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1 Introduction

This paper is devoted to the construction and analysis of Finite Element Tearing
and Interconnecting (FETI) methods for solving large-scale systems of linear alge-
braic equations arising from a new non-standard finite element discretization of the
diffusion equation. This discretization technique uses PDE-harmonic trial functions
in every element of a polyhedral mesh. The generation of the local stiffness matri-
ces utilizes boundary element techniques. For these reasons, this non-standard finite
element method can also be called a BEM-based FEM or Trefftz-FEM.

The FETI method was introduced by Farhat and Roux in [1] and has been gen-
eralized and analyzed by many people, see, e.g., [11] and [7] for the corresponding
references. The Boundary Element Tearing and Interconnecting (BETI) method was
later introduced by Langer and Steinbach [6] as the boundary element counterpart
of the FETI method. The analysis of the convergence of the BETI method is heavily
based on the spectral equivalences between FEM- and BEM-approximated Steklov-
Poincaé operators. Similar techniques are used for the analysis of the BEM-based
FETI methods considered in this paper. Due to space constraints, this analysis is
however postponed to a forthcoming article. In the present work, we derive the
solver, state the convergence results without proof, and present numerical results.

2 A skeletal variational formulation

Let Q c RY, d =2 or 3, be a bounded Lipschitz domain, and let us consider the
following diffusion problem in the standard weak form: fing H(Q) such thau
matches the given Dirichlet datg on b and satisfies the variational equation

/ aDu-Dvdx:/ fvdx+ [ gnvdswe H3(Q)={ve H(Q):v|r, =0} (1)
Q Q 'n
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wherea is the uniformly positive and bounded diffusion coefficiehtis a given
forcing term,lp C dQ is the Dirichlet boundary with positive surface measure,
'v = dQ\ Ip is the Neumann boundary with prescribed conormal derivagive

Consider a decompositiof of the domainQ into polytopal element¥ € 7.

In contrast to a standard FEM method, we allow the mesh to consist of a mixture of
rather general polygons (in 2d) or polyhedra (in 3d). We now require that the coeffi-
cient functiona is piecewise constant with respectfd i.e.,a|r (X) = ar VT € 7.

On every element, we introduce the local harmonic extension operair :
H/2(0T) — HYT) which maps anygr € HY2(9T) to the unique weak solu-
tion ur € Hl(T) of the local PDE—div(at0ur) = 0 with Dirichlet boundary
conditionur|st = gr. Furthermore, we define the loc&teklov-Poince opera-
tor Sy : HY2(aT) — H-Y2(9T) by Srur = yL.%4ur, wherey! is the conormal
derivative operator which takes the forph= n-a for sufficiently regular argu-
ments.

If we introduce theskeletons := (Ut dT and denote byH%?(Is) the trace
space ofH1(Q)-functions onto the skeleton, we can formulate the skeletal varia-
tional problem: findu € HY/2(Is) with u|r, = gp such that

a(uv) = (F,v) Wwe#p={ve# =HY3(Is):V|n, =0}, 2)

where the bilinear frona(u,v) and the linear formF, v) are defined bya(u,v) =

S1e7(Srulor, Vior) and (F,V) = S1cr [fT fo5 (VloT) dX+ fotan, gNVd% , re-
spectively. It is easy to see that the skeletal variational formulation (2) is equivalent
to the standard variational formulation (1) in the sense that the solution of the former
is the skeletal trace of the solution of the latter [3].

3 Approximation of the Steklov-Poincaré operator

It is well-known [10] that the Steklov-PoindaoperatoSr can be expressed as
Sr=ar(Vr (31 +Kr)) = ar(Dr + (31 + KOVE L3 +Kr))
in terms of the boundary integral operators defined on every element boutilary

Vo HY2(0T) — HY2(aT), Ky :HY2(0T) = HY2(aT),
Ki:H Y2(0T) - H Y2(9T), Dr:HY?(dT)— HY2(9T),

called, in turn, theingle layer potentialdouble layer potentiabdjoint double layer
potential andhypersingulamperators. They are defined by means of the fundamen-
tal solution of the Laplace equation.

