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1 Introduction

This paper is devoted to the construction and analysis of Finite Element Tearing
and Interconnecting (FETI) methods for solving large-scale systems of linear alge-
braic equations arising from a new non-standard finite element discretization of the
diffusion equation. This discretization technique uses PDE-harmonic trial functions
in every element of a polyhedral mesh. The generation of the local stiffness matri-
ces utilizes boundary element techniques. For these reasons, this non-standard finite
element method can also be called a BEM-based FEM or Trefftz-FEM.

The FETI method was introduced by Farhat and Roux in [1] and has been gen-
eralized and analyzed by many people, see, e.g., [11] and [7] for the corresponding
references. The Boundary Element Tearing and Interconnecting (BETI) method was
later introduced by Langer and Steinbach [6] as the boundary element counterpart
of the FETI method. The analysis of the convergence of the BETI method is heavily
based on the spectral equivalences between FEM- and BEM-approximated Steklov-
Poincaŕe operators. Similar techniques are used for the analysis of the BEM-based
FETI methods considered in this paper. Due to space constraints, this analysis is
however postponed to a forthcoming article. In the present work, we derive the
solver, state the convergence results without proof, and present numerical results.

2 A skeletal variational formulation

Let Ω ⊂ Rd, d = 2 or 3, be a bounded Lipschitz domain, and let us consider the
following diffusion problem in the standard weak form: findu∈ H1(Ω) such thatu
matches the given Dirichlet datagD onΓD and satisfies the variational equation
∫

Ω
α∇u·∇vdx=

∫

Ω
f vdx+

∫

ΓN

gNvds∀v∈H1
D(Ω) = {v∈H1(Ω) : v|ΓD = 0} (1)
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whereα is the uniformly positive and bounded diffusion coefficient,f is a given
forcing term,ΓD ⊆ ∂Ω is the Dirichlet boundary with positive surface measure,
ΓN = ∂Ω \ΓD is the Neumann boundary with prescribed conormal derivativegN.

Consider a decompositionT of the domainΩ into polytopal elementsT ∈ T .
In contrast to a standard FEM method, we allow the mesh to consist of a mixture of
rather general polygons (in 2d) or polyhedra (in 3d). We now require that the coeffi-
cient functionα is piecewise constant with respect toT , i.e.,α|T(x)≡ αT ∀T ∈T .

On every elementT, we introduce the local harmonic extension operatorHT :
H1/2(∂T) → H1(T) which maps anygT ∈ H1/2(∂T) to the unique weak solu-
tion uT ∈ H1(T) of the local PDE−div(αT∇uT) = 0 with Dirichlet boundary
condition uT |∂T = gT . Furthermore, we define the localSteklov-Poincaŕe opera-
tor ST : H1/2(∂T) → H−1/2(∂T) by STuT = γ1HTuT , whereγ1 is the conormal
derivative operator which takes the formγ1 = n ·α∇ for sufficiently regular argu-
ments.

If we introduce theskeletonΓS :=
⋃

T∈T ∂T and denote byH1/2(ΓS) the trace
space ofH1(Ω)-functions onto the skeleton, we can formulate the skeletal varia-
tional problem: findu∈ H1/2(ΓS) with u|ΓD = gD such that

a(u,v) = 〈F, v〉 ∀v∈ WD = {v∈ W = H1/2(ΓS) : v|ΓD = 0}, (2)

where the bilinear froma(u,v) and the linear form〈F, v〉 are defined bya(u,v) =

∑T∈T 〈STu|∂T , v|∂T〉 and 〈F, v〉 = ∑T∈T

[∫
T fHT(v|∂T)dx+

∫
∂T∩ΓN

gNvds
]
, re-

spectively. It is easy to see that the skeletal variational formulation (2) is equivalent
to the standard variational formulation (1) in the sense that the solution of the former
is the skeletal trace of the solution of the latter [3].

