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1 Introduction

The main task of image registration is to determine an optimal spatial transformation
such that two (or more) images become, in a certain sense, similar. Therefore, it
plays a crucial role in image processing if there is a need to integrate information
from two (or more) source images. These images usually show the same scene, but
taken at different times, from different viewpoints or by different sensors.

Image registration is used in various areas. In medical applications it serves to
obtain more complete information about the patient (e.g., to monitor a progression
or regression of a disease, to align pre- and post- contrast images, or to compare
patient’s data with anatomical atlases), to compensate a motion of a subject during
medical scanning, to correct calibration differences across scanners etc. [10, 12].
For more examples of usage of medical image registration see [8].

The first attempts at medical image registration focused mainly on the process-
ing of brain images. Hence, a rigid body approximation was sufficient, because of a
relatively small possibilities for deformation inside the skull. Later, it was extended
to the affine registration. However, rigid or even affine approximations are usually
not sufficient for a registration of a human body. Therefore, the research in medical
image processing is now focused on the development of non-rigid registration meth-
ods. One of them is the elastic registration introduced by Broit [1]. In this method,
images are considered to be 2D elastic bodies. Volume forces defined from ‘differ-
ences’ of the two images then deform one image so that it becomes similar to the
other. The disadvantage of this linear model is that it assumes small deformations.
For large deformations it can be replaced by the viscous fluid model [2].

With the increasing amount of data provided by medical instruments like CT or
MRI, a parallel implementation of image registration seems to be necessary. In this
work we combine the method of elastic registration together with the Total-FETI
method [3] to obtain scalable algorithm for registration of medical images.
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2 Elastic registration

Image registration usually consists of three parts: choosing an appropriate transfor-
mation model, choosing a distance (similarity) measure, and optimization process.
Let us use the notation from [10] and briefly describe the process.

In order to find a transformation of the template image T , such that after its
application it becomes, in a certain sense, similar to the reference image R, we define
a suitable distance measure D and minimize the distance between R and T with
respect to searched transformation ϕ:

min
ϕ:R2→R2

D [R,T ;ϕ] , (1)

where D [R,T ;ϕ] := D
[
R,Tϕ

]
.

However, this approach has its drawbacks: a solution is not necessarily unique
and it actually may not exist. Thus, the problem (1) is ill-posed. Moreover, addi-
tional implicit constraints can emerge, e.g., in medical images no additional cracks
or folding of the tissue are allowed (the transformation should be diffeomorphic).
Both these situations can be solved by adding a regularizer [10].

Transformation model of elastic registration is based on a physical motivation
that the images are two different observations of an elastic body, one before and one
after a deformation. The transformation ϕ : R2 → R2 is split into the identity part
and the displacement u : R2→ R2:

ϕ(x) := x−u(x). (2)

As the regularizer we use the linearized elastic potential

P [u] :=
∫

Ω

µ

4

2

∑
j=1

2

∑
k=1

(
∂x j uk +∂xk u j

)2
+

λ

2
(divu)2 dV, (3)

where λ and µ are the Lamé parameters. The regularizer has the meaning of volume
forces, which implicitly constrain the displacement to fulfill a smoothness criteria.
We obtain the following regularized problem which is more suitable for a numerical
realization:

J [u] = min
v:R2→R2

J [v] , where J [v] := D [R,T ;v]+αP [v] . (4)

Here, the parameter α ∈R+ controls the strength of the smoothness of the displace-
ment versus the similiarity of the images. In the case of the elastic registration it is
usually omitted, since it can be included in the Lamé parameters. Therefore, let us
assume α = 1 in what follows.

A distance measure is a cost function which determines a similarity of two im-
ages. We choose the so-called sum of squared differences (SSD):
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D [R,T ;u] :=
1
2
‖Tu−R‖2

L2(Ω), (5)

where Tu(x) := T (x−u(x)). The volume forces

f (x,u(x)) := (R(x)−Tu(x))∇Tu(x), (6)

f : R2→R2, derived from its Gâteaux derivative, push a transformed image into the
direction of a reference.

Images are represented by the compactly supported mappings R,T : Ω → R,
where Ω := (0,1)2. T (x) and R(x) denote the intensities of images at the spatial
position x; we set R(x) := 0 and T (x) := 0 for all x /∈Ω .

