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1 Introduction

In this paper, we study Overlapping Schwarz preconditisfi@rthe system of lin-
ear elasticity for composite materials discretized wittgisometric Analysis (IGA).
This is an innovative numerical methodology, introducedHmghes et al. [10, 6],
where the geometry description of the PDE domain is adoptad i Computer
Aided Design (CAD) parametrization usually based on Norif&fm Rational B-
Splines (NURBS). In IGA, these NURBS basis functions repnéing the CAD
geometry are also used as the PDEs discrete basis, folloannigoparametric
paradigm. Since its introduction, IGA techniques have bgtedied and applied
in diverse fields, see e.qg. [6].

In our previous Domain Decomposition (DD) works for IGA saalliptic prob-
lems, we studied Overlapping Additive Schwarz (OAS) methi@ and Balancing
Domain Decomposition by Constraints (BDDC) methods [3mpting optimal and
quasi-optimal convergence rate bounds for isogeometriei2ihods, together with
the required theoretical foundation, technical tools ancherical validation. Other
DD IGA works have explored numerically dual primal FiniteesBlent Tearing and
Interconnecting (FETI-DP) methods for 2D elliptic problefi 1] and have studied
multigrid methods for the 2D and 3D Laplacian [9] and Schwaethods in the
case of two subdomains with non-matching grids [5].

Here we study Isogeometric OAS preconditioners for thessyigif linear elastic-
ity for compressible composite materials. An extension iceth methods for almost
incompressible elastic materials can be found in [4].

We consider the linear elastic deformation of a ba@lyin RY, d = 2,3, with
boundaryd Q = I'p UTy. The body is clamped of and it is subjected to a given
tractiong : vy — RY on My, as well as to a body force densify: Q — RY. The
displacement fieldi : Q — RY satisfies the system

1)

divCe(u)+f=0 inQ
u=0onlp and Ce(u)-n=gonly

Here,¢ is the symmetric gradient operataiis the unit outward normal at each point
of the boundaryCt = 2ut + Atr(1)l for all second order tensors where t(T) is
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the trace ofr, A = (1+V)E(‘172V)’“ = 2(1E+v) are the Lamé constants, is the Young

modulus and’ the Poisson’s ratio. Given loadindsc [L2(Q)]% andg € [L?(v)]°,
define

<yv>=(fVa+(@Vn  Wel[HYQ))", 2)

where(-,-)q, (-,-)r, indicate as usual the? scalar product respectively @@ and
I'n. The variational formulation of problem (1) then reads:

{ Findu € [H (Q)]° such that: -

a(u,v) =< @,v> we [HE (Q))°,

where[H} (Q)]4 = {ve [H}(Q)]?|v|r, = 0} and

a(w,v) = /Q 2ue(w) 1 €(v) dx+ (A divw,div)g  Ywve [HE ()% (4)

2 |sogeometric discretization of linear elasticity

We discretize the elasticity system (3) with IGA based onpBrgs and NURBS
basis functions, see e.g. [6]. Considering for simplicitg two-dimensional case,
the bivariate B-spline discrete space is defined as

fﬂﬁzspar{Bf}q(E,n),i:l,...,n,j:l,...,m}, (5)

where the bivariate B-spline basis functidfy’(&,n) = N"(£) M{(n) are defined
by tensor product of one-dimensional B-splines functinifisé ) andM?(n) of de-
greep andq, respectively. Analogously, the NURBS space is the span4iRRIS
basis functions defined in 1D as

N(Ea  N(E)a

Pg) —
R(@) SN w(E)

(6)

(with weight functionw(&) = 314 l\Llp(E)wf € 5”;), and in 2D by tensor product

BPY(E, | BY'(E.ma,;
pa _ i ; _ _hj ’ 7
R (8.m) Shi ST B (E N w(g,n) o

wherew(§,n) is the weight function and ; = (C})3 the weights associated with
an x mnet of control point€; j. The discrete space of NURBS scalar fields on the
domainQ is defined, component by component as the span gbulsb-forwardof

the NURBS basis functions (7)

hi=spafRToF 1 withi=1,....nj=1,...,m}, (8)
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with F : Q — Q the geometrical map between parameter and physical spaces
n m
F@m=zzm%mm$ ©)
i=1]=1

Taking into account the boundary conditions, if for simihliove consider the
caselp = 0Q, we define the spline space in parameter space as

Vh = [FhNHF(Q))? = [spar(BPY(&,n), i=2,...,n—1,j=2,... .m-1}]°
and the NURBS space in physical space as

Vh = [RNHF(Q)]? = [sparRPToF 1, withi=2,....n—1; j=2,....m—1}].

(10)
The IGA formulation of problem (3) then reads:
Find un € W, such that: (11)
a(Un, V) =< Y, vy > YVh € Vh.

