
The parareal in time algorithm applied to the
kinetic neutron diffusion equation

A.-M. Baudron1,3, J.-J. Lautard1,3, Y. Maday2,3,4,5, and O. Mula1,2,3

Key words: parareal, neutron, diffusion

Introduction

In the framework of nuclear core calculations, the development of efficient tools to
run neutron kinetic computations is a field of current activeresearch. While such
calculations are crucial for security assessment and the study of new reactor con-
cepts, they present several mathematical and computational issues that still need to
be overcome.

The exact model (kinetic transport equation) is indeed far too expensive to be
simulated for these purposes and different simplifications(multi group diffusion ap-
proximation) have led to more tractable numerical simulations. Nevertheless, on real
geometries and despite the use of domain decomposition enabling accelerations of
the simulations thanks to parallel architectures [7], there is still need for improve-
ments for applications on regular basis.

In this context, the purpose of this work is to investigate the implementation of
the parareal in time algorithm [9] within an industrial solver called MINOS devel-
oped at C.E.A. (cf. [4]) following the preliminary analysis[5].

The paper is organized as follows: after the presentation ofthe neutron diffusion
equation in Section 1, the main aspects of the parareal method will be recalled in
Section 2. In particular, we will explain the distributed algorithm that has been used
in our case from the point of view of the expected speed-up. The performances of
the parareal in time algorithm in a numerical application are summarized in section
3 which is followed in Section 4 by a discussion about the convergence behavior
observed in our example.
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1 Model

The evolution of the fluxψ of neutrons in a reactor coreR is governed by a kinetic
transport PDE whose theoretical properties (existence, uniqueness, positiveness of
the solution) have been investigated in e.g. [6] (chapter XXI, section 2, theorem 3).
Given the fact thatψ depends on 7 variables, namely the timet, the position within
the reactor denoted as−→r , the velocity of the neutrons−→v =

√

2E/m
−→Ω whereE

stands for the energy of the neutron,
−→Ω stands for the direction of the velocity and

m is the mass of the neutron, it has been proposed in e.g. [6] (chapter XXI, section
5), to simplify the model by first considering the average fluxover the angular vari-

ables as the unknown:φ(t,−→r ,E) = 1
4π

∫

S2
ψ(t,−→r ,

−→
Ω ′,E)d

−→
Ω ′. This approach leads

to results that are accurate enough in most of the usual casesbut the computing time
still remains unacceptably long.

Another simplification consists in averaging also in the energy variable. This fur-
ther approximation, known as the multi-group theory [10], is based on the division
of the energy interval intoG subintervals ([Emin,Emax] = [EG,EG−1]∪ . . .∪ [E1,E0])
and leads to consider the setΦ = {φg}g∈{1,G} as the new unknown solution. In
order to take into account the presence of radioactive isotopes (also called precur-
sors) that are important since they emit neutrons with a given delay, the model is
complemented with a set of first order ODE’s expressing theirdecays denoted as
C = {C`}`∈{1,L}. Since their half-lives have values that vary in a wide range, the
resulting system is very stiff and small time steps are required for an accurate ap-
proximation in long time intervals.

The set(Φ,C) is the solution of the following set of multi-group diffusion equa-
tions:

(∗)
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+σg
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G
∑

g′=1
S gg′φg′ + χg

p

G
∑

g′=1
F g′φg′ +

L
∑
`=1

χg
` λ`C`

over[0,T ]×R,∀g ∈ {1,G},
∂C`
∂ t =−λ`C`+

G
∑

g′=1
F

g′
` φg′ over[0,T ]×R,∀`∈ {1,L},

φg = 0, on [0,T ]× ∂R

φg(0, .) = φg
0 (.); C`(0, .) =C`,0(.) onR

wherevg is the neutron velocity,Dg the diffusion coefficient andσg
t the total cross-

section in energy groupg. χg
p is the prompt spectrum in energy groupg, χg

` the
delayed spectrum of precursor` in energy groupg andλ` is the decay constant of
precursor̀ . F g andF

g
` denote the prompt and delayed fission operators respec-

tively. S gg′ is the neutron scattering operator from energyg to g′ and makes the
flux equations be coupled with respect to the energy variable.
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2 The parareal algorithm

The unsteady problem(∗) can be written in a more compact form:

∂y
∂ t

+A (t;y) = 0 , t ∈ [τ0,τ1]; (1)

it is complemented with initial conditions at timet = τ0 : y(τ0) = y0. The parareal
in time algorithm applied to (1) is an iterative technique where, at each iteration a
predictor corrector propagation is proposed based on two propagators : a fine one
F

τ1
τ0 (y0) that computes an approximation of the solution of (1) at timeτ1 accurately

but slowly, and a coarse oneG τ1
τ0 (y0) that computes an other approximation quickly

but not so accurately (and not accurately enough). In addition to these two propa-
gatorsF andG , the parareal in time algorithm is based on the division of the full
interval[0,T ] into N sub-intervals[0,T ] =

⋃N−1
n=0 [Tn,Tn+1] that will each be assigned

to a processorPn, assuming that we have N processors at our disposal.
The valuey(Tn) is approximated byY k

n ask increases with an accuracy that tends
to the one achieved by the fine solver (see [9], [2], [3] for further details). It is
obtained by the recurrence relation:

Y k+1
n+1 = G

Tn+1
Tn

(Y k+1
n )+F

Tn+1
Tn

(Y k
n )−G

Tn+1
Tn

(Y k
n ), n = 1, ...,N (2)

starting fromY 0
n+1 = G

Tn+1
Tn

(Y 0
n ) In this work, the recently described distributed al-

gorithm (summarized in [1]) has been used for the practical implementation of
parareal. It represents an improvement of parareal from thealgorithmic point of
vue.