By applying the Gâteaux derivative to the elastic potential (3) we obtain the
Navier-Lamé operator of classical elasticity. The displacement of the elastic body
and therefore the transformation of the image T is then obtained as the solution of
the partial differential equation with zero Dirichlet boundary condition:{

µ∆u(x)+(λ +µ)∇divu(x) = − f (x,u(x)) in Ω ,

u(x) = 0 on ∂Ω .
(7)

There are several possibilities how to overcome the non-linearity of the previous
equation. In the simplest case, when the difference between the reference and the
template image is small enough, we set

f (x,u(x)) := f (x,0) = (R(x)−T (x))∇T (x), (8)

and obtain a linearized problem. Otherwise, we solve the problem iteratively using
the Algorithm 1. The similar algorithm is presented in [10], where the finite differ-

Algorithm 1 Fixed-point iteration for the solution of Equation (7)
T0(x) := T (x)
f0(x) := (R(x)−T0(x))∇T0(x)
for k = 1 to K do

solve (7) for uk with f (x,u(x)) := fk−1
Tk(x) := Tk−1(x−uk)
fk(x) := (R(x)−Tk(x))∇Tk(x)

end for

ence method is used for the solution of the linearized problem.
We discretize the linearized problem using a finite element method with piece-

wise affine basis functions on triangular elements. To approximate the gradient of
Tu, which is necessary for the evaluation of forces f , we use a convolution with an
appropriate kernel of the Sobel operator (see, e.g., [11]). The solution can be easily
parallelized by the Total-FETI method described in the following part.
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3 Parallelization using Total-FETI method

The numerical solution of the linearized version of the problem (7) can be effec-
tively parallelized by the Total-FETI (TFETI) method which is a variant of the FETI
method originally proposed by Farhat et. al. [6]. The method is based on the decom-
position of the spatial domain into non-overlapping subdomains. The continuity of
the solution among subdomains is enforced by Lagrange multipliers. Total-FETI
by Dostál et al. [3] simplifies the inversion of stiffness matrices of subdomains by
using Lagrange multipliers also to enforce the Dirichlet boundary condition. Using
this approach, all subdomains are floating and their stiffness matrices have the same
kernels formed by the vectors of the rigid body modes.

To apply the FETI based domain decomposition, we partition the rectangular
domain Ω , representing the processed image, into N geometrically identical rectan-
gular subdomains Ωs. We denote Ks, fs, us, and Bs the subdomain stiffness matrix,
the subdomain load vector, the subdomain displacement vector, and the subdomain
constraint matrix, respectively. Let us also denote Rs as the matrix with columns
forming the basis of the kernel of Ks. Notice, that because of this regular decompo-
sition, the matrices Ks, as well as Rs, are the same for all subdomains. Therefore,
they are computed only once and then redistributed among processors. Eventually,
they can be stored in a shared memory.

After the decomposition we obtain the quadratic minimization problem with
equality constraints

min
1
2

uT Ku−uT f s. t. Bu = c, (9)

where

K :=

K1
. . .

KN

 , f :=

 f1
...
fN

 , u :=

 u1
...

uN

 , B := [B1, . . . ,BN ] . (10)

Applying the duality theory to the equivalent saddle-point problem and establish-
ing the notation

F := BK†BT , G := RT BT , d := BK† f , e := RT f ,

where K† denotes a generalised inverse matrix satisfying KK†K = K (see, e.g., [4]),
and R denotes the block-diagonal matrix with blocks Rs, we obtain the following
minimization problem:

min
1
2

λ
T Fλ −λ

T d s.t. Gλ = e. (11)

We can further homogenize the equality constraints Gλ = e to Gµ = 0 by decom-
posing λ into µ ∈ KerG and λ̃ ∈ ImGT as
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λ := µ + λ̃ . (12)

We get λ̃ easily by λ̃ = GT (GGT )−1e. To enforce the condition Gµ = 0 we intro-
duce the projector P := I−Q to the null space of G. Here Q := GT (GGT )−1G is
the projector onto the image space of GT . The final problem for µ reads (note that
Pµ = µ):

PFµ = P(d−F λ̃ ). (13)

This problem can be effectively solved by the conjugate gradient method.
One of the advantages of the approach based on the Lagrange multipliers is the

possibility to include other constraints to the matrix B than ‘gluing’ and Dirichlet
conditions. One possibility is to use it to enforce the rigidity of certain parts of
the processed image. These rigid parts can represent, e.g., bones. As mentioned in
Section 2, the new coordinates ϕ(x) of any point x after transformation are

ϕ(x) := x−u(x). (14)

Using rigid body motions with a linearized rotation, this transformation can also be
described by

x−u(x) = Rxa, (15)

where

Rx :=
[
−x2 1 0

x1 0 1

]
, (16)

and a is the vector of motion parameters (shifts and rotation). Conditions necessary
to enforce a rigidity of a motion of two point x̃, ỹ can be derived from the following
system of equations {

x̃−u(x̃) = Rx̃a,

ỹ−u(ỹ) = Rỹa.
(17)

We eliminate a and obtain

−ou1(x̃)− pu2(x̃)+ou1(ỹ)+ pu2(ỹ) = p2 +o2, (18)

where p := ỹ2− x̃2, o := ỹ1− x̃1, and u(x) := (u1(x),u2(x)). These conditions are
added to appropriate positions in the matrix B. To reduce the number of additional
constraints, one can enforce the rigidity only on the boundaries of given areas.