3 Approximation of the Steklov-Poincaŕe operator

It is well-known [10] that the Steklov-Poincaré operatorST can be expressed as

ST = αT(V
−1
T (1

2I +KT)) = αT(DT +(1
2I +K′

T)V
−1
T (1

2I +KT))

in terms of the boundary integral operators defined on every element boundary∂T,

VT : H−1/2(∂T)→ H1/2(∂T), KT : H1/2(∂T)→ H1/2(∂T),

K′
T : H−1/2(∂T)→ H−1/2(∂T), DT : H1/2(∂T)→ H−1/2(∂T),

called, in turn, thesingle layer potential, double layer potential, adjoint double layer
potential, andhypersingularoperators. They are defined by means of the fundamen-
tal solution of the Laplace equation.

We construct a computable approximation as follows. We assume that each ele-
ment boundary∂T has a shape-regular meshFT which consists of line segments in
R2 and of triangles inR3, and that these local meshes match across elements. On this
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mesh, we construct a spaceZ h
T of piecewise constant functions and define, given

u ∈ H1/2(∂T), the discrete variablewh
T ∈ Z h

T by solving the discrete variational
problem〈VTwh

T , zh
T〉= 〈(1

2I +KT)u, zh
T〉 for all zh

T ∈Z h
T . A computable approxima-

tion to ST is then given bỹSTu := αT(DTu+(1
2I +K′

T)w
h
T). The approximatioñST

remains self-adjoint and its kernel is given by the constant functions, just as forST .
Furthermore, it satisfies the spectral equivalence

c̃T 〈STv, v〉 ≤ 〈S̃Tv, v〉 ≤ 〈STv, v〉 ∀v∈ H1/2(∂T) (3)

with c̃T ∈ (0, 1
4]. Replacing, in (2),ST by its approximations̃ST , we obtain the inex-

act skeletal variational formulation: findu∈ H1/2(ΓS) with u|ΓD = gD such that

ã(u,v) := ∑
T∈T

〈S̃Tu|∂T , v|∂T〉= 〈F, v〉 ∀v∈ WD.

The positive constant̃cT in (3) depends on the geometry of the elementT. For robust
error estimates, it is necessary to boundc̃T from below uniformly for all elements.
Recently, explicit bounds for these constants have been obtained, starting with a
paper by Pechstein [8] which relied on the Jones parameter and a constant in an
isoperimetric inequality. These results were employed in the rigorousa priori error
analysis of the BEM-based FEM [3, 2] and have later been simplified in [4].

Theorem 1([4]). Let Ω ⊂ R3. Assume that there exists a shape-regular simplicial
meshΞ(Ω ′) of an open, bounded supersetΩ ′ ⊃ Ω of Ω such that each elementT ∈
T is a union of simplices fromΞ(Ω ′), and the number of simplices per elementT
is uniformly bounded. Furthermore, assume that the boundary meshesFT , T ∈ T ,
are shape-regular.

Then, the contraction constantsc̃T , T ∈ T , are uniformly bounded away from0
in terms of the mesh regularity parameters.

4 Discretization

By assumption,F :=
⋃

T∈T FT describes a shape-regular triangulation of the
skeletonΓS. On this mesh, we construct the discrete trial spaceW h ⊂ H1/2(ΓS)
of piecewise linear, continuous functions on the skeleton and setW h

D := W h∩WD.
After this discretization, we aim to finduh ∈ W h with uh|ΓD = gD such that

ã(uh,vh) = 〈F, vh〉 ∀vh ∈ W h
D . (4)

Rigorous error estimates of optimal order for this discretized variational problem
can be found in [3, 2]. Equivalently, (4) can be written as an operator equation

Auh = F (5)



4 Clemens Hofreither, Ulrich Langer, and Clemens Pechstein

with A : W h → (W h
D )∗. The associated stiffness matrix in the canonical nodal basis

shares many properties with the stiffness matrix obtained from a standard finite
element method like sparsity, symmetry and positive definiteness.

