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1 Introduction

The goal of this paper is to introduce and analyze a new Vieofamaveform relax-
ation (WR) methods based on Neumann—Neumann iteratioiggn@lly introduced
by [13] for ODE systems, WR methods have first been used te siohe-dependent
PDEs in [11] and [12]. When applying a WR method for a given don2 and a
decomposition into subdomaifi€; }N ;, Ui Qi = Q, each iteration consists of solv-
ing independent subproblems @ x [0, T], i.e., over thevhole time windov|0, T],
before exchanging information across the interfaces; remotvords, the informa-
tion exchanged consists of interface traces over the tinmelov [0, T]. This is in
contrast with the classical approach, in which one fixes a 8tepping strategy for
the whole domaif2 and uses domain decomposition to solve the resulting $patia
problem at each time step. One advantage of the WR framewdtat it allows
the use of different spatial and time discretizations fahesubdomain; this is espe-
cially useful for problems with large coefficient jumps [9]with different models
for different parts of the domain [8]. In addition, since amomication between
subdomains are less frequent than for the standard appttb&cé is a reduction in
communication costs, particularly for networks with higkeincy.

Typically, WR methods can be derived from methods for eiiRDEs. For
example, one can extend the parallel Schwarz method witisick transmission
conditions [14] to obtain the parallel Schwarz WR methods tias been ana-
lyzed in [11, 12]. WR extensions based on optimized Schweethods [6] have
also been proposed. Substructuring methods form anothes df methods for
elliptic PDEs: examples include the Neumann—Neumann ndefpp4], as well
as the FETI method [5] and its variants. However, to the bésiuo knowledge,
no substructuring-type analogue of WR has been proposegitdesubstructuring
methods having many attractive properties for ellipticigeos, such as mesh inde-
pendence in the two-subdomain case. Thus, our first aim isftnelthe Neumann—
Neumann waveform relaxation (NNWR) method, which geneesalithe elliptic
Neumann—Neumann method in a natural way. This is done indpezt

Our second goal is to understand the convergence of the gedmdgorithm for
parabolic problems. For systems of ODEs, a Picard—Lirfdgfiie argument shows
that convergence is superlinear on bounded time intef0al§, with an error es-
timate of the form(CT)X/k! after k iterations [16]. For overlapping Schwarz WR
methods applied to the advection-diffusion equation, gterate can be improved
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to e=kD*/T whereL is the size of the overlap [12]; this bound is possible beeaus
of the diffusivity of the problem. However, for unboundeché intervals, only lin-
ear convergence can be expected [11]. Similar conclusioltstbr Schwarz WR
with optimized transmission conditions, with or withouteskap [15, 7, 1]. Using
the 1D heat equation as the model problem, we show that the RIKWthod also
converges superlinearly for finite time intervals; thiségd in Section 3, with some
numerical experiments confirming the results in Section d.algo derive a linear
bound that is valid for unbounded time intervals. We havesehdao analyze the
method in the continuous setting because it allows us torsteted the asymptotic
behaviour of the algorithm for very fine grids, without redgpg explicit knowledge
of how each subdomain problem is discretized. For ease septation, we prove
our results for two subdomains in one spatial dimension} ¢bditains further re-
sults, some of which are mentioned at the end of Section 4.

2 The NNWR algorithm

Suppose we want to solve the 1D heat equation
du—d2u=f, xeQ=(-ha), te(0,T],

with initial conditionsu(x,0) = v(x) and Dirichlet boundary conditiong—b,t) =
uL(t), u(a,t) = ur(t). We consider a decomposition into two non-overlapping sub-
domainsQ; = (—b,0) andQ, = (0,a). On the interfacé = {0}, we are given the
initial guessgP(t), t € [0, T]. Then the NNWR algorithm is given by the following
iteration: fork=1,2,..., do

1. Dirichlet step:

auk— o2k = f(x,t)  on(—h,0), aus—a2us = f(xt)  on(0,a),
u(—b,t) = uL(t), us(0,t) = g (1),
ui(0,t) =g (1), us(at) = (1),
u(x,0)=v(x)  on(—b,0), us(x,0)=v(x)  on(0,a).

