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1 Introduction

Recently in [4, 5, 6] subspace correction methods for nonegmand non-additive
problems have been introduced in the context of image psawgswvhere the non-
smooth and non-additive total variation (TV) plays a funéaial role as a regular-
ization technique, since it preserves edges and discatigigin images. We recall,
that foru € LY(Q), V(u, Q) := sup{ [, udivpdx: ¢ € [C}(Q)], ||¢]» < 1} is the
variation ofu. In the event tha¥/ (u, Q) < « we denotdDu|(Q) =V (u, Q) and call
it the total variation ot in Q [1].

In this paper, as in [6], we consider functionals, which ¢sinsf a non-smooth
and non-additive regularization term and a weighted coation of an/!-term and
a quadrati#?-term; see (1) below. This type of functional has been shoretpar-
ticularly efficient to eliminate simultaneously Gaussiard &alt-and-pepper noise.
In [6] an estimate of the distance of the limit point obtairfienn the proposed sub-
space correction method to the global minimizer is estabtisIn that paper the ex-
act subspace minimization problems are minimized, whielirageneral not easily
solved. Therefore, in the present paper we analyse a subspaection approach
in which the subproblems are approximated by so-calegtbgatefunctionals, as in
[4, 5]. In this situation, as in [6], we are able to achieve stineate for the distance
of the computed solution to the real global minimizer. Witle thelp of this esti-
mate we show in our numerical experiments that the propogeditam generates
a sequence which converges to the expected minimizer.

2 Notations

For the sake of brevity we consider a two dimensional setiinly. We defineQ =
{xg<...<xn}x{y1<...<yn} CR? andH = RN*N whereN € N. Foru € H
we write u = u(x) = u(x,y;), wherei, j € {1,...,N} andx € Q. Leth = X, 1 —
Xi = Yj+1—Y; be the equidistant step-size. We define the scalar produgvef H
by (u,V)n = h? S0 U(X)V(X) and the scalar product qf,q € H? by (p,q)2 =
h? 3 e 0 (P(X), (X)) gz With (z, W)z = 2_; zjw; for everyz= (z,2) € R? andw =
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(Wi, w2) € R2 We also uséiu m(a) = (2 Sxeo [UX)[?) P, 1< p< o, ull (o) =
SURo JU(x)| and]| - ||, when any norm can be taken.

The discrete gradierilu is denoted by(Ou)(x) = ((Ou)(x), (Ou)?(x)) with
(Out(x) = #(u(Xiz1,yj) — u(x,yj)) if i <N and (Ou)}(x) = 0 if i = N, and
(Ou)?(x) = #(u(xi,yj+1) — u(xi,yj)) if j <N and(Ou)?(x) =0 if j =N, for all
x€ Q. Forwe H2we definep : R — Rby ¢ (|w|)(Q) :=h? S0 ¢ (|w(X)|), where
|zl = /22 + 2. In particular we define theotal variation of u by setting¢ (t) =t
andw = 0u, i.e.,|0u[(Q) := "? T yco |Ou(x)|.

For an operatof we denote byl * its adjoint. Further we introduce thiiscrete
divergencediv : H? — H defined by div= —* (0" is the adjoint of the gradient
), in analogy to the continuous setting. The symbol 1 indisdhe constant vector
with entry values 1 andglis the characteristic function & C Q.

For a convex functional : H — R, we define thesubdifferentialof J atv € H as
the set valued mappingJ(v) := 0 if J(v) = anddJ(v) := {v: e H : (v;,u— V) +
J(v) <J(u) VYue H} otherwise. It is clear from this definition that€0dJ(v) if
and only ifvis a minimizer of]. Whenever the underlying space is important, then
we write d;J or dnJ.

3 Subspace Correction Approaches

As in [6] we are interested in minimizing by means of subspaareection the fol-
lowing functional

J(u) = as||Su—gsl (o) +aT [ Tu—gr|Z o, + ¢ (10U)(Q), (1)

whereS T : H — H are bounded linear operatogs, gr € H are given data, and
as,at > 0 with as+ at > 1 > 0. We assume that is bounded from below and
coercive, i.e.{ueH : J(u) <C}is bounded irH for all constant€ > 0, in order to
guarantee that (1) has minimizers. Moreover we assumepth&t— R is a convex
function, nondecreasing iR™ with (i) ¢(0) =0 and (ii) cz—b < ¢(2) <cz+b,
for all ze R* for some constart > 0 andb > 0.

