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1 Introduction

In this paper, we present a Neumann-Dirichlet type parallel preconditioner for a
FETI-DP method for the nonconforming Crouzeix-Raviart (CR) finite element dis-
cretization of a model second order elliptic problem. The proposed method is almost
optimal, in fact, the condition number of the preconditioned problem grows poly-
logarithmically with respect to the mesh parameters of the local triangulations.

In many scientific applications, where partial differential equations are used to
model, the Crouzeix-Raviart (CR) finite element has been one of the most com-
monly used nonconforming finite element for the numerical solution. This includes
applications like the Poisson equation (cf. [11, 23]), the Darcy-Stokes problem (cf.
[8]), the elasticity problem (cf. [3]). We also would like to add that there is a close
relationship between mixed finite elements and the nonconforming finite element
for the second order elliptic problem; cf. [1, 2]. The CR element has also been used
in the framework of finite volume element method; cf. [9].

There exists quite a number of works focusing on iterative methods for the CR
finite element for second order problems; cf. [4, 5, 10, 13, 16, 18, 19, 20, 21, 22]
and references therein. The purpose of this paper is to propose a parallel algorithm
based on a Neumann-Dirichlet preconditioner for a FETI-DP formulation of the CR
finite element method for the second order elliptic problem. To our knowledge, this
is apparently the first work on such preconditioner for the FETI-DP method for the
Crouzeix-Raviart (CR) finite element.

The FETI-DP method, which was first introduced in [12], describes a class of
fast and efficient domain decomposition solvers for systems of algebraic equations
arising from the finite element discretization of elliptic partial differential equations,
cf. [17, 14, 15, 24] and references therein.

In a FETI-DP method one has to solve a linear system for a set of dual variables,
formulated after eliminating the primal variables. The FETI-DP system contains
in itself a coarse problem which is associated with the primal variables, while its
preconditioner is based on solving only local problems which is fully parallel.

In this paper, we first present the Crouzeix Raviart discretization of the differ-
ential problem, a FETI-DP formulation of the problem is then introduced, and fi-
nally a Neumann-Dirichlet preconditioner for the FETI-DP problem is proposed.
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We present an almost optimal bound for the condition number, showing that the
condition number of the preconditioned system grows like C(1+ log(H/h))2, where
H is the maximal diameter of the subdomains and h is the fine mesh size parameter.

2 Discrete problem

In this section we present the Crouzeix-Raviart finite element discretization of a
model second order elliptic problem with discontinuous coefficients.

Let Ω be a polygonal domain in the plane. We assume that there exists a partition
of Ω into disjoint polygonal subdomains Ωk such that Ω =

∪N
k=1 Ω k with Ω k ∩Ω l

being an empty set, an edge or a vertex (crosspoint). We also assume that these
subdomains form a coarse triangulation of the domain which is shape regular in
the sense of [7]. We introduce a global interface Γ =

∪
i ∂Ωi \∂Ω which plays an

important role in our study.
Our model differential problem is to find u∗ ∈ H1

0 (Ω) such that

a(u∗,v) =
∫

Ω
f v dx ∀v ∈ H1

0 (Ω), (1)

where f ∈ L2(Ω), and a(u,v) = ∑N
k=1

∫
Ωk

ρk∇u∇v dx. The coefficients ρk are posi-
tive and constant.

We assume that there exists a quasiuniform triangulation, Th = Th(Ω) = {τ}, of
Ω such that any element τ of Th is contained in only one subdomain, as a conse-
quence any subdomain Ωk inherits a local triangulation Th(Ωk) = {τ}τ⊂Ωk,τ∈Th .

Fig. 1 Illustrating the CR finite element in 2D with black dots as the CR nodal points or CR nodes.