5 A FETI solver

In the following, we derive a solution method for (5) based on the ideas of the FETI
substructuring approach, originally proposed by Farhat and Roux [1]. Our derivation
closely follows that of the classical FETI method. Thus, we refer to the monographs
[11] and [7] and the references therein for further details and proofs.

Fig. 1 Sketch of domain decomposition approach in 2D for a rectangular domain withN = 2
subdomains.Left: FETI substructuring.Right:FETI-like substructuring for the BEM-based FEM.

We decomposeΩ into non-overlapping subdomains(Ωi)
N
i=1 in agreement with

the polyhedral meshT , that is,Ω i =
⋃

T∈Ti
T with an associate decomposition

(Ti)
N
i=1. We setHi := diamΩi andH := maxN

i=1Hi . Every subdomainΩi has an as-
sociated skeleton

⋃
T∈Ti

∂T and discrete skeletal trial spacesW h(Ωi) andW h
D (Ωi),

constructed as in Section 4. In the following, we assume that the problem has been
homogenized with respect to the given Dirichlet datagD, such thatuh ∈ W h

D .
Both the operatorA and the functionalF in (5) can be written as a sum of local

contributionsAi : W h(Ωi)→W h(Ωi)
∗ and fi ∈W h(Ωi)

∗ such that∑N
i=1Ai(u|Ωi ) =

∑N
i=1 fi , where here and in the sequel we drop the superscripth since all functions are

discrete from now on. Indeed, all relevant functions live in spaces of piecewise lin-
ear functions which have natural nodal bases. Therefore, we will not distinguish in
the following between functions and the coefficient vectors representing them with
respect to the nodal basis, nor between operators and their matrix representations.

We introduce the Schur complementS̃i = Ai,Γ Γ −Ai,Γ I A
−1
i,II Ai,IΓ of the subdo-

main stiffness matrixAi . The blocksAi,Γ Γ ,Ai,Γ I ,Ai,IΓ ,Ai,II are chosen such that the
subscriptsΓ andI correspond to the boundary and inner degrees of freedom, i.e.,

Aiw=

[
Ai,Γ Γ Ai,Γ I

Ai,IΓ Ai,II

][
wΓ
wI

]
.

Eliminating the interior unknowns in (5) yields the equivalent minimization problem
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u= argminv∈W h
D (Γ H

S )

1
2

N

∑
i=1

〈S̃iv|∂Ωi
, v|∂Ωi

〉−
N

∑
i=1

〈gi , v|∂Ωi
〉, (6)

whereΓ H
S =

⋃N
i=1 ∂Ωi is the coarse skeleton,W h

D (Γ H
S ) is the trace space of discrete

functionsW h
D (Ω) ontoΓ H

S , andgi is a suitably adjusted forcing term.
Let W h(∂Ωi) := {v|∂Ωi

: v∈W h(Ωi)} denote a space of discrete boundary func-
tions. We then introduce the broken spaceY := ∏N

i=1Yi with Yi := {v∈ W h(∂Ωi) :
v|ΓD = 0}. In order to enforce continuity of the functions inY, we introduce the
jump operatorB : Y → RNΛ , whereNΛ ∈ N is the total number of constraints. Here
we assume fully redundant constraints, i.e., for every node on a subdomain inter-
face, constraints corresponding to all neighboring subdomains are introduced. This
choice implies thatB is not surjective, and we define the space of Lagrange multi-
pliers as the rangeΛ := RangeB⊆ RNΛ and considerB as a mappingY → Λ .