We construct a computable approximation as follows. We assume that each ele-
ment boundary'T has a shape-regular megh which consists of line segments in
R2 and of triangles ifR3, and that these local meshes match across elements. On this
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mesh, we construct a spaf%Th of piecewise constant functions and define, given
u € HY2(aT), the discrete variabled € 25" by solving the discrete variational
problem(Vrwi, Z) = (31 +Kr)u, Z}) for all & € 2. A computable approxima-
tion to Sr is then given bySru:= a7 (Dru+ (31 +Kf)wh). The approximatiorSy
remains self-adjoint and its kernel is given by the constant functions, just &s.for
Furthermore, it satisfies the spectral equivalence

& (Svv) < (SrvV) < (Srwv)  We HY2(aT) 3)

with &r € (0, }1]. Replacing, in (2)Sr by its approximation$, we obtain the inex-
act skeletal variational formulation: finde H/(s) with u|r, = gp such that

auv) =Y (Srulgr,vier) = (F,v)  We .
TeT

The positive constardty in (3) depends on the geometry of the elenierfor robust

error estimates, it is necessary to bodndrom below uniformly for all elements.
Recently, explicit bounds for these constants have been obtained, starting with a
paper by Pechstein [8] which relied on the Jones parameter and a constant in an
isoperimetric inequality. These results were employed in the rigaqursori error
analysis of the BEM-based FEM [3, 2] and have later been simplified in [4].

Theorem 1([4]). Let Q c R3. Assume that there exists a shape-regular simplicial
mesh=(Q’) of an open, bounded superset > Q of Q such that each elemefite
7 is a union of simplices fromx (Q’), and the number of simplices per elem&nt
is uniformly bounded. Furthermore, assume that the boundary meghgeg € .7,
are shape-regular.
Then, the contraction constarig, T € .7, are uniformly bounded away frofh
in terms of the mesh regularity parameters.

4 Discretization

By assumption,# = Urcs -#1 describes a shape-regular triangulation of the
skeletonls. On this mesh, we construct the discrete trial sp#cec HY/?(I)

of piecewise linear, continuous functions on the skeleton anwgk‘-.'t: ValaV /8
After this discretization, we aim to find" € %" with u"|, = gp such that

au Vv = (F VY wWhe . (4)

Rigorous error estimates of optimal order for this discretized variational problem
can be found in [3, 2]. Equivalently, (4) can be written as an operator equation

Al =F (5)
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with A: 7" — (#3)*. The associated stiffness matrix in the canonical nodal basis
shares many properties with the stiffness matrix obtained from a standard finite
element method like sparsity, symmetry and positive definiteness.

5 A FETI solver

In the following, we derive a solution method for (5) based on the ideas of the FETI
substructuring approach, originally proposed by Farhat and Roux [1]. Our derivation
closely follows that of the classical FETI method. Thus, we refer to the monographs
[11] and [7] and the references therein for further details and proofs.

AN

Fig. 1 Sketch of domain decomposition approach in 2D for a rectangular domainNwith2
subdomainsLeft: FETI substructuringRight: FETI-like substructuring for the BEM-based FEM.

We decompose& into non-overlapping subdomaiin)iN:l in agreement with
the polyhedral mest?, that is, Qj = Urc gT with an associate decomposition
(ﬁi‘)i’\‘zl. We setH; ;= diam@Q; andH = may{\‘:l H;. Every subdomai2; has an as-
sociated skeletogr. 5 dT and discrete skeletal trial spaced’(Q;) and73(Q)),
constructed as in Section 4. In the following, we assume that the problem has been
homogenized with respect to the given Dirichlet dgasuch thau e WDh.

Both the operatoA and the functionaF in (5) can be written as a sum of local
contributionsA; : #M(Q)) — #"(Qi)* andfi € #"(Q;)* such thaty N ; A(ulg,) =
ZiN=1 fi, where here and in the sequel we drop the superdtsipice all functions are
discrete from now on. Indeed, all relevant functions live in spaces of piecewise lin-
ear functions which have natural nodal bases. Therefore, we will not distinguish in
the following between functions and the coefficient vectors representing them with
respect to the nodal basis, nor between operators and their matrix representations.

