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1 Introduction

Recently in [4, 5, 6] subspace correction methods for non-smooth and non-additive
problems have been introduced in the context of image processing, where the non-
smooth and non-additive total variation (TV) plays a fundamental role as a regular-
ization technique, since it preserves edges and discontinuities in images. We recall,
that for u ∈ L1(Ω), V(u,Ω) := sup

{
∫

Ω udivφdx : φ ∈ [C1
c(Ω)]2,‖φ‖∞ ≤ 1

}

is the
variation ofu. In the event thatV(u,Ω)< ∞ we denote|Du|(Ω) =V(u,Ω) and call
it the total variation ofu in Ω [1].

In this paper, as in [6], we consider functionals, which consist of a non-smooth
and non-additive regularization term and a weighted combination of anℓ1-term and
a quadraticℓ2-term; see (1) below. This type of functional has been shown to be par-
ticularly efficient to eliminate simultaneously Gaussian and salt-and-pepper noise.
In [6] an estimate of the distance of the limit point obtainedfrom the proposed sub-
space correction method to the global minimizer is established. In that paper the ex-
act subspace minimization problems are minimized, which are in general not easily
solved. Therefore, in the present paper we analyse a subspace correction approach
in which the subproblems are approximated by so-calledsurrogatefunctionals, as in
[4, 5]. In this situation, as in [6], we are able to achieve an estimate for the distance
of the computed solution to the real global minimizer. With the help of this esti-
mate we show in our numerical experiments that the proposed algorithm generates
a sequence which converges to the expected minimizer.

2 Notations

For the sake of brevity we consider a two dimensional settingonly. We defineΩ =
{x1 < .. . < xN}×{y1 < .. . < yN} ⊂ R

2, andH = R
N×N, whereN ∈ N. Foru∈ H

we write u = u(x) = u(xi ,y j), wherei, j ∈ {1, . . . ,N} andx ∈ Ω . Let h = xi+1 −
xi = y j+1−y j be the equidistant step-size. We define the scalar product ofu,v∈ H
by 〈u,v〉H = h2 ∑x∈Ω u(x)v(x) and the scalar product ofp,q ∈ H2 by 〈p,q〉H2 =
h2 ∑x∈Ω 〈p(x),q(x)〉

R2 with 〈z,w〉
R2 =∑2

j=1zjw j for everyz= (z1,z2)∈R
2 andw=
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(w1,w2)∈R
2. We also use‖u‖ℓp(Ω) =

(

h2 ∑x∈Ω |u(x)|p
)1/p

, 1≤ p<∞, ‖u‖ℓ∞(Ω) =
supx∈Ω |u(x)| and‖ · ‖, when any norm can be taken.

The discrete gradient∇u is denoted by(∇u)(x) = ((∇u)1(x),(∇u)2(x)) with
(∇u)1(x) = 1

h(u(xi+1,y j)− u(xi ,y j)) if i < N and (∇u)1(x) = 0 if i = N, and
(∇u)2(x) = 1

h(u(xi ,y j+1)− u(xi ,y j)) if j < N and (∇u)2(x) = 0 if j = N, for all
x∈Ω . Forω ∈H2 we defineϕ :R→R by ϕ(|ω|)(Ω) := h2 ∑x∈Ω ϕ(|ω(x)|), where

|z| =
√

z2
1+z2

2. In particular we define thetotal variation of u by settingϕ(t) = t

andω = ∇u, i.e.,|∇u|(Ω) := h2 ∑x∈Ω |∇u(x)|.
For an operatorT we denote byT∗ its adjoint. Further we introduce thediscrete

divergencediv : H2 → H defined by div= −∇∗ (∇∗ is the adjoint of the gradient
∇), in analogy to the continuous setting. The symbol 1 indicates the constant vector
with entry values 1 and 1D is the characteristic function ofD ⊂ Ω .

For a convex functionalJ : H → R̄, we define thesubdifferentialof J atv∈ H as
the set valued mapping∂J(v) := /0 if J(v) = ∞ and∂J(v) := {v∗ ∈H : 〈v∗,u−v〉H +
J(v) ≤ J(u) ∀u ∈ H} otherwise. It is clear from this definition that 0∈ ∂J(v) if
and only ifv is a minimizer ofJ. Whenever the underlying space is important, then
we write∂Vi J or ∂HJ.