Let h = maxτ∈Th(Ω) diam(τ) be the mesh size parameter of the triangulation, cf.
[6]. We introduce the following sets of Crouzeix-Raviart (CR) nodal points or -
nodes: ΩCR

h ,∂ΩCR
h ,ΩCR

k,h ,∂ΩCR
k,h , and Γ CR

kl,h correspond to Ω ,∂Ω ,Ωk,∂Ωk, and Γkl ,
respectively. Here Γkl is an interface, an open edge, which is shared by the two
subdomains, Ωk and Ωl .

We now introduce the local finite element spaces. Let Ŵ h(Ω) be the Crouzeix-
Raviart finite element space defined as follows,

Ŵ h(Ω) = {u ∈ L2(Ω) : u|τ ∈ P1(τ) for each triangle τ ∈ Th(Ω),
u is continuous at every midpoint m ∈ ΩCR

h (2)
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and u(m) = 0 for every m ∈ ∂ΩCR
h }.

Here P1(τ) is the function space of linear polynomials defined over τ . The degrees
of freedom of a function u ∈ Ŵ h(Ω) over τ ∈ Th(Ω) are: {u(m j)} j=1,2,3, where m j
is a midpoint of an edge of τ , cf. Fig. 1.

We define the local CR space W h(Ωk) as the space of functions which are re-
strictions to Ωk of the functions of Ŵ h(Ω), i.e. W h(Ωk) = {u|Ωk

: u ∈ Ŵ h(Ω)}. The
standard nodal basis function, φCR

x , of W h(Ωk), associated with the CR nodal point
x ∈ ΩCR

k , is a function which is equal to one at x and zero at the remaining CR nodal
points of ΩCR

k \∂ΩCR. {φCR
x }

x∈ΩCR
k \∂ΩCR is the standard nodal basis of W h(Ωk).

The discrete problem is then defined as follows: Find u∗h ∈ Ŵ h(Ω) such that

ah(u∗h,v) = f (v) ∀v ∈ Ŵ h(Ω), (3)

where ah(u,v) := ∑N
k=1 ak,h(u,v) with the local broken bilinear form:

ak,h(u,v) := ∑
τ∈Th(Ωk)

∫
τ

ρk∇u∇v dx.

This problem has a unique solution, and an optimal error bound is known; cf. [6].
We shall now reformulate (3) as a saddle point problem. We start by introducing

the following global space defined over Ω as follows,

W h(Ω) := Π N
k=1W h(Ωk).

Note that each interface Γkl inherits a 1D triangulation Th(Γkl) from Th. We define
V h(Γkl) as the space of piecewise constant functions over Th(Γkl). In FETI-DP, an
important role is played by the global interface which is defined as Γ :=

∪N
k=1 ∂Ωk \

∂Ω . Then, let
V h(Γ ) := ∏

Γkl⊂Γ
V h(Γkl)

be the auxiliary interface space which will be later used as the space of La-
grange multipliers. We introduce the bilinear form b(u,ψ) : W h(Ω)×V h(Γ ) → R
as follows: let u = (uk)N

k=1 ∈ W h(Ω) and ψ = (ψlk)Γkl ∈ V h(Γ ), then b(u,ψ) =
∑Γkl⊂Γ blk(u,ψlk) with

blk(u,ψlk) =
∫

Γkl

(uk −ul)ψlk ds k > l.

Throughout the rest of this paper, we will use the same notation to denote a
function and its vector representation with values of the degrees of freedom (dofs)
of this function as entries in the representation.

Let cr be a crosspoint, which is a subdomain vertex, not lying on ∂Ω , and let
V CR(cr) be the set of CR nodal points of those triangle edges that lie on sub-
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domain boundaries and are incident to cR, e.g. the black dots in Figure 2. Let
V CR =

∪
cr∈Γ V CR(cr).

We then introduce W̃ h(Ω) as the subspace of W h(Ω) of functions which are con-
tinuous at the CR nodes of V CR. We also introduce a reduced Lagrange multiplier
space as follows,

Ṽ h(Γ ) := {λ ∈V h(Γ ) : λ (m) = 0 ∀m ∈ Γ CR
h ∩V CR} ⊂V h(Γ ).