We introduce the Schur compleme&t= A rr — Aq_ﬂAi]lAw of the subdo-
main stiffness matri¥d;. The blocksA rr, A ri, Air, Al are chosen such that the
subscriptd” andl correspond to the boundary and inner degrees of freedom, i.e.,

o |Arr A | W
A= [Ai,ll' Al } {Wl ]

Eliminating the interior unknowns in (5) yields the equivalent minimization problem
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N

: 13 -
U= argmingyn s _Z(vafzi Voo — Z(gi Vag); (6)
1= =

whererd! = UN., 00 is the coarse skeletoW (I, a1 is the trace space of discrete
functionsW[?(Q) ontold!, andg; is a suitably adjusted forcing term.

Let #N(0Qi) := {V]sq, : vE #" (i)} denote a space of discrete boundary func-
tions. We then introduce the broken space= [N, Y with Y; := {ve #"(0Q) :
V|, = 0}. In order to enforce continuity of the functions ¥ we introduce the
jump operatoB : Y — RM, whereN, € N is the total number of constraints. Here
we assume fully redundant constraints, i.e., for every node on a subdomain inter-
face, constraints corresponding to all neighboring subdomains are introduced. This
choice implies thaB is not surjective, and we define the space of Lagrange multi-
pliers as the rangd := RangedB C R™M and consideB as a mappinyy — A.

Using the jump operator, we rewrite (6) Bs= argmin g3 i 1(SYi, Vi) —
ziNzl(gh vi). Introducing Lagrange multipliers to enforce the constr&nt O, we
obtain the saddle point formulation

=5 =18 ¢

for uc Y andA € A, with the block matrices and vecto&= diag(Sy,..., ).
B=(By,...,Bn), U= (Ug,...,un)", 9= (Q1,...,9n) . From (7), we see that the
local skeletal functions; satisfy the relationship

Sui=g —B'A. (8)

For anon-floatingdomainQ;, that is, one that shares a part of the Dirichlet bound-
ary such thab QN Ip # 0, S is positive definite and thus invertible. Foflaating
domainQ;, the kernel of§ consists only of the constant functions, and we parame-
terize it by the operatd®, : R — ker§ C Y; which maps a scalar to the corresponding
constant function. Under the condition that the right-hand side is orthogonal to the
kernel, i.e.,

(G-B'A,R{)=0 V{E€R, ©)

the local problem (8) is solvable and we haye= §(gi —BA) + R & with some
& e R. Here,§T denotes a pseudo-inverse?bf For non-floating domaing;, we
set§ =S
We setZ := [N, R4m(kerS) and introduce the operatB: Z — Y by (RE)|g, =
Rié; for floating ©; and(R¢&) |, := 0 for non-floatingQ;. The local solutionsi can
then be expressed by
u=S'(g—B"A)+RE (10)

under the compatibility conditioR"B'A = R' g derived from (9). Inserting (10)
into the second line of (7) yiel®S'g—BS'B" A +BRE = 0, and together with the
compatibility condition and using the notatiofis= BS'B" andG = BR, we obtain
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the dual saddle point problem
F -G][A] _[BS'g
o o) le)- %) an
With a self-adjoint operato® : A — A which is assumed to be positive definite

on the range of5 and which will be specified later, we define the projedtor
| —QG(G"QG)IGT from A onto the subspaca := kerG™ c A of admissible
increments. The choick, := QG(G'QG)IR"g € A ensures thaG'Aq = R'g,
and thus, witlh = Ag+ Ag, we can homogenize (11) such that we only search for a

Ap € A\g With _
FAo—GE =BS'g—FAq. (12)

Applying the projectoP " to this equation and noting thRt' G = 0, we obtain the
following formulation of the dual problem: findly € Ag such that

P'FAo=P'(BS'g—FAg) =P'BS (g—B"Ag). (13)

It can be shown thaP'F is self-adjoint and positive definite of\g. Thus, the
problem (13) has a unique solution which may be computed by CG iteration in
the subspace\p. OnceA = Ag + Ag has been computed, we see that applying
(GTQG)1GTQto (12) yieldsé = (GTQG)1G"QBS' (BT A —g). The unknowns

u; may then be obtained by solving the local problems (10), and the unknowns in
the interior of eacl2; may be recovered by solving local Dirichlet problems.

Preconditioners for FETI are typically constructed in the f&—* with a suit-
able operatoM—1: A — A. The FETI Dirichlet preconditioner adapted to our set-
ting, is given by the choicé~! = BSB' and works well for constant or mildly
varying coefficienta. In this case, the choid®@ = | works satisfactorily.