Using the jump operator, we rewrite (6) asu = argminy∈kerB
1
2 ∑N

i=1〈S̃iyi , yi〉 −
∑N

i=1〈gi , yi〉. Introducing Lagrange multipliers to enforce the constraintBy= 0, we
obtain the saddle point formulation

[
S̃ B>
B 0

][
u
λ

]
=

[
g
0

]
, (7)

for u ∈ Y and λ ∈ Λ , with the block matrices and vectors̃S= diag(S̃1, . . . , S̃N),
B = (B1, . . . ,BN), u = (u1, . . . ,uN)

>, g = (g1, . . . ,gN)
>. From (7), we see that the

local skeletal functionsui satisfy the relationship

S̃iui = gi −B>
i λ . (8)

For anon-floatingdomainΩi , that is, one that shares a part of the Dirichlet bound-
ary such that∂Ωi ∩ΓD 6= /0, S̃i is positive definite and thus invertible. For afloating
domainΩi , the kernel of̃Si consists only of the constant functions, and we parame-
terize it by the operatorRi :R→ kerS̃i ⊂Yi which maps a scalar to the corresponding
constant function. Under the condition that the right-hand side is orthogonal to the
kernel, i.e.,

〈gi −B>
i λ , Riζ 〉= 0 ∀ζ ∈ R, (9)

the local problem (8) is solvable and we haveui = S̃†
i (gi −B>

i λ )+Riξi with some
ξi ∈ R. Here,S̃†

i denotes a pseudo-inverse ofS̃i . For non-floating domainsΩi , we
setS̃†

i = S̃−1
i .

We setZ := ∏N
i=1Rdim(kerS̃i) and introduce the operatorR : Z →Y by (Rξ )|Ωi :=

Riξi for floatingΩi and(Rξ )|Ωi := 0 for non-floatingΩi . The local solutionsu can
then be expressed by

u= S̃†(g−B>λ )+Rξ (10)

under the compatibility conditionR>B>λ = R>g derived from (9). Inserting (10)
into the second line of (7) yieldsBS̃†g−BS̃†B>λ +BRξ = 0, and together with the
compatibility condition and using the notationsF = BS̃†B> andG= BR, we obtain
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the dual saddle point problem

[
F −G

G> 0

][
λ
ξ

]
=

[
BS̃†g
R>g

]
. (11)

With a self-adjoint operatorQ : Λ → Λ which is assumed to be positive definite
on the range ofG and which will be specified later, we define the projectorP =
I −QG(G>QG)−1G> from Λ onto the subspaceΛ0 := kerG> ⊂ Λ of admissible
increments. The choiceλg := QG(G>QG)−1R>g ∈ Λ ensures thatG>λg = R>g,
and thus, withλ = λ0+λg, we can homogenize (11) such that we only search for a
λ0 ∈ Λ0 with

Fλ0−Gξ = BS̃†g−Fλg. (12)

Applying the projectorP> to this equation and noting thatP>G= 0, we obtain the
following formulation of the dual problem: findλ0 ∈ Λ0 such that

P>Fλ0 = P>(BS̃†g−Fλg) = P>BS̃†(g−B>λg). (13)

It can be shown thatP>F is self-adjoint and positive definite onΛ0. Thus, the
problem (13) has a unique solution which may be computed by CG iteration in
the subspaceΛ0. Once λ = λ0 + λg has been computed, we see that applying
(G>QG)−1G>Q to (12) yieldsξ = (G>QG)−1G>QBS̃†(B>λ −g). The unknowns
ui may then be obtained by solving the local problems (10), and the unknowns in
the interior of eachΩi may be recovered by solving local Dirichlet problems.

Preconditioners for FETI are typically constructed in the formPM−1 with a suit-
able operatorM−1 : Λ → Λ . The FETI Dirichlet preconditioner adapted to our set-
ting, is given by the choiceM−1 = BS̃B> and works well for constant or mildly
varying coefficientα. In this case, the choiceQ= I works satisfactorily.

To deal with coefficient jumps, we need to employ ascaledor weighted jump
operatoras introduced in [9] and analyzed in [5]. We restrict ourselves to the case
of subdomain-wise constant coefficientα, i.e.,α(x) = αi for x∈ Ωi .

