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Summary. Effective implementation of some efficient FETI methods assumes application of
a direct method for solving a system of linear equations with a symmetric positive semidefinite
matrix A. The latter usually comprises a triangular decomposition of a nonsingular diagonal
block AJJ of the stiffness matrix A of a subdomain and an effective evaluation of the action
of a generalized inverse of the corresponding Schur complement. The other posibility consists
in a regularization of A resulting in a non-singular matrix Aρ whose (standard) inverse is the
generalized inverse to A. It avoids the necessity to identify zero pivots with negligible fill-in.
We review both these techniques.

1 Introduction

Due to the rounding errors, effective elimination of the displacements of “floating”
subdomains is a nontrivial ingredient of implementation of FETI methods, as it can
be difficult to recognize the positions of zero pivots when the nonsingular diagonal
block of A is ill-conditioned. Moreover, even if the zero pivots are recognized prop-
erly, it turns out that the ill-conditioning of the nonsingular submatrix defined by the
nonzero pivots can have a devastating effect on the precision of the solution.

Most of the results are related to the first problem, i.e., to identify reliably the
zero pivots. Thus [6] proposed to combine the Cholesky decomposition with the
singular value decomposition (SVD) of the related Schur complement S in order
to guarantee a proper rank of the generalized inverse. A natural modification of their
method is to carry out the Cholesky decomposition as long as sufficiently large pivots
are generated, and then to switch to SVD of S. The dimension of S is typically small,
not greater than four for 2D problems or 3m+3 for 3D problems of linear elasticity,
where m is the number of the last nodes that can be placed on a line.

Here we review our results [2, 5] related to the solution of SPS systems arising
in FETI methods. In particular in the Total FETI, a variant [4] of the FETI domain
decomposition method that implements both prescribed displacements and interface
conditions by the Lagrange multipliers, so that the kernels of the stiffness matrices of
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the subdomains, i.e., their rigid body motions, are known a priori. We show, using a
suitable (left) generalized inverse, how to reduce the solution of local SPS systems to
the decomposition of an a priori defined well-conditioned positive definite diagonal
block AJJ of A and application of a suitable generalized inverse of its Schur com-
plement S. Since the Schur complement S in our approach is typically very small,
the generalized inverse can be effectively evaluated by the SVD. If the rank of A or
a lower bound on the nonzero eigenvalues of A are known, as happens in the im-
plementation of TFETI, then the SVD can be implemented without any “epsilon”.
Moreover, if the kernel of A is known, then the SVD decomposition can be replaced
by effective regularization. Alternatively, we show ([5]) that the kernel can be used
to identify a reasonably conditioned nonsingular submatrix of A of the maximal or-
der, so that S = O. Our method can be considered as a variant of the regularization
method or the LU–SVD method of [6] with a priori choice of the well-conditioned
nonsingular part of A based on a combination of mechanical and combinatorial ar-
guments. Related methods which use an information from the kernel to determine
the positions of zero pivots were also proposed by [11, 1].

We review also results of [9], where we proposed a regularization technique en-
abling us to define a non-singular matrix Aρ whose inverse is the generalized inverse
to A. It avoids the necessity to identify zero pivots. The favorable feature of our reg-
ularization is that an extra fill-in effect in the pattern of the matrix may be negligible.

2 Cholesky decomposition and fixing nodes

We assume that A is an SPS stiffness matrix of a “floating” 2D or 3D elastic body,
such as a subdomain in the TFETI method. If we choose M of the total N mesh nodes
that are neither near each other nor placed near any line, M < N, M ≥ 2 in 2D, and
M ≥ 3 in 3D, then the submatrix AJJ of the stiffness matrix A defined by the set J
with the indices of the displacements of the other nodes is “reasonably” nonsingular.
This is not surprising, as AJJ can be considered as the stiffness matrix of the body
that is fixed in the chosen nodes. It is natural to assume that if fixing of the chosen
nodes makes the body stiff, then AJJ is well-conditioned. We call the M chosen nodes
fixing nodes and denote by I the set of indices of corresponding displacements. In
this section, we show how to combine this observation with the regularization of the
Schur complement ([12]) or with the LU–SVD method proposed by [6].