The discrete problem can now be reformulated as the following saddle point prob-

Fig. 2 Illustrating a four subdomain case with one crosspoint. Black dots in the figure represent
the CR nodes of V CR corresponding to the cross point. CR nodes (both circles and black dots)
which the degrees of freedom (dofs) of W̃ h(Ω) are associated with, are also shown.

lem: find the pair (u∗h,λ
∗) ∈ W̃ h(Ω)×Ṽ h(Γ ) such that

a(u∗h,v)+b(v,λ ∗) = f (v) ∀v ∈ W̃ h(Ω),
b(u∗h,φ) = 0 ∀φ ∈ Ṽ h(Γ ).

(4)

Any vector w corresponding to the function w ∈ W̃ h(Ω) (note that we are using
the same symbol for the function and its vector representation) can be decomposed
as follows,

w = (w(i),w(c),w(r)),

where w(i) is the vector with dofs associated with the CR nodes of the subdomain
interior, w(c) is the vector with dofs associated with the CR nodes of V CR, and w(r)

is the vector with dofs associated with the remaining dofs.
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Analogously, let W ⊂ W̃ h(Ω) be the space corresponding to the vectors with
the dofs associated with Γ , then we can decompose any vector w of w ∈ W as
w = (w(c),w(r)).

Now let Wr = {w(r) : w ∈ W̃ h(Ω)}, in other words, Wr is the space of functions
representing the dofs associated with the CR nodes on Γ , not belonging to the set
V CR.

Note that w(r) ∈ Wr has two degrees of freedom associated with each midpoint
on Γ \V CR, for instance, if m ∈ Γ CR

kl,h then its associated two degrees of freedom are
wk(m) and wl(m).

We introduce A as a block diagonal matrix with local stiffness matrices as
the blocks, i.e., A := diag(Ak)N

k=1 with Ak being the stiffness matrix generated by
ak,h(·, ·) in the standard nodal basis of W h(Ωk).

Let B = diag(B(kl))Γkl be a block diagonal matrix with B(kl) related to the edge
Γkl ⊂ Γ (for k > l) containing only zeros, ones and minus ones as matrix entries,
and w∗

h is the vector representation of the function w∗
h ∈ W (denoted by the same

symbol).
We note that each block A j associated with an inner subdomain Ω j (subdomain

not having an edge on ∂Ω ), is singular and therefore cannot be inverted. As part of
our FETI-DP algorithm, we enforce continuity at the CR nodes close to the cross-
points, i.e., at the CR nodes of V CR, thereby remove the problem of noninvertibility.

We introduce the Schur complement matrix, S, of A, with respect to the unknowns
associated with Γ , which is obtained after eliminating the unknowns associated with
the subdomain interior. We note that S is a block diagonal matrix.

3 FETI-DP problem

Let Ã be the matrix obtained from block diagonal matrix A by taking into account
the continuity of the degrees of freedom at V CR. Let Ã be partitioned into

Ã =

 Aii Aic Air
Aci Acc Acr
Ari Arc Arr

 ,

where the subscript i and superscript (i) refer to the dofs associated with CR nodes
in the subdomain interior, the subscript c and superscript (c) to the dofs associated
with the crosspoints, and the subscript r and superscript (r) to the dofs associated
with the remaining CR nodes.

The matrix formulation of (4) takes the following form,
Aii Aic Air 0
Aci Acc Acr 0
Ari Arc Arr (B(r))T

0 0 B(r) 0




u(i)

u(c)

u(r)

λ ∗

 =


fi
fc
fr
0

 , (5)
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where B(r) is the submatrix of B, associated with the CR nodes that are on Γ but not
in V CR.