Let xh ∈ ∂Ωi refer to a boundary node. We introduce weighted counting functions
δ j via piecewise linear interpolation on the facets of the coarse skeletonΓ H

S of the
nodal values defined byδ j(xh) = α j/(∑k∈{1,...,N}:xh∈∂Ωk

αk) for xh ∈ ∂Ω j and 0
otherwise, j = 1, . . . ,N. We introduce diagonal scaling matricesDi : Λ → Λ , i =
1, . . . ,N, operating on the space of Lagrange multipliers. Consider two neighboring
domainsΩi andΩ j sharing a nodexh ∈ ∂Ωi ∩∂Ω j . Let k∈ {1, . . . ,NΛ} denote the
index of the Lagrange multiplier associated with this node and pair of subdomains.
Then, thek-th diagonal entry ofDi is set toδ j(xh), and thek-th diagonal entry ofD j

to δi(xh). Diagonal entries ofDi not associated with a node on∂Ωi are set to0.
Theweighted jump operatorBD :Y→Λ is now given byBD = [D1B1, . . . ,DNBN],

and the weighted Dirichlet preconditioner byM−1
D = BDS̃B>D . In this case, a possi-

ble choice forQ is simplyQ= M−1
D . Alternatively,Q can be replaced by a suitable

diagonal matrix as described in [5].
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6 Convergence Analysis

The convergence analysis proceeds by the idea of spectral equivalences between the
BEM-based FEM Schur complementsS̃i and the Schur complements which occur
in a standard one-level FETI method, allowing us to transfer the known condition
estimates from the FETI literature to our case. This is similar to the approach used in
the analysis of the BETI method [6]. For space reason, we cannot give this analysis
here, and it must be postponed to a forthcoming paper. Here we only state the main
results. Under standard assumptions, we can prove the condition number estimate

κ(P>F |Λ0)≤C(α/α)maxi=1,...,N(Hi/hi)

for the non-preconditioned case, whereα = maxx∈Ω α(x), α = minx∈Ω α(x), and
the constantC depends only on mesh regularity parameters. For the preconditioned
case, with the choiceQ= M−1

D , we have the condition number estimate

κ(PM−1
D P>F |Λ0)≤C(1+ log(maxi=1,...,N(Hi/hi)))

2.

7 Numerical experiments

We solve the pure Dirichlet boundary value problem−∆u = 0 in Ω andu(x) =
−(2π)−1 log|x−x?| on ∂Ω . The 2d domainΩ (Figure 2, left) is discretized by an
irregular polygonal mesh. The source pointx? = (−1,1) lies outside ofΩ .

Fig. 2 Left: Ω partioned intoN = 400subdomains.Right:Zoom into the polygonal mesh.

The polygonal meshT is constructed by applying the graph partitionerMETIS

to a standard triangular mesh consisting of 524,288 triangles, resulting in a polyg-
onal mesh with 99,970 elements, most of which are unions of5 or 6 triangles, cf.
Figure 2, right. The domain decomposition{Ωi} is obtained by applyingMETIS a
second time on top of the meshT , see Figure 2, left.
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We use the Dirichlet preconditioner with multiplicity scaling and a suitable diag-
onal matrix forQ as described in [5], and solve the dual system by the corresponding
PCG iteration. In Table 1, we give the number of CG iterations required to reduce
the initial residual by a factor of10−8 without and with Dirichlet preconditioner,
and provide some CPU times for varying numberN of subdomains.

N total time avg. loc. time #iter # Lagrange
25 32.23 /20.490.0776 /0.0759133 /29 5875
50 30.19 /19.100.0317 /0.0310135 /30 8962

100 26.64 /17.700.0135 /0.0131131 /31 13012
200 23.69 /17.410.0059 /0.0057134 /36 19056
400 21.06 /16.130.0027 /0.0026123 /34 27324
800 20.23 /17.680.0013 /0.0013109 /36 39304

160022.19 /20.960.0006 /0.0006095 /35 56632

Table 1 Results of the non-preconditioned (left) /preconditioned (right) CG solver. Columns:
number of subdomains, total CPU time for the solution in seconds, averaged time for solving the
local problems in seconds, number of iterations, number of Lagrange multipliers.
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