Note that for the particular exampig(t) =t, the third term in (1) becomes the
well-known total variation ofiin Q and we call (1) thé.2-L2-TV model.

Now we seek to minimize (1) by decomposifginto two subspace¥; and
V-, such thatH = Vi +V,. Note that a generalization to multiple splittings can be
performed straightforwardly. However, here we will restiourselves to a decom-
position into two domains only for simplicity. By we denote the orthogonal com-
plement ofV; in H and we define byx,ic the corresponding orthogonal projection
ontoV fori=1,2.

With this splitting we want to minimizd by suitable instances of the following
alternating algorithm:

Choose an initiali® =: u” + U € V; +V,, for examplep©® = 0, and iterate
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(n+1) _ ; (n)
) _argu[ré{/rl\\](uﬁruz )s
u"™Y = arg mind(u™Y 4 up), ()

U26V2
u(HD) = u:(LnJrl) + u(2n+l)'

Differently from the case in [6], where the authors solvesldkact subspace min-
imization problems in (2), we suggest now to approximatestitedomain problems
by so-called surrogate functionals (cf. [2, 3, 4, 5, 8]): é®®a,u; € Vi, u_j €V,
and define

I(Ui + Ui, a+ui) i= I(U +ui) + ar (S + Ui — (a+ui) % g (3)
—|IT(ui+u_i—(a+ u_i))Hfz(Q))

= Jui+u-i)+ar (B)u - alZ g~ ITu-a)%))

fori=1,2and—i € {1,2}\ {i}, whered > || T||2. Then an approximate solution to
miny ev: J(U1 + Up) is realized by using the following algorithm: Fo&o) eV,

ui(é+l)

= arg minJ®(u; +u_j, ui(é) +uj), £>0,
UeV;
whereu_; € V_ fori = 1,2 and—i € {1,2}\ {i}.
The alternating domain decomposition algorithm reads #sefollows:
Choose an initial(® =: 0(10) + 0(20) € Vy + Vs, for exampleu(© = 0, and iterate

u(1n+170) _ G(ln)7

u Y = arg minds(u + W™ gy e=o0,.. L1,
uievy

(n+1,0) _ ~(n)
Uy =U
u" ™ — arg mi/nJS(u(an’L") Fug,uy M MYy 'm=o,... M1,
UxeVo
(N+1M) (ne1)
2 » Up

= xp- UML) 0(2””

um+) u(ln+1-,L) +u ) _ X2-umy),

(4)
whereyxi, x2 € H have the properties (§1+ x2 =1 and (i) x; € Vi fori =1,2. Let
K 1= max{||Xe[le, [ X2llo} < oo.

The parallel version of the algorithm in (4) reads as follows

Choose an initial(® =: 0(10) + 0(20) € V14 Vs, for exampleu© = 0, and iterate
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(n+1,0) _ ~(n)

U =u
UM —arg minJ*(uy + ay”, u™ Y 1 alY), r=o0,...,L—1,
upeVy
ugnJrl,O) _ G<2 )’ (5)
W™ = arg min J° & 4 up, U o) m=o0,... M- 1,
U2€V2
D) .= u(lMLL)JFU(ZzMLM)ﬂ(n) ﬁ(lnH) = x1-u™D), ﬁ(an) = Xx2-umd),

Note that we prescribe a finite numtdeandM of inner iterations for each sub-
space, respectively. Hence we do not get a minimizer of tiggnal subspace min-
imization problems in (2), but approximations of such miiziens. Moreover, ob-

serve that™) = g™ 4 g™ with u™™ £ 6™ fori = 1,2, in general.
We have thatJmJrl Y € argminen {Js(u+ iy, (l”“ YY) meu= O}.

Then, by [7, Theorem 2.1.4, p. 305] there exists;é’ﬁ € Rangérig)* ~Vf such
that
0 € apyJs(- +u<2 )7u(1n+1L 1>+u<2 ))( (n+1,L) )+’71n+1 ©)

Analogously, we have that lfl (M1M) is a minimizer of the second optimization

problem in (4) or (5), then there exists aﬁ[‘“) € Rangeémzc)* ~ V7 such that

0 € dy JS( (n+1, L)+ u(ln+1 L)+a(2n+1,M—1))(u(2n+1M )+’72n+1» or @)
0€ ayl® ( g +"G(ln,L)+G(2n+1,M—l))(u(2n+1,M))+n§n+l)’ (8)
respectively.

