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1 Introduction

Contact problems of elasticity are used in many fields of science and engineering,
especially in structural mechanics, geology and biomecanics. Many numerical pro-
cedures solving contact problems have been proposed in the engineering literature.
They are based on standard discretization techniques for partial differential equa-
tions in combination with a special implementation of non-linear contact conditions
(e.g., see [3, 5, 6, 8]).

The use of domain decomposition methods turns out to be one of the most ef-
ficient approaches. Recently, Dirichlet-Neumann and FETI type algorithms have
been proposed and studied for solving multibody contact problems with Coulomb
friction (see for example [7, 1, 2]).

In this paper, the Neumann-Neumann algorithm is extended to two-body con-
tact problems with Coulomb friction. The main difficulty is due to the boundary
conditions at the contact interface. They are highly non-linear, both in the normal
direction (unilateral contact conditions) and in the tangential one (Coulomb’s law).
A fixed point procedure is introduced to ensure the continuity of the contact stresses.
Numerical results illustrate that an optimal relaxation parameter exists and its value
is nearly independent of the friction coefficient and the mesh size.

2 Setting of the problem

Let us consider two plane elastic bodies, occupying bounded domains Ω α , α = 1,2.
The boundary Γ α := ∂Ω α is assumed to be piecewise continuous, and it is split into
three non empty disjoint parts Γ α

u , Γ α
p and Γ α

c such that Γ α
u ∩Γ α

c = /0. Each body
Ω α is fixed on Γ α

u and subject to surface tractions φ α ∈ (L2(Γ α
p ))2 on Γ α

p . The body
forces are denoted by f α ∈ (L2(Ω α ))2. In the initial configuration, both bodies have
a common contact portion Γc :=Γ 1

c =Γ 2
c . In other words, we consider the case when

the contact zone cannot grow during the deformation process and there is no gap
between Ω 1 and Ω 2. Unilateral contact conditions with local Coulomb’s friction are
prescribed on Γc. The problem consists in finding the displacement field u= (u 1,u2)
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(the notation uα stands for u|Ωα ) and the stress tensor field σ = (σ(u1),σ(u2)) such
that:

divσ(uα)+ f α = 0 in Ω α ,

σ(uα)nα = φα on Γ α
p ,

uα = 0 on Γ α
u ,

⎫⎪⎬
⎪⎭ (1)

α = 1,2. The elastic constitutive law, is given by Hooke’s law for homogeneous and
isotropic material:

σi j(u
α) = Aα

i jkhekh(u
α), e(uα) =

1
2

(
∇uα +(∇uα)

T
)
, (2)

where Aα = (Aα
i jkh)1≤i, j,k,h≤2 ∈ (L∞(Ω α))16 is the fourth-order elasticity tensor sat-

isfying the usual symmetry and ellipticity conditions and e(u α) is the respective
strain tensor. The summation convention is adopted.

Further the normal and tangential components of the displacement u and the
stress vector on Γc are defined by

uα
N = uα

i nα
i , uα

Ti
= uα

i − uα
Nnα

i ,

σα
N = σi j(uα)nα

i nα
j , σT

α
i = σi j(uα)nα

j −σα
N nα

i ,

}
(3)

where nα denotes the outward normal unit vector to the boundary. On the interface
Γc, the unilateral contact law conditions are prescribed:

σN := σ1
N = σ2

N , σT := σ1
T = σ2

T , (4)

[uN ]≤ 0, σN ≤ 0, σN [uN ] = 0, (5)

where [vN ] = v1 ·n1+v2 ·n2 is the jump across the interface Γc of a function v defined
on Ω 1 ∪Ω 2. Coulomb’s law of local friction reads as follows

|σT | ≤ F |σN |,
|σT |< F |σN |=⇒ [uT ] = 0,

|σT |= F |σN |=⇒∃ν ≥ 0 [uT ] =−νσT ,

⎫⎪⎬
⎪⎭ (6)

where F ∈ L∞(Γc), F ≥ 0 on Γc is the coefficient of friction and [uT ] stands for the
jump of the tangential displacements.

Weak solutions of the contact problem obeying Coulomb’s law of friction can be
defined as a fixed point of the mapping Φ : Λ 	→Λ , where Λ = {μ ∈H −1/2(Γc),μ ≥
0} and Φ(g) = −σN(u) with u ∈ K being the unique solution of the variational
inequality:

u := u(g) ∈K : a(u,v− u)+ 〈Fg, |[vT ]|− |[uT ]|〉 ≥ L(v− u), ∀v ∈K. (P)
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Here

K= {v ∈ V| [vN ]≤ 0 on Γc}, V= V
1 ×V

2,

V
α = {vα ∈ (H1(Ω α ))2 | vα = 0 on Γ α

u }, α = 1,2.