3 Subspace Correction Approaches

As in [6] we are interested in minimizing by means of subspacecorrection the fol-
lowing functional

J(u) = αS‖Su−gS‖ℓ1(Ω)+αT‖Tu−gT‖
2
ℓ2(Ω)+ϕ(|∇u|)(Ω), (1)

whereS,T : H → H are bounded linear operators,gS,gT ∈ H are given data, and
αS,αT ≥ 0 with αS+αT ≥ τ > 0. We assume thatJ is bounded from below and
coercive, i.e.,{u∈H : J(u)≤C} is bounded inH for all constantsC> 0, in order to
guarantee that (1) has minimizers. Moreover we assume thatϕ : R→R is a convex
function, nondecreasing inR+ with (i) ϕ(0) = 0 and (ii) cz−b ≤ ϕ(z) ≤ cz+b,
for all z∈ R

+ for some constantc> 0 andb≥ 0.
Note that for the particular exampleϕ(t) = t, the third term in (1) becomes the

well-known total variation ofu in Ω and we call (1) theL1-L2-TV model.
Now we seek to minimize (1) by decomposingH into two subspacesV1 and

V2 such thatH = V1 +V2. Note that a generalization to multiple splittings can be
performed straightforwardly. However, here we will restrict ourselves to a decom-
position into two domains only for simplicity. ByVc

i we denote the orthogonal com-
plement ofVi in H and we define byπVc

i
the corresponding orthogonal projection

ontoVc
i for i = 1,2.

With this splitting we want to minimizeJ by suitable instances of the following
alternating algorithm:

Choose an initialu(0) =: u(0)1 +u(0)2 ∈V1+V2, for example,u(0) = 0, and iterate
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

















u(n+1)
1 = arg min

u1∈V1
J(u1+u(n)2 ),

u(n+1)
2 = arg min

u2∈V2
J(u(n+1)

1 +u2),

u(n+1) := u(n+1)
1 +u(n+1)

2 .

(2)

Differently from the case in [6], where the authors solved the exact subspace min-
imization problems in (2), we suggest now to approximate thesubdomain problems
by so-called surrogate functionals (cf. [2, 3, 4, 5, 8]): Assumea,ui ∈Vi , u−i ∈V−i ,
and define

Js(ui +u−i ,a+u−i) := J(ui +u−i)+αT
(

δ‖ui +u−i − (a+u−i)‖
2
ℓ2(Ω) (3)

−‖T(ui +u−i − (a+u−i))‖
2
ℓ2(Ω)

)

= J(ui +u−i)+αT

(

δ‖ui −a‖2
ℓ2(Ω)−‖T(ui −a)‖2

ℓ2(Ω)

)

for i = 1,2 and−i ∈ {1,2}\{i}, whereδ > ‖T‖2. Then an approximate solution to

minui∈Vi J(u1+u2) is realized by using the following algorithm: Foru(0)i ∈Vi ,

u(ℓ+1)
i = arg min

ui∈Vi
Js(ui +u−i ,u

(ℓ)
i +u−i), ℓ≥ 0,

whereu−i ∈V−i for i = 1,2 and−i ∈ {1,2}\{i}.
The alternating domain decomposition algorithm reads thenas follows:

Choose an initialu(0) =: ũ(0)1 + ũ(0)2 ∈V1+V2, for example,u(0) = 0, and iterate













































u(n+1,0)
1 = ũ(n)1 ,

u(n+1,ℓ+1)
1 = arg min

u1∈V1
Js(u1+ ũ(n)2 ,u(n+1,ℓ)

1 + ũ(n)2 ), ℓ= 0, . . . ,L−1,






u(n+1,0)
2 = ũ(n)2 ,

u(n+1,m+1)
2 = arg min

u2∈V2
Js(u(n+1,L)

1 +u2,u
(n+1,m)
2 +u(n+1,L)

1 ), m= 0, . . . ,M−1,

u(n+1) := u(n+1,L)
1 +u(n+1,M)

2 , ũ(n+1)
1 = χ1 ·u(n+1), ũ(n+1)

2 = χ2 ·u(n+1),
(4)

whereχ1,χ2 ∈ H have the properties (i)χ1+χ2 = 1 and (ii)χi ∈Vi for i = 1,2. Let
κ := max{‖χ1‖∞,‖χ2‖∞}< ∞.