Our starting point is the following decomposition of the SPS matrix A ∈ Rn×n

Ã = PAPT =

[
ÃJJ ÃJI

ÃIJ ÃII

]
=

[
LJJ O
LIJ I

][
LT

JJ LT
IJ

O S

]
, (1)

where LJJ ∈ Rr×r is a lower factor of the Cholesky decomposition of ÃJJ , LIJ ∈
Rs×r, r = n− s, s = 2M in 2D, s = 3M in 3D, LIJ = ÃIJL−T

JJ , P is a permutation
matrix, and S ∈ Rs×s is the Schur complement matrix defined by

S = ÃII− ÃIJÃ−1
JJ ÃJI .
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To find P, we proceed in two steps. First we form a permutation matrix P1 to
decompose A into blocks

P1APT
1 =

[
AJJ AJI

AIJ AII

]
, (2)

where the submatrix AJJ is nonsingular and AII corresponds to the degrees of free-
dom of the M fixing nodes. Then we apply a suitable reordering algorithm on P1APT

1
to get a permutation matrix P2 which leaves the part AII without changes and enables
the sparse Cholesky decomposition of AJJ . Further, we decompose PAPT as shown
in (1) with P = P2P1. To preserve sparsity we use any sparse reordering algorithm
such as symmetric approximate minimum degree, symmetric reverse Cuthill-McKee,
profile and wavefront reduction etc. The choice depends on the way in which the
sparse matrix is stored and on the problem geometry. It is easy to verify that

A+ = PT

[
L−T

JJ −L−T
JJ LT

IJS+

O S+

][
L−1

JJ O
−LIJL−1

JJ I

]
P, (3)

where S+ ∈ Rs×s denotes a left generalized inverse which satisfies

S = SS+S.

Since s is small, we can substitute for S+ the Moore–Penrose generalized inverse
S† ∈ Rs×s computed by the SVD. To see that S† can be evaluated effectively, first
observe that the eigenvectors of S that correspond to the zero eigenvalues are the
traces of the vectors from the kernel of A on the fixing nodes. Indeed, if Ãe = o, then

ÃJJeJ + ÃJIeI = o, ÃIJeJ + ÃIIeI = o,

and

SeI = (ÃII− ÃIJÃ−1
JJ ÃJI)eI = ÃIIeI− ÃIJÃ−1

JJ (−ÃJJeJ) = o. (4)

Thus if we know the defect d of A, which is the case in the problems arising from ap-
plication of the TFETI method, we can replace d smallest nonzero eigenvalues of S
by zeros to get the best approximation of S with the correct rank s−d. Alternatively,
we can identify the zero eigenvalues correctly if we know a lower bound c on the
smallest nonzero eigenvalues of A. Due to the Schur complement eigenvalue inter-
lacing property proved by [13], it follows that the nonzero eigenvalues of S are also
greater or equal to c, so we can replace the computed eigenvalues of S that do not
exceed c by zeros to get an approximation of S that complies with our information
on A. If neither is the case, it seems that the best we can do is to choose some small
ε and to replace the eigenvalues that are smaller than ε by zeros (see, e.g., [6, 11]).

It follows from (4) that the kernel of S is spanned by the trace of a basis of the
kernel of A on the fixing nodes. Assume that the kernel of A is known, i.e., we know
R ∈ Rn×d whose columns span the kernel of A. Assembling RI∗ by Ith rows of R,
we define the orthogonal projector onto the kernel of S by
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Q = RI∗
(
RT

I∗RI∗
)−1 RT

I∗

and we replace S+ in (3) by

S∗ = (S+ρQ)−1 = S† +ρ
−1Q, ρ > 0.

We use ρ ≈ ‖A‖. To see that S∗ is a left generalized inverse, notice that

SS∗S = S(S+ρQ)−1 S = S
(
S† +ρ

−1Q
)

S = SS†S+ρ
−1SQS = S.

Such approach can be considered as a variant of regularization by [12]. In the next
section, we show how to carry out the regularization directly on A.

3 Regularization

This section deals with generalized inverses, for which the necessity to recognize
zero pivots is avoided. We regularize A ∈ Rn×n using the known matrix R ∈ Rn×d

whose columns span the kernel of A. Although our regularization is general, i.e., it
works for rectangular matrices (see [9]), we confine ourself to the SPS matrix A.