3.1 Convergence Properties

In this section we state convergence properties of the siglesporrection methods
in (4) and (5). In particular, the following three proposits are direct consequences
of statements in [4, 5, 6].

Proposition 1. The algorithms in (4) and (5) produce a seque(m(@))n in H with

the following properties:

1. J(uM) > J(u™D) for all n € N (unless §V = u™D);

2. iMoo [JuHD MO 2.0y = 0andlimy o, ud
Oforall £ € {0,.. L 1} and me {0,...,M —1};

3. limp oo UMY — U] 20 = O;

4. the sequencei™), has subsequences that converge in H.

(n+1,m+1) u(n+l m) ”
2(

The proof of this proposition is analogous to the one in [Sedriem 5.1].

Proposition 2. The sequence(sxﬁi(n))n fori = 1,2 generated by the algorithm in (4)
or (5) are bounded in H and hence have accumulation pcﬁﬁ‘i& respectively.
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Proof. By the boundedness of the sequeng®), we obtain|[d” || = |xu™|| <
K[uM|| < C < w and hencéd"), is bounded foi = 1,2. O

Remark 1From the previous proposition it directly follows by the ccigity as-

sumption onJ that the sequencest™), and (uy"™), are bounded for all ¢
{0,...,L} andme {O,... M}.

Proposition 3. Let u(1 u2 , and u ) be accumulation points of the sequences
(u(ln "))n, (u<2 ))n, and( i )n generated by the algorithms in (4) and (5), then
u® =g fori=1,2

One shows this statement analogous to the first part of thef pfg4, Theorem
5.7].

Moreover, as in [6] we are able to establish an estimate afigtance of the limit
point obtained from the subspace correction method to tleegiobal minimizer.

Theorem 1. Letas > T, u* a minimizer of J, and () an accumulation point of the
sequencéu"), generated by the algorithm in (4) or (5). Then we have that

1. U*) is a minimizer of J or
2. there exists a constaft> 0 (independent oftr) such that|u(®) —u*[| 2 o) < B
or
BZHFIH;Z(Q)
< Yot
where||7]]|2q) = m|n{||n1 ng(g), Hr]ém)ngz(g)} and ni(”) is an accumulation

3.ifar < gz for0<y< IU®)) = JI(ur), then [u™ — U z(q)

point of the sequenc(eni("))n fori =1,2 defined as in (6)-(8) respectively, or
4. if T*T is positive definite with smallest Eigenvalae> 0, ar > 0and || T|? <

— ar(20-9)

5 < 20, then we havéu” —u®)|| 2,

Proof. Since (U™, (W™Y), and (@), are bounded and based on the
fact thatdJs(¢&, E) is compact for ang , € € H we obtain tha(nf”))n is bounded, cf.

[6, Corollary 4.7]. By noting thatul™"")),, and (u{""**%),, have the same limit
for n —> o, see Proposition 1, we subtract a swtable subsequenpewith limits

’71 ul ), andu ) such that (6)-(8) respectively are still valid, cf. [9, Them 24.4,
p 233, i.e., 0c a5+ 05~ ul™ + &™) (ul™)) + ™). By the definition of the
subdifferential and Proposition 3 we obtalifu(®)) = JS(u(®) u(*)) < JS(v,u(*)) +
(r]im),u( Vg < I3(v,u® )+H’71 20 ||u°° —V|[2(gfor all ve H. Similarly

one can show that(u(®)) < JS(v,u(®)) + ||r72 ||22 ||u( —Vl[2(q) forallve H,
and hence we have

JU™) < PEU) + [l 2(0) U —Vl 20 (9)

forallve H, wherel|fl [ 2.a) = min{||ny” |20 115”20}
Letu* € argmin,ey J(U). Then there exists@> 0 such thad(u®)) = J(u*) +p.
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1. If p =0, then it immediately follows that*) is a minimizer ofJ.

2. If p > 0, then from the coercivity condition we obtain that theristsxa constant
B >0, independent ofir, such thaf|u®) — u*| 2 q) < B < +oo.

