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1 Introduction

In this paper, we study Overlapping Schwarz preconditioners for the system of lin-
ear elasticity for composite materials discretized with Isogeometric Analysis (IGA).
This is an innovative numerical methodology, introduced byHughes et al. [10, 6],
where the geometry description of the PDE domain is adopted from a Computer
Aided Design (CAD) parametrization usually based on Non-Uniform Rational B-
Splines (NURBS). In IGA, these NURBS basis functions representing the CAD
geometry are also used as the PDEs discrete basis, followingan isoparametric
paradigm. Since its introduction, IGA techniques have beenstudied and applied
in diverse fields, see e.g. [6].

In our previous Domain Decomposition (DD) works for IGA scalar elliptic prob-
lems, we studied Overlapping Additive Schwarz (OAS) methods [2] and Balancing
Domain Decomposition by Constraints (BDDC) methods [3], providing optimal and
quasi-optimal convergence rate bounds for isogeometric DDmethods, together with
the required theoretical foundation, technical tools and numerical validation. Other
DD IGA works have explored numerically dual primal Finite Element Tearing and
Interconnecting (FETI-DP) methods for 2D elliptic problems [11] and have studied
multigrid methods for the 2D and 3D Laplacian [9] and Schwarzmethods in the
case of two subdomains with non-matching grids [5].

Here we study Isogeometric OAS preconditioners for the system of linear elastic-
ity for compressible composite materials. An extension to mixed methods for almost
incompressible elastic materials can be found in [4].

We consider the linear elastic deformation of a bodyΩ in Rd, d = 2,3, with
boundary∂Ω = ΓD ∪ΓN. The body is clamped onΓD and it is subjected to a given
tractiong : ΓN → Rd on ΓN, as well as to a body force densityf : Ω → Rd. The
displacement fieldu : Ω → Rd satisfies the system

{
divCε(u)+ f = 0 in Ω
u = 0 onΓD and Cε(u) ·n = g onΓN

(1)

Here,ε is the symmetric gradient operator,n is the unit outward normal at each point
of the boundary,Cτ = 2µτ + λ tr(τ)I for all second order tensorsτ, where tr(τ) is
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the trace ofτ, λ = Eν
(1+ν)(1−2ν)

,µ = E
2(1+ν)

are the Lamé constants,E is the Young

modulus andν the Poisson’s ratio. Given loadingsf ∈ [L2(Ω)]d andg∈ [L2(ΓN)]d,
define

< ψ ,v >= ( f ,v)Ω +(g,v)ΓN ∀v∈ [H1(Ω)]d, (2)

where(·, ·)Ω , (·, ·)ΓN indicate as usual theL2 scalar product respectively onΩ and
ΓN. The variational formulation of problem (1) then reads:

{
Findu∈ [H1

ΓD
(Ω)]d such that:

a(u,v) =< ψ ,v > ∀v∈ [H1
ΓD

(Ω)]d,
(3)

where[H1
ΓD

(Ω)]d = {v∈ [H1(Ω)]d |v|ΓD = 0} and

a(w,v) =

∫

Ω
2µ ε(w) : ε(v) dx+(λ divw,divv)Ω ∀w,v∈ [H1

ΓD
(Ω)]d. (4)

2 Isogeometric discretization of linear elasticity

We discretize the elasticity system (3) with IGA based on B-splines and NURBS
basis functions, see e.g. [6]. Considering for simplicity the two-dimensional case,
the bivariate B-spline discrete space is defined as

Ŝh = span{Bp,q
i, j (ξ ,η), i = 1, . . . ,n, j = 1, . . . ,m}, (5)

where the bivariate B-spline basis functionsBp,q
i, j (ξ ,η) = Np

i (ξ )Mq
j (η) are defined

by tensor product of one-dimensional B-splines functionsNp
i (ξ ) andMq

j (η) of de-
greep andq, respectively. Analogously, the NURBS space is the span of NURBS
basis functions defined in 1D as

Rp
i (ξ ) =

Np
i (ξ )ωi

∑n
ı̂=1Np

ı̂ (ξ )ωı̂
=

Np
i (ξ )ωi

w(ξ )
, (6)

(with weight functionw(ξ ) = ∑n
ı̂=1Np

ı̂ (ξ )ωı̂ ∈ Ŝh), and in 2D by tensor product

Rp,q
i, j (ξ ,η) =

Bp,q
i, j (ξ ,η)ωi, j

∑n
ı̂=1 ∑m

̂=1Bp,q
ı̂,̂ (ξ ,η)ωı̂,̂

=
Bp,q

i, j (ξ ,η)ωi, j

w(ξ ,η)
, (7)

wherew(ξ ,η) is the weight function andωi, j = (Cω
i, j)3 the weights associated with

a n×mnet of control pointsCi, j . The discrete space of NURBS scalar fields on the
domainΩ is defined, component by component as the span of thepush-forwardof
the NURBS basis functions (7)

Nh := span{Rp,q
i, j ◦F−1, with i = 1, . . . ,n; j = 1, . . . ,m}, (8)
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with F : Ω̂ → Ω the geometrical map between parameter and physical spaces

F(ξ ,η) =
n

∑
i=1

m

∑
j=1

Rp,q
i, j (ξ ,η)Ci, j . (9)

Taking into account the boundary conditions, if for simplicity we consider the
caseΓD = ∂Ω , we define the spline space in parameter space as