2. Neumann step:

AP —3ZYf =0  on(-b,0), aYs—dzpf=0  on(0,a),
YK(=b,t) =0, dnztp'z‘ = (3n1u§+ (3n2u'§ onl,
On WK = 0 U+ 0,5 onT, YK(a,t) =0,
W¥(x,00=0  on(—b,0), Us(x,00=0,  on(0,a).

3. Update step:

g(t) = g1 (t) — B[YL(0.t) + Yh(O.1)].
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The relaxation parametér € (0,1] is chosen to obtain fast convergence. Note
that this algorithm can be generalized in a straightforweas to handle decompo-
sitions into many subdomains and in higher dimensions, 5@k This is because,
unlike for the elliptic case, the Neumann step is always ywe#ied for the heat
equation, even for “floating” subdomains that do not sharedyge withd Q.

Analysis by Laplace transforms. Our convergence analysis is based on the Laplace
transform method. The Laplace transform of a functigxt) with respect to time
is defined as

a(x,s) == Z{u(x,t)} = /: u(xt)e stdt.

In the remainder of the paper, hats will denote the Laplaaesform of a function
in time, ands will denote the Laplace variable. Since we are interestetererror
g(t) — u(0,t) of the method, it suffices to assume thiét), f (x,t),u,(t) andug(t)
all vanish and study how(t) tends to zero ak — . In this case, the NNWR
algorithm can be written in Laplace space as followsifer1,2, ..., do

1. Dirichlet step:

(s—d2)tk=0  on(—b,0), (s—d2)is=0  on(0,a),
0(~b,s) =0, 05(0,) = g *(s),
05(0,9) = g X(s), o5(a,t) =0.
2. Neumann step:
(s—a)Pr = on(—b,0), (s—d)§5=0  on(0,a),
@K(=b,s) =0, — ok =00k—a05  onr,
Pk = o0k — 05 onr, JX(a,s) = 0.

3. Update step:

§“(s) = G 1(s) — B[¢1(0,9) + P5(0,9)).
Solving the two-point boundary value problems in the Dilgtistep yields

®M$=¢l@ﬂ%%%%§3 %m@zﬁl@ﬂ%ﬁg§§9.u>
The Neumann step can be solved similarly by lettif(g):= ,05(0,s) — 8«05(0, s):
sinh((x+b)\/s) sinh((a—x)/9)

@5(x,) = (s) (2)

PF(x.8) =F(9)

v/scost{by/s) ’ Vscost(ay/s) -

Then the update step becomes

§(s) =G (9 — B[Y(0,9) +Y5(0,9] = §H(s) Gfk% [tanh(by/s) +tanh(ay/s)].
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But

fk(s) = OXUE(O, s) — axug(o7 ) = S@kfl(s) (COS}’(b\/é) COSI‘(a\/§)> .

Sinhbys)  sinh(ay/s)

So we obtain

6(s) = 6 (s {1 0 <2Jr tanha\/s) n tanh(by/s) ﬂ '

tanhb/s) tanha,/s)

Note that ifa= b, theng®(s) = §<1(s)(1— 48), which meanshe method converges
to the exact solution in one iteration f& = 1/4. Thus, the classical result for
elliptic problems also holds for the time-dependent case main result of our
paper concerns the case when the subdomains are unequalheea # b.

(3)

Theorem 1 (Convergence of NNWR)Let 8 = 1/4. Then the error of the NNWR
method for two subdomains satisfies

_p)2\ X
165(-) = u(0,)[[L=(0.) < (%) 16°() = u(0,") | L=(0.0)- (4)

Moreover, for every finite time intervéd, T), NNWR converges superlinearly with
the estimate

2 —p)2\¥
I6€) - w0 o) < €T (B220) 166~ w0 vary )

where m= min{a,b}.

3 Convergence analysis

Since (3) is symmetric with respect oandb, we will assume without loss of
generality that > b in the remainder of the paper. Fér= 1/4, the recurrence (3)
simplifies to give

sinff((a-~b)v8) w1
sinh(2a,/s)sinh(2by/5) Y(8)§" (), (6)
which impliesg®(s) = (—1)kY¥(s)§°(s). Note that for((s) > 0, we haveY(s) =
O(e~ls"?) as|s| — w, i.e.,Y(s) decays exponentially ds| — w. Thus, by [3, p.