The parallel version of the algorithm in (4) reads as follows:

Choose an initialu(0) =: ũ(0)1 + ũ(0)2 ∈V1+V2, for example,u(0) = 0, and iterate
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
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
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





u(n+1,0)
1 = ũ(n)1 ,

u(n+1,ℓ+1)
1 = arg min

u1∈V1
Js(u1+ ũ(n)2 ,u(n+1,ℓ)

1 + ũ(n)2 ), ℓ= 0, . . . ,L−1,






u(n+1,0)
2 = ũ(n)2 ,

u(n+1,m+1)
2 = arg min

u2∈V2
Js(ũ(n)1 +u2,u

(n+1,m)
2 + ũ(n)1 ), m= 0, . . . ,M−1,

u(n+1) :=
u(n+1,L)

1 +u(n+1,M)
2 +u(n)

2 , ũ(n+1)
1 = χ1 ·u(n+1), ũ(n+1)

2 = χ2 ·u(n+1).

(5)

Note that we prescribe a finite numberL andM of inner iterations for each sub-
space, respectively. Hence we do not get a minimizer of the original subspace min-
imization problems in (2), but approximations of such minimizers. Moreover, ob-

serve thatu(n+1) = ũ(n+1)
1 + ũ(n+1)

2 , with u(n+1,L)
i 6= ũ(n+1)

i , for i = 1,2, in general.

We have thatu(n+1,L)
1 ∈ argminu∈H

{

Js(u+ ũ(n)2 ,u(n+1,L−1)
1 + ũ(n)2 ) : πVc

1
u= 0

}

.

Then, by [7, Theorem 2.1.4, p. 305] there exists anη(n+1)
1 ∈Range(πVc

1
)∗ ≃Vc

1 such
that

0∈ ∂HJs(·+ ũ(n)2 ,u(n+1,L−1)
1 + ũ(n)2 )(u(n+1,L)

1 )+η(n+1)
1 . (6)

Analogously, we have that ifu(n+1,M)
2 is a minimizer of the second optimization

problem in (4) or (5), then there exists anη(n+1)
2 ∈ Range(πVc

2
)∗ ≃Vc

2 such that

0∈ ∂HJs(u(n+1,L)
1 + ·,u(n+1,L)

1 + ũ(n+1,M−1)
2 )(u(n+1,M)

2 )+η(n+1)
2 , or (7)

0∈ ∂HJs(ũ(n,L)1 + ·, ũ(n,L)1 + ũ(n+1,M−1)
2 )(u(n+1,M)

2 )+η(n+1)
2 , (8)

respectively.

3.1 Convergence Properties

In this section we state convergence properties of the subspace correction methods
in (4) and (5). In particular, the following three propositions are direct consequences
of statements in [4, 5, 6].

Proposition 1. The algorithms in (4) and (5) produce a sequence(u(n))n in H with
the following properties:

1. J(u(n))> J(u(n+1)) for all n ∈ N (unless u(n) = u(n+1));

2. limn→∞ ‖u(n+1,ℓ+1)
1 −u(n+1,ℓ)

1 ‖ℓ2(Ω)= 0andlimn→∞ ‖u(n+1,m+1)
2 −u(n+1,m)

2 ‖ℓ2(Ω)=
0 for all ℓ ∈ {0, . . . ,L−1} and m∈ {0, . . . ,M−1};

3. limn→∞ ‖u(n+1)−u(n)‖ℓ2(Ω) = 0;

4. the sequence(u(n))n has subsequences that converge in H.

The proof of this proposition is analogous to the one in [5, Theorem 5.1].

Proposition 2. The sequences(ũ(n)i )n for i = 1,2 generated by the algorithm in (4)

or (5) are bounded in H and hence have accumulation pointsũ(∞)
i , respectively.
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Proof. By the boundedness of the sequence(u(n))n we obtain‖ũ(n)i ‖ = ‖χiu(n)‖ ≤

κ‖u(n)‖ ≤C< ∞ and hence(ũ(n)i )n is bounded fori = 1,2. ⊓⊔

Remark 1.From the previous proposition it directly follows by the coercivity as-

sumption onJ that the sequences(u(n,ℓ)1 )n and (u(n,m)
2 )n are bounded for allℓ ∈

{0, . . . ,L} andm∈ {0, . . . ,M}.

Proposition 3. Let u(∞)
1 , u(∞)

2 , and ũ(∞)
i be accumulation points of the sequences

(u(n,L)1 )n, (u(n,M)
2 )n, and (ũ(n)i )n generated by the algorithms in (4) and (5), then

u(∞)
i = ũ(∞)

i , for i = 1,2.

One shows this statement analogous to the first part of the proof of [4, Theorem
5.7].

Moreover, as in [6] we are able to establish an estimate of thedistance of the limit
point obtained from the subspace correction method to the true global minimizer.