3.Ifar < g5 for 0 <y < ™)) — J(u*), thenI(u™)) > J(u*) + ﬁ—V2||u(°°>
u* ||§2( . Settingv = u* in (9) and using the last inequality we obtain

ar (8lu = U o)~ ITW =U) %0 ) + 12 U™ = 2

> L %, (10)
From the latter inequality we géf |2 > (% — a7 8)||u™ —u*|| 2, and since

/32
2|A| 2(0
ard < Bz we obtalnai‘w2 > [|ul®) — u* 2

4. If a > 0andT*T is symmetric positive definite with smallest Eigenvatuge 0,
then the factor); on the right hand side of the inequality in (10) is replaced by
B
ar o, cf. [6], and (10) reads as follows

ar (0= 3)[lu" —u || o) +ar | T =) %) < 1Al 20 U~ Ul 20

By using once more the symmetric positive definiteness agsomonT*T we
obtain from the latter inequality thaty (20 — 8)||u* — u( ||[2 o < il |u®) —

. £ 1) 1712
Ul 2(q)- 1f 20 > & then we gef|u™ —u®) | 2o < 208"

O

4 Numerical Experiments

We present numerical experiments obtained by the paradjetithm in (5) for the
application of image deblurring, i.6S= T are blurring operators argel |Ju|)(Q) =
|Ou|(Q) (the total variation olu in Q). The minimization problems of the subdo-
mains are implemented in the same way as described in [6] taygiinat the func-
tional to be considered in each subdomain is now the stracttywex functional in
3).

We consider an image of size 192@576 pixels which is corrupted by Gaussian
blur with kernel size 1% 15 pixels and standard deviation 2. Additionally 4% salt-
and-pepper noise (i.e., 4% of the pixels are either flippeblack or white) and
Gaussian white noise with zero mean and varian@é & added.

In order to show the efficiency of the parallel algorithm in {& decomposing
the spatial domain into subomains, we compare its perfoceaiith thel1-L2-TV
algorithm presented in [6], which solves the problem on filRowithout any split-
ting. We consider splittings of the domain in stripes, c§ute 1(a), and in windows
as depicted in Figure 1(b) for different numbers of subdom@) = 4,16,64).
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Initial Picture Initial Picture

@ (b)

Fig. 1 Image of size 192& 2576 pixels which is corrupted by Gaussian blur with kernel size
15x 15 pixels and standard deviation 2, 4% salt-and-pepper naidezaussian white noise with
zero mean and variancedd. In (a) decomposition of the spatial domain into stripes and)im(o
windows.

The algorithms are stopped as soon as the enkrggches a significance level
J*, i.e., whend(u™) < J* for the first time. For reason of comparison we experi-
mentally choosd* = 0.059054, i.e., we once restored the image of interest until we
observed a visually satisfying restoration and the assatienergy-value a¥‘. In
the subspace correction algorithm as well as inlth&2-TV algorithm we restore
the image by settings = 0.5, at = 0.4, andd = 1.1. The computations are done
in Matlab on a computer with 256 cores and the multithreadipgion is activated.

Table 1 presents the computational time and number of iberathe algorithms
need to fulfill the stopping criterion for different numbdrsubdomains. We clearly
see that the domain decomposition algorithmDo« 4,16, 64 subdomains is much
faster than th&'-L2-TV algorithm © = 1). Since a blurring operator is in general
non-local, in each iteration™ has been communicated to each subdomain. There-
fore the communication time becomes substantial for sgii¢tinto 16 or more do-
mains such that the algorithm needs more time to reach tpeiscriterion.

Table 1 Restoration of the image in Figure 1: Computational performg6€dJ time in seconds
and the number of iterations) for the gloha_2-TV algorithm and for the parallel domain decom-
position algorithms wittor; = 0.5, a2 = 0.4 for different numbers of subdomair® & 4,16,64).

# Domains window-splitting stripe-splitting
D=1 ('-L%TValg.): 11944 s/ 131 it

D=4 2374 s/27it 2340s/271it
D =16: 2914 s/27it 2982s/27it
D =64: 7833s/27it 8797s/28it

In Figure 2 we depict the progress of the minimal Lagrangetipligr n(™ :=

mini{||ni(n)||gz(m}, which indicates that the parallel algorithm indeed cogesrto
a minimizer of the functional.
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x10° Norm of the Lagrange multiplier in first domain

Restored image 45

Siegfried & Roy

(@ (b)

25 30

Fig. 2 (a) Restoration of the image in Figure 2 by the parallel subspaceation algorithm in

(5). (b) The progress of the minimal Lagrange multiplg?.
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