The bilinear and linear form a(·, ·), L(·) represent the inner energy of the system,
and the work of applied forces, respectively:

a(v,w) = a1(v1,w1)+ a2(v2,w2), L(v) = L1(v1)+L2(v2), v,w ∈ V,

where

aα(vα ,wα) =

∫
Ωα

Aα
i jkhekh(v

α)ei j(w
α )dx,

Lα (vα) =

∫
Ωα

f α · vα dx+
∫

Γ α
p

φα · vα ds,

α = 1,2. The symbol 〈·, ·〉 stands for the duality pairing between H −1/2(Γc) and
H1/2(Γc) or for the scalar product in L2(Γc), if g ∈ L2(Γc).

3 Domain decomposition algorithm for contact problems with
given friction

We present the continuous version of the domain decomposition algorithm for solv-
ing (P). The mathematical justification of all results presented below can be found
in [4]. We introduce the following notation: by π α : (H1/2(Γc))

2 	→ V
α we denote

the extension mapping defined for λ ∈ (H 1/2(Γc))
2 by

παλ ∈ V
α : aα(πα λ ,vα) = 0 ∀vα ∈V

α
0 ,

παλ = λ on Γc,

}
(7)

where
V

α
0 = {vα ∈ (H1(Ω α))2| vα = 0 on Γ α

u ∪Γc}. (8)

Further for ϕ ∈ L2(Γc) given, we define:

K
2(ϕ) = {v2 ∈V

2| v2 ·n2 ≤−ϕ on Γc}

and the frictional term j : V 	→R by

j(v) := j(v1,v2) =
∫

Γc

g|[vT ]|ds, v = (v1,v2) ∈ V.

The algorithm is based on the following result.
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Proposition 1. A pair u = (u1,u2) ∈ V is a solution of (P) if and only if u1 ∈ V
1,

u2 ∈ V
2 solve the following problems:

Find u1 ∈V
1 such that

a1(u1,v1) = L1(v1)− a2(u2,π2v1)+L2(π2v1) ∀v1 ∈ V
1

}
(9)

and

Find u2 ∈K
2(u1 ·ν1) such that

a2(u2,v2 − u2)+ j(u1,v2)− j(u1,u2)≥ L2(v2 − u2) ∀v2 ∈K
2(u1 ·ν1),

}
(10)

respectively.

Suppose that λ ∈ (H1/2(Γc))
2 is given and u1, u2 are the solutions of the follow-

ing decoupled problems:

Find u1 := u1(λ ) ∈ V
1 such that

a1(u1,v1) = L1(v1) ∀v1 ∈ V
1
0

u1 = λ on Γc

⎫⎪⎪⎬
⎪⎪⎭ (P1(λ ))

and
Find u2 := u2(λ ) ∈K

2(λ ·n1) such that

a2(u2,v2 − u2)+ j(λ ,v2)− j(λ ,u2)≥ L2(v2 − u2)

∀v2 ∈K
2(λ ·n1).

⎫⎪⎪⎬
⎪⎪⎭ (P2(λ ))

If λ ∈ (H1/2(Γc))
2 was chosen in such a way that σ 1

N = σ2
N and σ 1

T = σ2
T on Γc, then

the couple u = (u1,u2) ∈ K would be a solution of (P). To find such λ ensuring
continuity of the normal and tangential contact stress across Γc, we shall use the
following auxiliary Neumann problems defined in Ω 1 and Ω 2:

Find w1 ∈V
1 such that

a1(w1,v1) = 1
2(−a1(u1,v1)+L1(v1)− a2(u2,π2v1)+L2(π2v1))

∀v1 ∈ V
1

⎫⎪⎪⎬
⎪⎪⎭ (P3(λ ))

and

Find w2 ∈ V
2 such that

a2(w2,v2) = 1
2 (a

2(u2,v2)−L2(v2)+ a1(u1,π1v2)−L1(π1v2))

∀v2 ∈V
2,

⎫⎪⎪⎬
⎪⎪⎭ (P4(λ ))

where u1 := u1(λ ), u2 := u2(λ ) are the solutions of (P1(λ )), and (P2(λ )), respec-
tively. The algorithm consists of the following five steps:
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ALGORITHM (DD) Let λ0 ∈ (H1/2(Γc))
2 and θ > 0 be given. For k ≥ 1 integer,

define uα
k , wα

k , α = 1,2 and λk by:

Step 1. u1
k ∈ V

1 solves (P1(λk−1));

Step 2. u2
k ∈K

2(λk−1 ·n1) solves (P2(λk−1));

Step 3. w1
k ∈ V

1 solves (P3(λk−1));

Step 4. w2
k ∈ V

2 solves (P4(λk−1));

Step 5. λk = λk−1 +θ (w1
k −w2

k) on Γc.