The first method of implementation was indeed suggested in [9] and consisted
on a master-slave algorithm where the master carried out thecoarse propagation in
the whole time interval (each slave being in charge of the finepropagations over
its assigned time slice and sendingF

Tn+1
Tn

(Y k
n ) to the master so that the master com-

puted the parareal corrections (2)∀n). This original algorithm gives rise to two main
computing drawbacks: the coarse propagation by the master is a bottleneck in the
computation and the memory requirement in the master processor scales linearly
with the number of slaves. The distributed algorithm improves both aspects and can
easily be implemented via the MPI library: for each processor Pn the fine and the
coarse solvers are propagated over[Tn,Tn+1] and the parareal correctionY k+1

n+1 is car-
ried out. The process is repeated until convergence, i.e.‖Y k+1

n −Y k
n ‖< η , ∀n, where

η is a given tolerance.
It is easy to realize that this kind of implementation does not change the number

of iterations in order the parareal algorithm to converge but it provides better speed-
ups than the original master-slave version. This is the reason why the distributed
algorithm has been implemented in this study. Indeed, if we do not take into ac-
count the communication time between processors, the theoretical speed-ups of the
distributed and master-slave algorithms are respectively(see [1]):
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Sdistrib =
N

Nr+ k∗(1+ r)
; SMS =

N
Nr(1+ k∗)+ k∗

(3)

wherer is the ratio between the two solution times of the two propagatorsG andF

andk∗ is the number of parareal iterations needed in order to converge.

3 Numerical simulation

3.1 Definition of the test case:

The parareal algorithm has been implemented with an implicit discretization in time.
Note that here we have used the same physical model (diffusion) for both the coarse
and the fine solvers (the only difference is the size of the time steps used to solve
equation(∗) δ t for F and∆ t = Tn+1−Tn for G ). At each time step, a Gauss-Seidel
iteration is used on the energy groups and the spatial discretization is done with
RT-1 finite elements (see [4]).

The geometry and history that have been chosen for the simulation is the so
called TWIGL benchmark that represents a rod withdrawal (see [8]). The geometry
of the core is three-dimensional. A cross-sectional view ofit is specified inFIGURE

1 where only a quarter of it has been represented (the rest canbe inferred by symme-
try). The first group of rods (yellow) is withdrawn fromt = 0 (z = 100cm measured
starting from below) untilt = 26.6 s. (z = 180cm) at a constant velocity. The sec-
ond group of rods (brawn) is inserted fromt = 7.5 s. (z = 180cm) until t = 47.7 s.
(z = 60 cm) and the simulated interval of time is[0,T ] with T = 66.6 s.

Computations have been carried out withG = 2 energy groups,L = 6 precursors.
The coefficients of(∗) remain constant in time and only the geometry varies. The
fine solver has a fixed time step ofδ t = 1/6 s.

The scaling has been evaluated with a convergence test associated in which the
toleranceη has been fixed to the precision of the numerical scheme (i. e.η ∼ 10−3).
With this threshold, convergence has been achieved after only k∗ = 2, 3 or at most
4 iterations of the parareal in time algorithm.
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Fig. 1 Cross-sectional view of a quarter of the core in the TWIGL benchmark
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3.2 Strong scaling results:

For the strong scaling analysis, the same problem has been solved on an increasing
numberN of processors. The size of each interval, equal to the time step of the
coarse solver, has been reduced from∆ t = 50δ t to ∆ t = 5δ t in order to increase the
number of processors. Therefore, asN varies, the ratior and the number of parareal
iterationsk∗ change. With the computedk∗ and usingδ t/∆ t as an approximation of
r, one can infer from formula 3 the optimal speed-up values that can be obtained in
our current case with the distributed algorithm (measured speed-ups are of course
lower due to the communication time that is not taken into account in formula 3).
The values are plotted in FIGURE 2, where the theoretical speed-ups of the master-
slave algorithm are also shown in order to compare both methods.
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Fig. 2 Optimal speed-ups obtained for the scaling tests (D=Distributed algorithm; MS= Master-
Slave algorithm; S-S= Strong Scaling; W-S= Weak Scaling)

As it can be observed, the distributed algorithm performs better for any number
N of processors. For a reduced number of processors, the speed-ups are similar
because both algorithms increase likeN/k∗ for N small enough. However, whenN
becomes significant in formulae 3, the distributed algorithm will behave likeN/r
and the master-slave method likeN/(r(1+ k∗)), making the distributed algorithm
become more perfomant on a wider range of values ofN. The performances reach a
plateau and even decrease whenN becomes very large (N > 20 in our case) because
the cost ofG becomes equivalent to the cost ofF (r tends to 1).