Let us introduce the matrix M∈Rn×d so that M>R is nonsingular. Let us assem-
ble to A the regularized matrix Aρ as follows:

Aρ = A+ρMM>, (5)

where ρ > 0 is fixed. The following results are proved in [9].

Theorem 1. The matrix Aρ is symmetric, positive definite (and non-singular) and its
inverse A−1

ρ is the generalized inverse to A.

Remark 1. If M = R, we can get the Moore-Penrose inverse A† to A by

A† = A−1
ρ PImA, (6)

where PImA = I−R(R>R)−1R is the orthogonal projector on the image of A.

Remark 2. If A+ is an arbitrary generalized inverse to A, then the Moore-Penrose
inverse A† is given by

A† = PImAA+PImA (7)

where PImA is the same as in Remark 1.

Using (7), one can prove that FETI type algorithms are invariant to the choice of
generalized inverses in the sense that each generalized inverse is internally adapted
to the Moore-Penrose one [9]. On the other hand, the Moore-Penrose inverse may
be directly used in computations via the formulas (6) and (7). Although it should not
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affect the behavior of the FETI algorithm, it may stabilize computations for numeri-
cally unstable problems; see [10] for the experimental example.

Let us return to computational aspects of the regularization (5). To construct the
regularization term, we use again fixing nodes, in which we fix only some DOFs to
keep the sparsity pattern of A in Aρ as small as possible (see Fig. 1). Let us denote
the set of indices of the fixing DOFs by I and the set of remaining indices by J. We
assemble M as follows:

M = M̃T, M̃i,: =

〈
Ri,:, i ∈ I,
0, i ∈ J, , i = 1, . . . ,k, (8)

where Ri,: denotes the ith row of R and T is a nonsingular matrix which orthonor-
malizes columns of M̃ to protect the condition number of Aρ . Obviously, T can be
efficiently computed as the upper triangular factor of the Cholesky decomposition of
M̃>M̃. Finally, ρ is chosen as the maximum diagonal entry of A that lays between
the minimum and maximum nonzero eigenvalues of A.

The factorization Aρ = LL> can be computed by the Cholesky algorithm for
nonsingular matrices. The inverse A−1

ρ (and the generalized inverse) is given by
A−1

ρ = L−>L−1. The computational complexity for band matrices is analyzed in [9].
For the sparse matrices we use a sparse Cholesky factorization in the form Aρ =

PLL>P>, where P is the permutation matrix minimizing fill-in using a suitable re-
ordering algorithm. The action of A−1

ρ on a vector v is implemented as follows:
A−1

ρ v = P(L−>(L−1(P>v))), where the actions of L−> and L−1 are evaluated effi-
ciently using backward and forward substitutions, respectively.

4 Choice of fixing nodes

To get M uniformly distributed fixing nodes we combine a mesh partitioning algo-
rithm with a method for finding mesh centers. The algorithm reads as follows.

ALGORITHM ([2]) Given a mesh and M > 0.

1. Split the mesh into M submeshes using the mesh partitioning algorithm.
2. Verify whether the resulting submeshes are connected. If not, a graph post-

processing may be used to get connected submeshes.
3. Take a node lying near the center of each submesh.

Step 1 can be carried out by a code for graph decompositions such as METIS,
while Step 3 can be efficiently performed using the so-called Perron vector (a unique
nonnegative eigenvector corresponding to the largest eigenvalue of the mesh adja-
cency matrix) whose maximal entry enables us to approximate the center of the sub-
mesh. For more details see [2].

The number of DOFs given by M fixing nodes may be larger than the dimension
of the kernel of A. It is useful for engineering problems with complicated geometry.
The usage of M instead of R in the regularization technique of Section 3 enables
us to analyse cases when the most rows of R are replaced by zeros in M. Then the
regularization term in Aρ influeces only few entries of A.
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5 Cholesky decomposition and the kernel of A

If the kernel of A is known, then we can use it to identify a submatrix AJJ of A of a
maximal order. Since the Schur complement of AJJ is the zero matrix, the solution
of a consistent system with A reduces to the Cholesky decomposition of AJJ . The
following estimate proved in [5] indicates that we can use information obtained from
the kernel of A to identify suitable zero pivots.