The convergence property of this algorithm follows from the next theorem.

Theorem 1. There exist: 0 < θ ∗ < 4 and functions λ∗ ∈ (H1/2(Γc))
2, uα∗ ,wα∗ ∈ V

α ,
α = 1,2 such that for any θ ∈ (0,θ ∗) it holds:

λk → λ∗ in (H1/2(Γc))
2,

uα
k → uα∗

wα
k → wα∗

}
in (H1(Ω α))2, α = 1,2,

⎫⎪⎪⎬
⎪⎪⎭ k → ∞ (11)

where the sequence {(uα
k ,w

α
k ,λk)} is generated by ALGORITHM (DD). In addition,

the couple (u1∗,u2∗) solves (P).

A discrete version of algorithm is obtained by a finite element approximation of
Steps 1-4. In [4] we used piecewise linear functions on triangulations of Ω 1 and Ω 2.
These triangulations are supposed to be compatible on the contact part Γc. Using a
similar technique as in Theorem 1, one can prove the convergence property of the
discrete version with θ ∗ independent of the mesh norm.

4 Numerical experiments

In this section, we shall test the performance of variants of ALGORITHM (DD) for
solving contact problems with Coulomb friction. For this reason, we combine AL-
GORITHM (DD) with the method of succesive approximations that enables us to
compute fixed points of the mapping Φ . To get an efficient algorithm, we perform
only one iteration of ALGORITHM (DD) in each step of the method of succesive
approximations. In other words, we update the slip bound g in each Step 2 using
the result of the previous iteration, i.e., g = −σN(u2

k−1) (and g = 0, if k = 1). This
algorithm will be called ALGORITHM I in this numerical part.

Note that Step 2 in ALGORITHM I treats simultaneously both, the non-penetration
and the friction conditions. A natural idea occurs, namely to split these conditions
between Steps 1 and 2. This modification of ALGORITHM (DD) will be called AL-
GORITHM II.



6 J. Haslinger, R. Kučera, and T. Sassi

In both, ALGORITHM I and II, one can perform splitting of the Gauss-Seidel type
so that computatios of the normal and tangential contact stresses are decoupled by
performing one Gauss-Seidel iteration; see [4] for more details. In the respective
columns of the tables below we show the results without (column without) and with
the Gauss-Seidel splitting in Step 1, 2, and in both these steps.

Example 1. Let us consider two plane elastic bodies

Ω 1 = (0,3)× (1,2) and Ω 2 = (0,3)× (0,1)

made of an isotropic, homogeneous material characterized by the Young modulus
2.1×1011 and the Poisson ratio 0.277 (steel). The decompositions of ∂Ω α , α = 1,2
are as follows:

Γ 1
u = {0}× (1,2), Γ 1

c = (0,3)×{1}, Γ 1
p = ∂Ω 1 \Γ 1

u ∪Γ 1
c ,

Γ 2
u = {0}× (0,1), Γ 2

c = (0,3)×{1}, Γ 2
p = ∂Ω 2 \Γ 2

u ∪Γ 2
c .

The volume forces f α = 0 in Ω α , α = 1,2 while the following surface tractions of
density φ 1 = (φ1

1 ,φ1
2 ) act on Γ 1

p :

φ1
1 (s,2) = 0, φ 1

2 (s,2) = φ1
2,L +φ1

2,R s, s ∈ (0,3),

φ1
1 (3,s) = φ1

1,B(2− s)+φ1
1,U (s− 1), s ∈ (1,2),

φ1
2 (3,s) = φ1

2,B(2− s)+φ1
2,U (s− 1), s ∈ (1,2),

where φ 1
2,L = −6× 107, φ1

2,R = −1/3× 107, φ1
1,B = 2× 107, φ1

1,U = 2× 107, φ1
2,B =

4× 107, and φ 1
2,U = 2× 107. The coefficient of friction is F = 0.3.