3.3 Weak scaling results

For this alternative evaluation of the scaling, the same geometry as before has been
used. We now consider the case in which the problem has a variable lengthT = N∆ t
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and the time step of the coarse solver∆ t is fixed (i.e. the size of the problem linearly
increases with the numberN of processors). For our computations, the fine and
coarse time steps are fixed toδ t = 1/6 s. and∆ t = 50δ t respectively.

The control rods are inserted and withdrawn periodically with a sequence of mo-
tion that creates fluctuations in the total power. With the computedk∗, the optimal
speed-ups for the distributed algorithm are plotted inFIGURE 2 and compared to
the master-slave model. The most important result here is that the distributed algo-
rithm can effectively speed-up long time calculations as itcan be observed. When
compared to the master-slave implementation for large values ofN, the distributed
algorithm has a clear advantage because the increase ofk∗ has not such a strong neg-
ative impact on it than on the master-slave implementation (as it can also be seen in
FIGURE 2).

4 About the convergence of parareal in the kinetic neutron
diffusion equation

The analysis of the convergence process can be done into two ways, either by look-
ing only at the history of the values at eachTn, 1≤ n ≤ N, or by looking at the error
at each fine discrete timem∆ t :

ek(tn +mδ t) f ine =
‖FTn+mδ t

Tn
(Φk

n)−F
Tn+mδ t
0 (Φ0)‖L2

‖Φ0‖L2
(4)

∀n = 1, ...N, ∀m = 0,1, ...∆ t
δ t , ∀k = 0, ...,N −1

FIGURE 3 illustrates the global convergence history according to formula 4. Above
the convergence threshold, we note a surprising behavior ofthe error over each
interval [Tn,Tn+1] that is, in most cases, neither linear nor constant despite that (∗)
is linear. The following analysis will explain that this is due to the presence of the
radioactive isotopes.

Under several hypothesis (see the point kinetics approximation in [10]), the ki-
netic behavior of system(∗) can be analysed through a set of first order ODE’s of
the form:

(5)















dΦ(t)
dt = αΦ(t)+

L
∑
`=1

λ`C`(t)

dC`(t)
dt = γ`Φ(t)−λ`C`(t),∀`= 1, . . . ,L

Φ(0) = Φ0, C`(0) =C`,0

where the coefficients are in the range−0.5≤ α ≤ −6.10−3, while for any`,1≤
`≤ L, 10−2 ≤ λ` ≤ 4 and 3.10−3 ≤ γ` ≤ 3,4.10−2

In order to understand the phenomenon in the simulation of(∗) represented in
FIGURE 3, let us consider the case whereL = 1 in (5). Due to linearity, the evolution
of the error (e f ine) between the parareal fine propagator and the sequential fineone
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Fig. 3 Example of convergence of the fine parareal solutionF
Tn+mδ t
Tn

(Φk
n ) (TWIGL benchmark,

N = 8 processors,∆t = 8.3 s.)

follows the same evolution asΦ in (5) over each interval[Tn,Tn+1] starting from
an initial errorδΦ over Φ andδC overC = C1. This system can be solved and
the solution is the sum of two exponential behaviorseµ−t andeµ+t whereµ± are

the two eigenvalues associated with the problem :µ± =
(α−λ )±

√
(λ+α)2+4λ γ
2 . In the

range of values where the physical parameters lie,λ +α is not small and we can

consider thatγ =
(λ+α)2

4λ (ε + ◦(ε)). In this case, the eigenvalues behave asµ± =
α−λ±|λ+α |

2 ± |λ+α |
4 ε+◦(ε) whereε is a small quantity, the errorδΦ(t) = δΦ0eαt +

λ
λ+α δC0

(

eαt − e−λ t
)

+ θ (δΦ0,δC0,α,λ )ε + ◦(ε), with θ gathering the terms at
orderε. At first order, and depending on the values ofα andλ , δΦ (and therefore
e f ine) will present an exponentially decreasing trend (e.g.α = −0.006,λ = 4) or
a brief increase followed by a decrease (e.g.α = −0.5, λ = 0.01) as it appears in
FIGURE 3.

Conclusion

The results of this study show that the parareal distributedalgorithm can effectively
speed-up neutron kinetic diffusion calculations. They cancertainly be improved by
coupling parareal with spatial domain decomposition. A further analysis needs to
be done on the impact of the communication time between processors.

An analysis of a surprising behavior of the error within eachinterval [Tn,Tn+1]
has also been explained and is a consequence of a special tuneof the parameters.

Note also that these results represent the first implementation of the parareal in
time algorithm within the industrial solver MINOS so the current results represent
as well a successful industrial application of parareal.
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These results are encouraging because they open the door to the construction
of kinetic transport solvers. Our ongoing study is therefore to explore whether the
parareal algorithm can successfully accelerate such calculations.
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