Note thatF is a convex function andG is a charactersitic function of a closed convex
set. Then the proximal map(I+δ∂G)−1 is easy to compute. Indeed, forp=(p1, p2)

(I +δ∂G)−1(p) = argmin
q

1
2
‖ q− p ‖2 +δG(q) = ( p̃1, p̃2)

where

p̃i =

[

piI
1
2(p1|S + p2|S)

]

, i = 1,2, (11)
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the projection of(p1, p2) onto toK. The minimization problem can then be solved
by the Nesterov Algorithm 2. The resulting domain decomposition method is de-
scribed in Algorithm 3. The parallelizability of the methodis obvious.

Algorithm 3 Nesterov domain decomposition algorithm
k = 0: u0

i , q1
i = u0

i , t1 = 1, δ = 1/L

k ≥ 0: Computeuk andqk+1 as follows

1. zk
i = qk

i −δ (Aiqk
i −bi), i = 1,2

2. uk
i =

[

zk
iI

(zk
1S + zk

2S)/2

]

, i = 1,2

3. tk+1 =
1
2

(

1+
√

1+4t2
k

)

4. qk+1
i = uk

i +(tk −1)(uk
i −uk−1

i )/tk+1, i = 1,2.

Since the domain decomposition is an optimization based, the jumps in a coeffi-
cient is not an issue. If in (3), the Laplacian operator is replaced by∇ · (α(x)∇u(x)),
then the continuity condition, i.e. (11), does not change while (8) becomes

λ =−α1
∂u1

∂n1
= α2

∂u2

∂n2
,

assumingαi = α|Ωi
, i = 1,2.

In the case of a decomposition with intersection of more thantwo subdomains,
a special procedure must be carried out to ensure the continuity condition (11). For
instance, in the case of an intersection of four subdomains,with {piS}i=1,...,4 the
value ofp at the corner of each subdomain, we must have

p2S − p1S = 0, p3S − p2S = 0, p4S − p3S = 0.

A straightforward calculation (using optimality conditions) yields

p̃iS =
1
4

4

∑
ℓ=1

pℓS, i = 1, . . . ,4.

5 Numerical experiments

The domain decomposition algorithm presented in the previous sections was imple-
mented in Fortran 90, on a Linux cluster, using an MPI library. We useP1 finite
element method for the discretization. The Lipschitz constant L is approximated
in the initialization step using the power method. Indeed, for the model problem
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L = ρ(A), the spectral radius of the Laplacian matrix. The stopping criterion is
(J(uk)− J(uk−1))/h < 10−6 whereh is the size of the mesh.

We consider the domainΩ = (0, 1)× (0, 1) and the right-hand side in (3) is
adjusted such that the exact solution isu(x,y) = (x− 1)ysin(x)cos(2πy). Table 1
shows the number of iterations and CPU times (in seconds) forseveral mesh sizes
and number of sub-domains. The CPU times given include the aproximation ofL by
the power method. We notice that, for the largest problem (h = 1/256), the standard
speed-up ( i.e. the number of degrees of freedom is constant while the number of
sub-domains varies) obtained with the projected gradient Algorithm 3 is significant:
about 43 for 32 sub-domains.

In Table 2 we report the results for the scaled speed-up, i.e.the number of sub-
domains varies while the number of nodes in each sub-domain is kept fixed to 100×
100 (10000 degrees of freedom). We notice that the number of iterations increases
with the number of sub-domains: the number of iterations is multiplied by about 4
while the number of subdomains is multiplied by 36.

h = 1/16 h = 1/32 h = 1/64 h = 1/128 h = 1/256
NSD IT/CPU IT/CPU IT/CPU IT/CPU IT/CPU

1 134/0.01 270/0.14 284/1.11 416/5.57 834/45.78

2 40/0.00 79/0.08 154/0.21 309/2.11 611/26.77

4 78/0.00 109/0.08 159/0.30 312/1.28 613/6.07

16 122/0.03 300/0.18 361/0.20 320/0.26 847/2.10

32 165/6.056310/6.12 369/0.15 595/0.38 637/1.05

Table 1 Standard speed-up:NSD := number of subdomains;h := mesh size; IT:= number of iter-
ations; CPU:= CPU times in seconds.

NSD 1 4 9 16 25 36

IT 440 486 730 974 12181461

CPU 2.84 3.28 5.32 14.40 7.55 8.76

Table 2 Scaled speed-up with 100× 100 nodes in each sub-domain:NSD := number of subdo-
mains; IT:= number of iterations; CPU:= CPU times in seconds

6 Conclusion

A Nesterov domain decomposition algorithm for the Poisson problem has been in-
troduced. The continuity condition on the interface is enforced using projection.
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This approach is easy to implement and preliminary numerical experiments show
that a significant speed-up is obtained. Nevertheless, it leads to ah-dependent algo-
rithm. Further work is under way to improve the algorithm (preconditioning, restart-
ing strategy, etc.)
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