3 Isogeometric Overlapping Schwar z preconditioners

We refer to the monographs [12, 13] for a general introductio Overlapping
Schwarz methods. We describe first the subdomain and subsiegompositions
in 1D and then extend them by tensor products to 2D and 3D. €berdposition is
first built for the underlying space of spline functions irpaeter space, and then
easily extended to the NURBS space in the physical domain.

1D B-spline decomposition. From the full set of knot§é1 =0, ..., ény pr1 =1},
we select a subsd(té, .k =1,...,N+ 1} of (non repeated) interface knots with
i, = 0,&iy., = 1. This subset of interface knots defines a decompositiomef t
closure of the reference interval

M=01=( U k). with k= (&&..).
k=1,..N

that we assume to have a similar characteristic diamtéterH, = diam(l,). The
interface knots are thus given By, for k = 2,..,N. For each of the interface knots
&i, we choose an index 2 ¢ < n— 1 (strictly increasing irk) that satisfies, <
ik < s+ p+1, so that the support of the basis functmjb intersects botfy_; and
Ix. Note that at least one sushexists; if it is not unique, any choice can be made.

We then define an overlapping decompositionle'h the following way. Let
r € N be an integer (called the overlap index) counting the basistfons shared by
adjacent subdomains, defined as
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Vi=[spar(NP(&), s-r < j <se1t+r}!  k=12..N, (12

with the exception that 2 j < s,+r for the spac&; andsy —r < j <n—1forthe
space\7N. These subspaces form an overlapping decomposition oplirespace
Vh. Forr = 0 we have the minimal overlap consisting of just one commaisidanc-
tion between subspaces, while more generaily 2 represents the number of basis
functions in common (in the univariate case) among “adjidenal subspaces. We
now define the extended subdomaijhby

k= U SUPF(NJP) = (&s—rs &5 1+r+pr1)s (13)

N JP E\//\k

with the analogous exception o, 1,

We consider two choices for tremarse spac@o.

a) A nested coarse space defined by introducing a (open)ec&arst vector
o= {Ef =0,..., E,ﬂc+p+1 = 1} corresponding to a coarse mesh determined by the

subdomaing, i.e.

EO = {Ela EZa ey Epv Eilv Eiza Eiga ey EiN 9 EiN+1a EiN+1+la EiN+1+2 ey EiN+1+p}v

such that the distance between adjacent distinct knots @derH, & = --- =
ép =&, =0andéy,, = &iy.1+1 =+ = &i\.1+p = 1. A coarse spline space is then
defined as R .

Vo= [Za]9 = [sparN>P(&), i = 2,...,Ne — 1}]°,

with the same degreg of Fhandis thus a subspace [ﬂ]d.
b) A non-nested coarse space, of smaller dimension tharsmag is defined as

Vo :=[h]" = [spar{N>*(£), i =2,...,Ne— 1}]%,

where now note thap = 1 and the coarse knot vector (aNg) is changed accord-
ingly
EO = {Elv Eila Eiza Eigv B EiN ; EiN+1v EiN+1+l}a
with &1 = &j; =0andé;, ., = &, ,+1= 1. The construction above gives the standard
piecewise linear space on the coarse subdivision.
2D, 3D B-spline decomposition. By tensor product (here in 2D for simplicity),
we define subdomains, overlapping subdomains and extengeodgs by

Qu=Tkxli, Qu=0xl, 1<k<N, 1<I<M,

(wherely = (&, &,.,),| = (1},,Nj,,))- Moreover, we take the indicgsi}}_, as-
sociated tof&;, }I_, and the analogous indicés }M , associated tgn;, } ,. The
local and coarse subspaces are then defined by
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Via = [spar{BPY(&,n), s—1 <i <+ 5 -1 < <Spatr )Y

~ oPpd  oPq . .
VO = [spar{Bi’j . Bi7j (Ean) = Nioyp(E)Mjqu(n% I = 17"';NC7J = 1)"'7MC}]da

with the usual modification for boundary subdomains and wéé}q are the coarse
basis functions.

2D, 3D NURBS decomposition. The subdomains in physical space are defined
as the image of the subdomains in parameter space with tasggbe mappind-

Qu=F(Qu), Qy=F(Qy).

The local subspaces and the coarse space are, up to the u=lification for the
boundary subdomains,

Via = [spar{RPIoF 1 g —r <i<gqa+r§-r<j<sg+r})
°p7q °p7q . .
Vo=[spafR o F1i=(B; /Wo F 1 i=1.,N,j=1..Mc}°

where we recall thatv is the weight function, see (7).

Overlapping Schwar z preconditioners. Given the local and coarse embedding
operatordy : Vi — Vh, k=1,...N, | =1,...M andlp : Vo — W, the discrete space
\}, can be decomposed into coarse and local space as

Vh = loVo + g et Vi -

Define the local projectionﬁd :Vh — Vg by

a(Tiyu,v) = a(u,lyv) W e Vi,
and the coarse projectidTa *Vh — Vo by

a(Tou,v) = a(u,lgv) WeVp.