4 Data parallelization and implementation using Trilinos
framework

Parallelization of FETI/TFETI can be implemented using SPMD technique – dis-
tributing matrix portions among the processing units. The distribution of primal data
is straightforward because of the block-diagonal structure of the system stiffness
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Fig. 1 Total-FETI domain decomposition of the 2D rectangular area. Dirichlet boundary condi-
tions are enforced by Lagrange multipliers.

matrix. Each processor is assigned one rectangular part of the images R and T , and
the corresponding primal data – one block of the global stiffness matrix K, one block
of the kernel matrix R, and corresponding parts of the constraint matrix B, solution
vector u, and right-hand side vector f . On the other hand, if we want to accelerate
also the dual actions we have to distribute the dual objects as well. We distribute
the matrix G into vertical blocks. All dual vectors are distributed accordingly to this
(for more details see [9]).

For the parallel implementation we use the Trilinos framework [7] which is a
collection of relatively independent packages developed by Sandia National Lab-
oratories. It provides a tool kit for basic linear algebra operations (both serial and
parallel), direct and iterative solvers to linear systems, PDE discretization utilities,
etc. Its main advantages are object oriented design, high modularity and use of mod-
ern features of C++ language such as templating. It is currently in version 11.

In our codes we use the Epetra package as a base for linear algebra operations.
It provides users with distributed dense vectors and matrices, as well as sparse ma-
trices in compressed row format (Epetra_CrsMatrix), linear operators, dis-
tributed graphs, etc. As the object-oriented wrapper to direct linear system solver
SuperLU, which is used for the solution of the coarse problem (application of
(GGT )−1) and the application of the pseudoinverse K†, we use the Amesos package.

5 Numerical experiments

The numerical experiments were performed on the cluster consisting of 16 SMP
nodes, each of the nodes is equipped with two Intel Xeon QuadCore 2.5 GHz CPUs
and 18 GB of RAM. Table 1 shows the results of the scalability tests for the data
obtained from Department of Oncology of University Hospital of Ostrava. We per-
fomed two experiments – one with no additional constraints, and the second on the
same data but with a rigidity of the bones enforced by additional Lagrange multipli-
ers. The processed data are depicted in Figure 2.
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The problem is linearized using the approach (8). For the first experiment, the
number of CG iterations is relatively low. For these numbers of dual variables the
coarse problem (which is usually the main bottleneck of the FETI methods) is not
big enough to affect the scalability and the increasing time per iteration is caused
mainly by the communication and vector redistribution routines within the Trilinos
framework. The second experiment shows that the additional constraints lead to the
increase of the number of CG iterations. To reduce this number we can use the cheap
lumped preconditioner F−1 = BKBT (see [5]).

Table 1 Performance of the TFETI implementation for varying decomposition and discretization

Number of subdom. 1 4 16
Primal dimension 20,402 81,608 326,432
Dual dimension 808 2,424 8,080
CG time [s] 0.50 1.53 4.35
CG iterations 25 39 47
Time per iteration [s] 0.02 0.04 0.09
Example 1: Without rigid body parts

Number of subdom. 1 4 16
Primal dimension 20,402 81,608 326,432
Dual dimension 903 2,641 8,254
CG time [s] 41.01 34.54 57.44
CG iterations 2467 990 665
Time per iteration [s] 0.01 0.03 0.08
Example 2: With rigid body parts

(a) Image R (b) Image T (c) Image Tϕ

(d) Difference between R and T (e) Difference between R and
Tϕ

(f) Boundaries of rigid parts
(bones)

Fig. 2 Processed data - computer tomography of patient’s chest. We search for a transformation
ϕ of the image T (in exhalation) so it becomes similar to the image R (in inflation). For this
experiment, we set µ = 5×105 and λ = 0.
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6 Conclusion

We have demonstrated the applicability of the Total-FETI method to a paralleliza-
tion of a process of image registration. Our implementation was tested on 2D com-
puter tomography data obtained from University Hospital of Ostrava. Because of
relatively low resolution of the images the total number of unknowns in the result-
ing systems did not exceed hundreds of thousands. However, these results enable us
to focus on the development of domain decomposition-based methods for the im-
age registration of 3D data, where the number of unknowns can easily reach tens or
hundreds of millions.
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