183],Y(s) is the Laplace transform of a regular functigy(t). If we now define
yk(t) = 2 H{YK(s)}, then fort € (0,T), we have

§(s) = -4 (9

kv — | [ o0 0 a
GO =| [ Lt-m@dr] < [Pleor [ n@lar. @
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Thus, to obtairL® convergence estimates, we need boundg&tyk(rﬂdr. Our
first step is to show thaj(t) > O, fort > 0, which makes bounding its integral
much easier. We start by stating a few elementary propesfiessitive functions
and their Laplace transforms; their proofs follow easilyrnfrthe definitions.

Lemma 1.Let f and g be positive functions, i.etf > 0and gt) > 0fort > 0,
and let Ks) =.Z{f(t)}. Then

T 0
(i) Forall T >o,/ |f(r)|dr§/ f(1)dt = lImF (9).
t.0 0 s—0
(il (f*g)(t):/ f(t— 7)g(t)dr > Ofor allt > 0.
ses O
(iii) [ f=9llaory < I flliror) - lI9lloT):

Lemma2.For B > a >0, let

Qu(s) = sinh(a/s) Qu(s) = cosha+/s)

- sinh(B/9)’ - coshBy/9)
Then q(t) = 2 HQu(s)} and g (t) = £~ 1{Qx(s)} are positive functions.

Proof. Forn=1,2,..., letun(x,t) andvs(x,t) be the solutions of the following two
boundary value problems:
dun—02un, =0  on(0,B), Awn— 02w, =0  on(—B,B),
un(0,t) =0, Wn(—B,t) = fu(t),
Un(B,t) = fn(t)a Wn(Bat) = fn(t)a
un(x,0) =0, Wn(x,0) = 0.

A calculation similar to that in Section 2 shows th&t{un(a,t)} = Q1 (s) fn(s) and

L{wa(a,t)} = Qa2(s) fn(s). Moreover, if f4(t) > 0 for all t, then by the maximum
principle, we havei,(a,t) > 0. We now choose a sequendg) of positive func-

tions that converges weakly @(t); then since eachn(a,t) is positive, we have
un(a,t) — gai(t) > 0. A similar argument shows thei(a,t) — go(t) > 0. O

We now analyze the kerngl(t), with Laplace transfornY(s), as defined in (6).

Lemma 3.Let m> 1 be the unique integer such that mba < (m+ 1)b. Then
Y(s) = V(s)H(s), with V(s) = 1/cosH(by/S) and lims_oH(s) = (a— b)?/4ab.
Moreover, Iit) = . ~1{H(s)} is positive, so thatj(t) = (vxh)(t) > Oforallt > 0.

Proof. Fork < m, we have the identity

sint?((a— kb)/s)—sint?((a— (k+1)b)+/s)
= % [cosh2(a—kb)\/s) — 1— cost2(a— (k+ 1)b)+/s) + 1]
= sinh((2a— (2k+ 1)b)+/s) sinh(by/S).
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Sincek < m, we have O< 2a— (2k+ 1)b < 2a, which gives

sinff((a—kb)y/S)  sinh((2a— (2k+1)b),/5) sinh(by/s) sint?((a— (k+1)b)\/5)
sinh(2a,/s) sinh(2b,/S) sinh(2a,/s) “sinh(2b,/5) + sinh(2a,/s)sinh(2b\/s) '

Applying this identity repeatedly fdt=1,... ,m— 1 gives

Y(s) — sint?((a—b)+/3)

(8) = sinh(2a,/s) sinh(2b,/s)
_ sintf((a-mb)y/s)  "lsinh((2a- (2k+1)b)y/5)  sinh(by/S)
~ sinh(2a,/s) sinh(2b,/S) + k; sinh(2a,/s) “sinh(2b,/3)

B 1 sint?((a—mb),/3)costby/s) = ™=!sinh(2a— (2k+ 1)b)+/3) cost{b/S)
~ 2cost(by/3) [ sinh2ays)sinhbys) & sinh(2a,/s) 1
B 1 sinh((a—mb),/s) sinh((a—mb),/s) coshby/s)
~ 4cosK(by/3) { sinha,s)  sinh(bys) cosi{a\/é)Jr
m-1 /sinh((2a—2kb),/S) ~ sinh((2a—2(k+1)b)+/3)