We compare performance of ALGORITHMS I and II with different splittings of
Gauss-Seidel type for various values of θ and degrees of freedom n (twice the num-
ber of nodes) and m (the number of the contact nodes). In the tables we report
the computational time in seconds, the number #iter of the (outer) iterations, and
the total number of actions nA of the inverses to the stiffness matrices. Further we
quote the total efficiency of the method assessed by the ratio eff := nA/(2m) which
gives a comparison of our algorithms with the realization of ”similar linear prob-
lems” by the standard conjugate gradient method. It is well-known that the number
of conjugate gradient iterations, i.e. the number of matrix-vector multiplications,
is bounded by the size of the problem. Therefore, one can say that our algorithms
exhibit the complexity comparable with the conjugate gradient method when eff is
less than two. All computations are performed in Matlab 8.2 on Intel(R)Core(TM)2
Duo CPU, 2 GHz with 3 GB RAM. We set the relative terminating precision on the
computed contact stresses to tol = 10−4. The inner problems in Step 1 and 2 are
solved by optimization algorithms based on the conjugate gradient method with the
adaptive precision control respecting the accuracy achieved in the outer loop; see [4]
for more details.
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Table 1 Characteristics of ALGORITHM I without and with splitting.

n|m without in Step 1 in Step 2 in Step 1+2
#iter|nA #iter|nA #iter|nA #iter|nA
[time|eff ] [time|eff ] [time|eff ] [time|eff ]

504|18 60|667 61|1075 59|742 60|1146
[0.80|18.53] [0.98|29.86] [0.67|20.61] [0.70|31.83]

6072|66 61|1044 61|1492 61|824 60|1236
[8.19|7.91] [8.35|11.30] [4.63|6.24] [6.91|9.36]

17784|114 62|1313 63|1816 61|855 63|1365
[31.73|5.76] [43.71|7.96] [33.24|3.75] [32.89|5.99]

35640|162 61|1839 62|1819 61|892 62|1377
[126.94|5.68] [133.30|5.61] [59.59|2.75] [91.82|4.25]

59640|210 60|1583 61|2336 61|876 61|1377
[238.32|3.77] [341.33|5.56] [127.42|2.09] [196.11|3.28]

89784|258 60|1627 59|2333 60|864 61|1421
[405.31|3.15] [585.25|4.52] [216.09|1.67] [359.08|2.75]

Table 2 Characteristics of ALGORITHM II without and with splitting.

n|m without in Step 1 in Step 2 in Step 1+2
#iter|nA #iter|nA #iter|nA #iter|nA
[time|eff ] [time|eff ] [time|eff ] [time|eff ]

504|18 37|530 36|520 37|714 38|770
[0.19|14.72] [0.16|14.44] [0.19|19.83] [0.19|21.39]

6072|66 36|987 37|586 37|964 38|829
[5.76|7.48] [3.29|4.44] [5.35|7.30] [4.59|6.28]

17784|114 36|1417 38|626 37|1347 35|794
[34.32|6.21] [15.16|2.75] [32.81|5.91] [19.00|3.48]

35640|162 37|1864 36|608 36|1399 36|863
[119.50|5.75] [38.74|1.88] [89.79|4.32] [54.83|2.66]

59640|210 37|2132 37|624 37|1401 35|851
[290.71|5.08] [93.40|1.49] [191.30|3.34] [115.64|2.03]

89784|258 37|2532 37|619 37|1806 36|877
[631.80|4.91] [154.52|1.20] [451.65|3.50] [225.59|1.70]

Figure 1 illustrates the sensitivity of the different variants of our algorithms with
respect to θ . From these results one may conclude at least two facts: (i) ALGO-
RITHM II without splitting is more stable than ALGORITHM I in sense that it con-
verges for larger values of θ ; (ii) splitting used Step 2 of ALGORITHM II leads to
the convergent process for all θ ∈ (0,1].
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Fig. 1 For each θ we display the number of iterations #iter satisfying the terminating precision
as above (n = 1872, m = 36).
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References

1. Bayada, G., Sabil, J., Sassi, T.: Convergence of neumann-dirichlet algorithm for two-body con-
tact problems with non local Coulomb’s friction law. ESAIM: Mathematical Modelling and
Numerical Analysis 42(4), 243–262 (2008)

2. Dostál, Z., Kozubek, T., Horyl, P., T. Brzobohatý, A.: Scalable TFETI algorithm for two di-
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