To deal with coefficient jumps, we need to emplogaledor weighted jump
operatoras introduced in [9] and analyzed in [5]. We restrict ourselves to the case
of subdomain-wise constant coefficienti.e.,a (x) = aj for x € Q;.

Letx" € dQ; refer to a boundary node. We introduce weighted counting functions
J; via piecewise linear interpolation on the facets of the coarse skefgloof the
nodal values defined bgj(X") = a;j/(Sxc(1 . nyxnean, k) for X € 9Q; and0
otherwise,j = 1,...,N. We introduce diagonal scaling matricBs: A — A, i =
1,...,N, operating on the space of Lagrange multipliers. Consider two neighboring
domainsQ; andQ; sharing a node" € QN 0Qj. Letke {1,...,Np} denote the
index of the Lagrange multiplier associated with this node and pair of subdomains.
Then, thek-th diagonal entry obD; is set tod; (x"), and thek-th diagonal entry oD;
to & (x"). Diagonal entries ob; not associated with a node om; are set ta.

Theweighted jump operatdp : Y — A is now given byBp = [D1B, ..., DnBn],
and the weighted Dirichlet preconditioner Mgl = BD§I3§. In this case, a possi-
ble choice forQ is simplyQ = Mgl. Alternatively,Q can be replaced by a suitable
diagonal matrix as described in [5].
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6 Convergence Analysis

The convergence analysis proceeds by the idea of spectral equivalences between the
BEM-based FEM Schur complemergisand the Schur complements which occur

in a standard one-level FETI method, allowing us to transfer the known condition
estimates from the FETI literature to our case. This is similar to the approach used in
the analysis of the BETI method [6]. For space reason, we cannot give this analysis
here, and it must be postponed to a forthcoming paper. Here we only state the main
results. Under standard assumptions, we can prove the condition number estimate

K(PTF|p,) <C(a/a)max—1,n(Hi/hi)

for the non-preconditioned case, wh&re= maxco a(x), @ = mingkeq a(x), and
the constan€ depends only on mesh regularity parameters. For the preconditioned
case, with the choic® = My?, we have the condition number estimate

K(PMp'PTF|p,) < C(1+log(max_1__n(Hi/h)))>2.

7 Numerical experiments

We solve the pure Dirichlet boundary value problemu =0 in Q andu(x) =
—(2m)~tlog|x—x*| on dQ. The 2d domaim? (Figure 2, left) is discretized by an
irregular polygonal mesh. The source poiht= (—1,1) lies outside ofQ2.

SRR
A
Slass
ASOIAYSIIRA

Fig. 2 Left: Q partioned intdN = 400subdomainsRight: Zoom into the polygonal mesh.

The polygonal mesk is constructed by applying the graph partitiomeT1s
to a standard triangular mesh consisting of 524,288 triangles, resulting in a polyg-
onal mesh with 99,970 elements, most of which are uniors@f6 triangles, cf.
Figure 2, right. The domain decompositi¢f; } is obtained by applying/eTis a
second time on top of the mesh, see Figure 2, left.
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We use the Dirichlet preconditioner with multiplicity scaling and a suitable diag-
onal matrix forQ as described in [5], and solve the dual system by the corresponding
PCG iteration. In Table 1, we give the number of CG iterations required to reduce
the initial residual by a factor cf0~8 without and with Dirichlet preconditioner,
and provide some CPU times for varying numbleof subdomains.

N| total time avg. loc. time  #iter # Lagrange
25(32.23/20.490.0776 /0.0759133 /29 5875
50(30.19/19.100.0317 /0.0310135 /30 8962

100/26.64 /17.700.0135/0.0131131 /31 13012
200|23.69 /17.410.0059 /0.0057134 /36 19056
400/21.06 /16.130.0027 /0.0026123 /34 27324
800/20.23 /17.680.0013 /0.0013109 /36 39304
160022.19 /20.960.0006 /0.0006095 /35 56632

Table 1 Results of the non-preconditioned (leftpreconditioned (right) CG solver. Columns:
number of subdomains, total CPU time for the solution in seconds, averaged time for solving the
local problems in seconds, number of iterations, number of Lagrange multipliers.
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