Eliminating the unknowns corresponding to the subdomain interior CR nodes
and the crosspoints, i.e., u(i) and u(c), in (5) we arrive at

S̃u(r) +(B(r))T λ ∗ = f̃r,

B(r)u(r) = 0,
(6)

where S̃ = Arr −
(

Ari Arc
)(

Aii Aic
Aci Acc

)−1 (
Air
Acr

)
.

Further eliminating u(r), we obtain the following FETI-DP problem: find λ ∗ ∈ M
such that

F(λ ∗) = d, (7)

where d := −B(r)S̃−1 f̃r and F := B(r)S̃−1(B(r))T .

4 Parallel preconditioner

The general idea of our Neumann-Dirichlet preconditioner for the FETI-DP system
comes from [14], where the case of nonmatching grids and standard continuous P1
finite element were considered.

We start by further decomposing the vector w(r) into its two component vectors,
i.e.,

w(r) =
(

w(r)
Γ ,w(r)

∆

)T
,

where w(r)
Γ = (w(r)

kl,Γ )Γkl with

w(r)
kl,Γ (m) =


w(r)

k (m) i f ρk > ρl

w(r)
k (m) i f ρk = ρl , k > l,

w(r)
l (m) otherwise

m ∈ Γ CR
kl,h

i.e., w(r)
kl,Γ is the vector with those entries of w(r) which are related to Γkl and to the

subdomain Ωs with the larger coefficient ρs, s = k, l. In case of equality we pick
the ones related to Ωk with k > l. The vector w(r)

∆ corresponds to the remaining

dofs of w(r). Correspondingly, we introduce W∆ = {w(r)
∆ : w(r) ∈ Wr}, which is a

subspace of Wr, consisting of functions which are defined by the values at the CR
nodes on the interface Γkl belonging to the subdomain Ωs, s = k, l, with the smaller
coefficient. We note that dim Ṽ h(Γ ) = dim W∆ , which equals the number of CR
nodes on Γ \V CR.

Let S∆ be the matrix obtained by restricting the block diagonal Schur comple-
ment matrix S : W →W to W∆ . Note that this matrix can be represented as a block
diagonal matrix with nonsingular diagonal blocks Sk,∆ , i.e.
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S∆ := diag(Sk,∆ )k,

where the subscript k runs over the subdomains Ωk such that Sk,∆ correspond to the
CR nodes of ∂ΩCR

k and these CR nodes which are dofs of w ∈W∆ .
We define the nonsingular block diagonal matrix B∆ : W∆ →W∆ , as

B∆ := diag(B(r)
∆ ,Γkl

)Γkl⊂Γ ,

where B(r)
∆ ,Γkl

is a diagonal block of the matrix B(r), corresponding to Γkl and these
CR nodes which are dofs of w ∈W∆ . Note that these blocks are nonsingular.

The parallel preconditioner is then as follows,

M−1
DN := B−T

∆ S∆ B−1
∆ ,

which is nonsingular, and its inverse is MDN := B∆ S−1
∆ BT

∆ .

5 Condition number bounds

The main result of this paper is the following theorem which yields a bound for the
condition number of the preconditioned system.

Theorem 1 (Condition number estimate). It holds that

〈MDNλ ,λ 〉 ≤ 〈Fλ ,λ 〉 ≤C
(

1+ log
(

H
h

))2

〈MDNλ ,λ 〉 ∀λ ∈ M,

where H = maxk diam(Ωk) and C is a positive constant independent of the coeffi-
cients, and the mesh size parameters H and h. Here 〈·, ·〉 is the standard l2 inner
product.

As a direct consequence of this theorem, we see that the condition number of the
preconditioned matrix M−1

DN F is bounded by C
(
1+ log

(H
h

))2
.

The lower bound in the theorem is obtained by a purely algebraic argument,
while we get the upper bound by using several technical results of which the most
important one is the estimate of special trace norms of jumps of tangential and
normal traces over the interface Γkl ⊂ Γ .
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