Proposition 1. Let A ∈Rn×n denote a symmetric matrix whose kernel is spanned by
the full column rank matrix R ∈ Rn×d with orthonormal columns, so that d is the
defect of A. Let I = {i1, . . . , id}, 1≤ i1 < i2 < · · ·< id ≤ n, denote a set of indices,
and let J = N − I, N = {1,2, . . . ,n}. Then

λmin(AJJ)≥ λ min(A)σ
4
min(RI∗), (9)

where λ min(A) and σmin(RI∗) denote the least nonzero eigenvalue of A and the least
singular value of RI∗.

This strategy chooses d fixing DOFs by the orthonormalization of R and apply-
ing the Gaussian elimination with complete pivoting to transform orthonormalized
matrix R into the column-wise echelon form. The position of the first nonzero entry
in each column gives the degree of freedom which will be fixed. For more details we
refer to [5].

6 Numerical examples

The performance of our strategies is tested on the stiffness matrix A of the elastic
three-dimensional cube made of steel and discretized by trilinear bricks with the
Neumann boundary conditions (see Fig. 1.(a)). To illustrate the effect of fixing nodes,

Fig. 1. (a) No strategy, (b) GP strategy, (c) Geometrical strategy, (d) Uniform strategy

we carried out the computations for different strategies of choosing fixing nodes
depicted in Fig. 1. Here Geometrical strategy is the simplest one and is based on
finding fixing nodes using simple geometrical and combinatorial arguments: choose
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M mesh nodes that are mutually as far apart as possible and that are not placed near
any line.

In Table 1, we report the regular condition number cond(A) (ratio of the largest
and the smallest nonzero eigenvalues), the condition number of the nonsingular part
AJJ decomposed by the Cholesky decomposition, and the regular condition number
cond(A+). The results of experiments agree with the intuitive rule that fixing nodes
distributed in a more regular pattern improves the conditioning of AJJ . In particular,
comparing variants (c) and (d), we can observe that placing the eight fixing nodes
inside the body can result in more stable generalized inverse than placing them at the
corners. It follows that the matrices arising in the original FETI method or its TFETI
variant are typically better conditioned than those arising in the FETI–DP. Notice
that the worst conditioning of AJJ and A+ can be observed in variant (a) which is a
possible result of the default strategy used by Farhat and Géradin [6].

Table 1. Characteristics of A and A+ in dependence on the distribution of fixing nodes.

No strategy GP strategy Geometrical strategy Uniform strategy
cond(A) 4.91E+02 4.91E+02 4.91E+02 4.91E+02

cond(AJJ) 2.90E+07 3.52E+05 9.92E+03 1.90E+03
cond(A+) 2.55E+07 3.52E+05 1.32E+04 1.90E+03

Table 2 shows results of numerical tests based on the regularization. The rows iter
or iter† report iterations of the TFETI algorithm for the regularizations computed by
strategies (b)-(d) or by the Moore-Penrose inverse obtained from them using (7),
respectively. It confirms invariancy with respect to the choice of the generalized in-
verse. The condition numbers in the next two rows agree with the same heuristic
as in Table 1, i.e., the conditioning of A−1

ρ is improved when the fixing DOFs are
distributed in a more regular pattern. The CPU times in the fifth and sixth rows re-
quired for computing the Cholesky decomposition and the actions of the generalized
inverses, respectively, illustrate the computational invariancy that is due to the neg-
ligible fill-in. It is seen from the number of non-zero entries in the last row of the
table.
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[5] Zdeněk Dostál, Tomáš Kozubek, Alexandros Markopoulos, and Martin Menšík.
Cholesky decomposition of a positive semidefinite matrix with known kernel Appl.
Math. Comput., 217(13):6067–6077, 2011.

[6] Charbel Farhat and Michel Géradin. On the general solution by a direct method of a
large-scale singular system of linear equations: application to the analysis of floating
structures. Internat. J. Numer. Methods Engrg., 41(4):675–696, 1998.

[7] Gene H. Golub and Charles F. Van Loan. Matrix computations, volume 3 of Johns Hop-
kins Series in the Mathematical Sciences. Johns Hopkins University Press, Baltimore,
MD, second edition, 1989.

[8] T. Kozubek, A. Markopoulos, T. Brzobohatý, R. Kučera, V. Vondrák, and Z. Dostál.
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