Theorem 1. Let αS≥ τ, u∗ a minimizer of J, and u(∞) an accumulation point of the
sequence(u(n))n generated by the algorithm in (4) or (5). Then we have that

1. u(∞) is a minimizer of J or
2. there exists a constantβ > 0 (independent ofαT ) such that‖u(∞)−u∗‖ℓ2(Ω) ≤ β

or

3. if αT < γ
β 2δ for 0 < γ ≤ J(u(∞))− J(u∗), then‖u(∞) − u∗‖ℓ2(Ω) ≤

β 2‖η̂‖
ℓ2(Ω)

γ−αT δβ 2 ,

where‖η̂‖ℓ2(Ω) = min{‖η(∞)
1 ‖ℓ2(Ω),‖η(∞)

2 ‖ℓ2(Ω)} and η(∞)
i is an accumulation

point of the sequence(η(n)
i )n for i = 1,2 defined as in (6)-(8) respectively, or

4. if T∗T is positive definite with smallest Eigenvalueσ > 0, αT > 0 and‖T‖2 <

δ < 2σ , then we have‖u∗−u(∞)‖ℓ2(Ω) ≤
‖η̂‖

ℓ2(Ω)

αT (2σ−δ ) .

Proof. Since(u(n+1,L)
1 )n, (u(n+1,L−1)

1 )n, and(ũ(n)2 )n are bounded and based on the

fact that∂Js(ξ , ξ̃ ) is compact for anyξ , ξ̃ ∈H we obtain that(η(n)
1 )n is bounded, cf.

[6, Corollary 4.7]. By noting that(u(n+1,L)
1 )n and(u(n+1,L−1)

1 )n have the same limit
for n→ ∞, see Proposition 1, we subtract a suitable subsequence(nk)k with limits

η(∞)
1 , u(∞)

1 , andũ(∞)
2 such that (6)-(8) respectively are still valid, cf. [9, Theorem 24.4,

p 233], i.e., 0∈ ∂HJs(·+ ũ(∞)
2 ,u(∞)

1 + ũ(∞)
2 )(u(∞)

1 ) + η(∞)
1 . By the definition of the

subdifferential and Proposition 3 we obtainJ(u(∞)) = Js(u(∞),u(∞)) ≤ Js(v,u(∞))+

〈η(∞)
1 ,u(∞)−v〉H ≤ Js(v,u(∞))+‖η(∞)

1 ‖ℓ2(Ω)‖u(∞)−v‖ℓ2(Ω)for all v∈ H. Similarly

one can show thatJ(u(∞)) ≤ Js(v,u(∞))+‖η(∞)
2 ‖ℓ2(Ω)‖u(∞)−v‖ℓ2(Ω) for all v∈ H,

and hence we have

J(u(∞))≤ Js(v,u(∞))+‖η̂‖ℓ2(Ω)‖u(∞)−v‖ℓ2(Ω) (9)

for all v∈ H, where‖η̂‖ℓ2(Ω) = min{‖η(∞)
1 ‖ℓ2(Ω),‖η(∞)

2 ‖ℓ2(Ω)}.

Let u∗ ∈ argminu∈H J(u). Then there exists aρ ≥ 0 such thatJ(u(∞)) = J(u∗)+ρ .
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1. If ρ = 0, then it immediately follows thatu(∞) is a minimizer ofJ.
2. If ρ > 0, then from the coercivity condition we obtain that there exists a constant

β > 0, independent ofαT , such that‖u(∞)−u∗‖ℓ2(Ω) ≤ β <+∞.

3. If αT < γ
β 2δ for 0 < γ ≤ J(u(∞))− J(u∗), then J(u(∞)) ≥ J(u∗) + γ

β 2‖u(∞) −

u∗‖2
ℓ2(Ω)

. Settingv= u∗ in (9) and using the last inequality we obtain

αT

(

δ‖u∗−u(∞)‖2
ℓ2(Ω)−‖T(u∗−u(∞))‖2

ℓ2(Ω)

)

+ ‖η̂‖ℓ2(Ω)‖u(∞)−u∗‖ℓ2(Ω)

≥
γ

β 2‖u(∞)−u∗‖2
ℓ2(Ω). (10)

From the latter inequality we get‖η̂‖2 ≥ ( γ
β 2 −αTδ )‖u(∞)−u∗‖ℓ2(Ω) and since

αTδ < γ
β 2 we obtain

β 2‖η̂‖
ℓ2(Ω)

γ−αT δβ 2 ≥ ‖u(∞)−u∗‖ℓ2(Ω).