( sinh(2a,/s) + sinh(2a,/s) )]

Let V(s) = 1/ coslf(by/S) andH(s) be the rest. Then sinceda—mb<b < a,
we see thaH (s) consists of a sum of products of functions of the fd@i(s) and
Q2(s) in Lemma 2. Thus, its inverse Laplace transfdift) is positive. Moreover,
sincev(t) = .2 1{V(s)} is also positive by Lemma 2, we see tlyét) = (v h)(t)
is positive. Finally, since lir,oV(s) = 1, we have

k=1

_ e . sinff((a—b)y/s)  (a—b)?
ISIH(]JH(S)7|sm)Y(s)7lsm)sinh(2a\/§)sink(2b\fs) = 4

We are finally ready to prove our main result.

Proof (Theorem 1)According to (7), it suffices to boun_gf[)T IYk(T)|dT for finite
T > 0 and forT = o, whereyy(t) = .2 1{YX(s)}. Sincey, (t) is positive by Lemma
3, so isyk(t), so by Lemma 1(i), we have

00 _ h\2
[ woldr =imvies = (420"

which shows the linear bound (4). FBr< o, let vi(t) = 2~ 1{VX(s)} andhy(t) =
Z7HHX(9)}. Then sincefy” hy(t) dt = lims o HX(s) = (lims_oH(s))X, we have

a—b)2\k (T
ellom < lsan Iduon < (Cpps ) [ wmde. — ®

To bound the remaining integral, IBX(s) = 4ke~2bVS _v/k(s). We will show that
d(t) = 2 1{D(s)} > 0. We have
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D(9)—de oo __ 2 (e IF L (2K s
B (Vs fe bk — 7 (s ebvsk n; m '

From [17], we know that?—1{e-2™s} — \/t’%e*bzmz/t is a positive function for

m> 1. Sincev(t) = £ ~1{VK(s)} is also positive, we see thdit) is in fact a sum
of convolutions of positive functions. Hendét) > 0, as claimed. Thus, we have

0 T3

T T T kb 212 bk
Vil(T dr</ Vi(T) +d(T dr:/ 4k—ekb/rdr4kerfc<—).

| wdr < [ +d(m) = v

But erfdx) < e forall x> 0; introducing this into (8) gives the estimate

(a—b)2 K bk (a_b)z K e
IYilliaom) S( b ) erfc N < (T) e 7

which tends to zero ds— .

4 Numerical experiments

Figure 1 shows the convergence of NNWR for a mildly asymroeiaise § = 0.7,

b= 0.3) and a strongly asymmetric case=£ 0.9, b = 0.1) when applied to a finite-
difference Crank—Nicolson discretization. We see thatltbends in Theorem 1,
while not necessarily sharp, does capture the superlineaecgence of the method.
As the length of the time window increases, the error curve approaches the lin-
ear bound, which can be increasing for highly asymmetriblems. In this case,
the error can grow substantially before decreasing to agpertinearly. Thus, one
should divide up the problem into several small time windbefre using NNWR.
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Fig. 1 Convergence curves and their respective bounds fa-)0.7, b= 0.3 and (ii)a= 0.9,
b= 0.1. The solid curves (with markers) denote tifeerror afterk iterations for the final tim&
indicated, and dotted lines of the same color show the sonparl bound (5) for the sami. The
linear bound (4) is shown as a solid black line (no markers).
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Convergence estimates for more general decompositionalsarbe obtained.
For the 1D heat equation with subdomains, we have

\/é 2 7k2/'l' 0
mexdlion < (o @ar) " maldheon. @

whereel is the error along thih interface at iteratiok andt = T /h?, with h being
the smallest subdomain size. The estimate (9) is also valithé 2D heat equation
on a rectangular domain decomposed iMctrips. For the proofs of these and
other results, see [10]. Note that ldsincreases, the subdomain siz@mecessarily
decreases, and the bound (9) shows that the error can iedoeésre superlinear
convergence kicks in, just like in the asymmetric case ab®@eemedy this, we
recommend using a coarse grid correction, which is the stibjea future paper.
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