Defining Ty = T and To = IoTo, our two-level Overlapping Additive Schwarz

(OAS) operator is then
N

M
Toasi=To+ ) ziTkl' (14)
F=le=

The matrix form of this operator i§oas= Boas?”, Where« is the stiffness matrix
andBopasis the Additive Schwarz preconditioner

N M
BOASZREAEIRM-Z ZRLAﬁleL (15)
Es

Here, Ry are restriction matrices with,@ entries returning the coefficients of the
basis functions belonging to the local spa¥gsandAy are the local stiffness ma-
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trices restricted to the subspadg. If the coarse space is nested into the fine space,
Rg is the coarse-to-fine interpolation matrix aAgd is the coarse stiffness matrix
associated with the coarse spage If the coarse space is non—nesté&g, is the
coarse-to-fin.2-projection matrix and the coarse space stiffness matgivisn by
Ao = Ro/ Ry

A convergence rate bound. Given the overlap indek defined before (12), we
define the overlap parameter

y="h(2r+2), (16)

that is related to the width of the overlapping region by the boungs- h(2r +2) <
O0<h(2r+p+1)< %y. Assuming that a) the parametric mesh is quasi-uniform,
and b) the overlap indexis bounded from above by a fixed constant, we have the
following result (see [4]).

Theorem 1. The condition number of the 2-level additive Schwarz prditmmed
operator as defined in (14), with either nested or non-nested coarseespac
bounded by

H
K2(Toag) <C (1+ 7) ,

wherey = h(2r 4 2) is the overlap parameter defined in (16) and C is a constant
independent of lH, N, y (but not of pk).

4 Numerical results

In this section, we test the convergence properties of thgeismetric OAS pre-
conditioner defined in (15) for linear elasticity problems 2D domains. The IGA
discretization with mesh siz, polynomial degreep, regularityk, is carried out
by using the Matlab isogeometric library GeoPDEs [7]. Thendo is decomposed
into N overlapping subdomains of characteristic dizand overlap index. The re-
sulting linear system is solved by PCG with the isogeom@&#AS preconditioner,
with zero initial guess and a stopping criterion of freduction of the relative
residual.

Table 1 shows the scalability of the proposed isogeometi€ @reconditioner
for a reference cubic domain decomposed into an increasingper of subdomain-
schoN of fixed subdomain sizel /h = 4 (scaled speedup tesp~= 3, k= 2, over-
lapr =0 andr = 1, and both nested (left) and non-nested (right) coarseespac
In addition to scalability, the results show that the tworseaspaces have similar
performances and both improve when increasing the oveitap s

Table 2 illustrates the robustness of the OAS preconditifareceomposite mate-
rials where the Young modulus presents discontinuities across subdomain bound-
aries. The deformed 3D domain is a twisted bar shown in Figght), discretized
by 16x 16 x 8 fine elementdN = 4 x 4 x 2 subdomains, and NURBS with= 3
andk = 2 (except at the subdomain interfaces whiere 0). In the central jump
test, the jump region consists of thex2 x 2 central subdomains. Outside the jump
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N

nested coarse Space

r=0
K2 = Amax/Amin Nit

r=1
K2 = Amax/Amin  Nit

non-nested coarse Space

r=0
K2 = Amax/Amin Nit

r=1
cho k2 = Amax/Amin Nit

2x2x%x2
3x3x3
4x4x4
5x5x5
6x6x6

16.3 = 8.03/0.49 22
185 = 8.04/0.43 25
19.8 = 8.04/0.41 26
20.2 = 8.04/0.40 26

20.4 = 8.05/0.40 26

9.1=825/0.91 19
11.2=9.31/0.83 22
11.9=9.47/0.80 23
121=952/0.79 23

12.3=9.56/0.78 23

17.2=18.03/0.47 23
228 =18.04/0.35 28
20.1 = 8.04/0.40 27
205 = 8.04/0.39 27

20.6 = 8.05/0.39 27

93=825/089 21
128=19.68/0.76 25
120=9.47/0.79 24
124=953/0.77 25
125=956/0.76 25

Table 1 Scalability of OAS preconditioner with nested (left) anchazested (right) coarse space:
condition numbexy(Toas), extremal eigenvaluedmax, Amin and PCG iteration counts; as a
function of the number of subdomaihk Cubic domain, fixedd /h=4, p=3,k=2,E = 6e+6,
v=0.3.

Fig. 1 3D domains used in the numerical tests.

region,E = 6e+ 3 andv = 0.3, while inside such regioR has the value indicated

in Table 2. In the checkerboard teBtalternates between the values- 6e+ 3 and

E = 6e+ 7, whilev = 0.3 everywhere. The results show that the unpreconditioned
PCG deteriorate whek jumps towards é+ 7, while the 2-level OAS precondi-
tioner is very robust for jumps i&.
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Jumping coefficienE, twisted quarter-ring domain
unpreconditioned 1-level OAS 2-level OAS

E K2 = %ﬁ‘: Nit Ko = %ﬁ‘: Nit| K2 = ’\’:j‘: Nit
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