4. If αT > 0 andT∗T is symmetric positive definite with smallest Eigenvalueσ > 0,
then the factorγ

β 2 on the right hand side of the inequality in (10) is replaced by
αTσ , cf. [6], and (10) reads as follows

αT(σ −δ )‖u∗−u(∞)‖2
ℓ2(Ω)+αT‖T(u∗−u(∞))‖2

ℓ2(Ω)≤‖η̂‖ℓ2(Ω)‖u(∞)−u∗‖ℓ2(Ω).

By using once more the symmetric positive definiteness assumption onT∗T we
obtain from the latter inequality thatαT(2σ −δ )‖u∗−u(∞)‖2

ℓ2(Ω)
≤‖η̂‖ℓ2(Ω)‖u(∞)−

u∗‖ℓ2(Ω). If 2σ > δ then we get‖u∗−u(∞)‖ℓ2(Ω) ≤
‖η̂‖

ℓ2(Ω)

αT (2σ−δ ) .
⊓⊔

4 Numerical Experiments

We present numerical experiments obtained by the parallel algorithm in (5) for the
application of image deblurring, i.e.,S=T are blurring operators andϕ(|∇u|)(Ω)=
|∇u|(Ω) (the total variation ofu in Ω ). The minimization problems of the subdo-
mains are implemented in the same way as described in [6] by noting that the func-
tional to be considered in each subdomain is now the strictlyconvex functional in
(3).

We consider an image of size 1920×2576 pixels which is corrupted by Gaussian
blur with kernel size 15×15 pixels and standard deviation 2. Additionally 4% salt-
and-pepper noise (i.e., 4% of the pixels are either flipped toblack or white) and
Gaussian white noise with zero mean and variance 0.01 is added.

In order to show the efficiency of the parallel algorithm in (5) for decomposing
the spatial domain into subomains, we compare its performance with theL1-L2-TV
algorithm presented in [6], which solves the problem on all of Ω without any split-
ting. We consider splittings of the domain in stripes, cf. Figure 1(a), and in windows
as depicted in Figure 1(b) for different numbers of subdomains (D = 4,16,64).
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(a) (b)

Fig. 1 Image of size 1920× 2576 pixels which is corrupted by Gaussian blur with kernel size
15×15 pixels and standard deviation 2, 4% salt-and-pepper noise, and Gaussian white noise with
zero mean and variance 0.01. In (a) decomposition of the spatial domain into stripes and in (b) into
windows.

The algorithms are stopped as soon as the energyJ reaches a significance level
J∗, i.e., whenJ(u(n)) ≤ J∗ for the first time. For reason of comparison we experi-
mentally chooseJ∗ = 0.059054, i.e., we once restored the image of interest until we
observed a visually satisfying restoration and the associated energy-value asJ∗. In
the subspace correction algorithm as well as in theL1-L2-TV algorithm we restore
the image by settingαS = 0.5, αT = 0.4, andδ = 1.1. The computations are done
in Matlab on a computer with 256 cores and the multithreading-option is activated.

Table 1 presents the computational time and number of iterations the algorithms
need to fulfill the stopping criterion for different number of subdomains. We clearly
see that the domain decomposition algorithm forD = 4,16,64 subdomains is much
faster than theL1-L2-TV algorithm (D = 1). Since a blurring operator is in general
non-local, in each iterationu(n) has been communicated to each subdomain. There-
fore the communication time becomes substantial for splittings into 16 or more do-
mains such that the algorithm needs more time to reach the stopping criterion.

Table 1 Restoration of the image in Figure 1: Computational performance(CPU time in seconds
and the number of iterations) for the globalL1-L2-TV algorithm and for the parallel domain decom-
position algorithms withα1 = 0.5, α2 = 0.4 for different numbers of subdomains (D = 4,16,64).

# Domains window-splitting stripe-splitting

D = 1 (L1-L2-TV alg.): 11944 s / 131 it
D = 4: 2374 s / 27 it 2340 s / 27 it
D = 16: 2914 s / 27 it 2982 s / 27 it
D = 64: 7833 s / 27 it 8797 s / 28 it

In Figure 2 we depict the progress of the minimal Lagrange multiplier η(n) :=

mini{‖η(n)
i ‖ℓ2(Ω)}, which indicates that the parallel algorithm indeed converges to

a minimizer of the functionalJ.
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Restored image

(a)
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(b)

Fig. 2 (a) Restoration of the image in Figure 2 by the parallel subspace correction algorithm in
(5). (b) The progress of the minimal Lagrange multiplierη(n).
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