V̂h = [Ŝh∩H1
0(Ω̂)]d = [span{Bp,q

i, j (ξ ,η), i = 2, . . . ,n−1, j = 2, . . . ,m−1}]d.

and the NURBS space in physical space as

Vh = [Nh∩H1
0(Ω)]d = [span{Rp,q

i, j ◦F−1, with i = 2, . . . ,n−1; j = 2, . . . ,m−1}]d.
(10)

The IGA formulation of problem (3) then reads:
{

Finduh ∈Vh such that:

a(uh,vh) =< ψ ,vh > ∀vh ∈Vh.
(11)

3 Isogeometric Overlapping Schwarz preconditioners

We refer to the monographs [12, 13] for a general introduction to Overlapping
Schwarz methods. We describe first the subdomain and subspace decompositions
in 1D and then extend them by tensor products to 2D and 3D. The decomposition is
first built for the underlying space of spline functions in parameter space, and then
easily extended to the NURBS space in the physical domain.

1D B-spline decomposition. From the full set of knots{ξ1 = 0, ...,ξn+p+1 = 1},
we select a subset{ξik,k = 1, . . . ,N + 1} of (non repeated) interface knots with
ξi1 = 0,ξiN+1 = 1. This subset of interface knots defines a decomposition of the
closure of the reference interval

(
Î
)

= [0,1] =
( ⋃

k=1,..,N

Îk
)
, with Îk = (ξik ,ξik+1),

that we assume to have a similar characteristic diameterH ≈ Hk = diam(Îk). The
interface knots are thus given byξik for k = 2, ..,N. For each of the interface knots
ξik we choose an index 2≤ sk ≤ n− 1 (strictly increasing ink) that satisfiessk <

ik < sk + p+1, so that the support of the basis functionNp
sk intersects botĥIk−1 and

Îk. Note that at least one suchsk exists; if it is not unique, any choice can be made.
We then define an overlapping decomposition ofÎ in the following way. Let

r ∈ N be an integer (called the overlap index) counting the basis functions shared by
adjacent subdomains, defined as
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V̂k = [span{Np
j (ξ ), sk− r ≤ j ≤ sk+1 + r}]d k = 1,2, ..,N, (12)

with the exception that 2≤ j ≤ s2+ r for the spacêV1 andsN− r ≤ j ≤ n−1 for the
spacêVN. These subspaces form an overlapping decomposition of the spline space
V̂h. Forr = 0 we have the minimal overlap consisting of just one common basis func-
tion between subspaces, while more generally 2r +1 represents the number of basis
functions in common (in the univariate case) among “adjacent” local subspaces. We
now define the extended subdomainsÎ ′k by

Î ′k =
⋃

Np
j ∈V̂k

supp(Np
j ) = (ξsk−r ,ξsk+1+r+p+1), (13)

with the analogous exception forÎ ′1, Î ′N,
We consider two choices for thecoarse spacêV0.
a) A nested coarse space defined by introducing a (open) coarse knot vector

ξ 0 = {ξ 0
1 = 0, ...,ξ 0

Nc+p+1 = 1} corresponding to a coarse mesh determined by the

subdomainŝIk, i.e.

ξ 0 = {ξ1,ξ2, . . . ,ξp,ξi1,ξi2,ξi3, . . . ,ξiN ,ξiN+1,ξiN+1+1,ξiN+1+2 . . . ,ξiN+1+p},

such that the distance between adjacent distinct knots is oforder H, ξ1 = · · · =
ξp = ξi1 = 0 andξiN+1 = ξiN+1+1 = · · · = ξiN+1+p = 1. A coarse spline space is then
defined as

V̂0 := [ŜH ]d = [span{N0,p
i (ξ ), i = 2, ...,Nc−1}]d,

with the same degreep of Ŝh and is thus a subspace of[Ŝh]
d.

b) A non-nested coarse space, of smaller dimension than in case a), is defined as

V̂0 := [ŜH ]d = [span{N0,1
i (ξ ), i = 2, ...,Nc−1}]d,

where now note thatp = 1 and the coarse knot vector (andNc) is changed accord-
ingly

ξ 0 = {ξ1,ξi1,ξi2,ξi3, . . . ,ξiN ,ξiN+1,ξiN+1+1},

with ξ1 = ξi1 = 0 andξiN+1 = ξiN+1+1 = 1. The construction above gives the standard
piecewise linear space on the coarse subdivision.

2D, 3D B-spline decomposition. By tensor product (here in 2D for simplicity),
we define subdomains, overlapping subdomains and extended supports by

Ω̂kl = Îk× Îl , Ω̂ ′
kl = Î ′k× Î ′l , 1≤ k≤ N, 1≤ l ≤ M,

(whereÎk = (ξik,ξik+1), Îl = (η j l ,η j l+1)). Moreover, we take the indices{sk}
N
k=2 as-

sociated to{ξik}
N
k=2 and the analogous indices{sl}

M
l=2 associated to{η j l }

M
l=2. The

local and coarse subspaces are then defined by
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V̂kl = [span{Bp,q
i, j (ξ ,η), sk− r ≤ i ≤ sk+1 + r, sl − r ≤ j ≤ sl+1 + r }]d,

V̂0 = [span{
◦

B
p,q

i, j :
◦

B
p,q

i, j (ξ ,η) := N0,p
i (ξ )M0,q

j (η), i = 1, ...,Nc, j = 1, ...,Mc}]
d,

with the usual modification for boundary subdomains and where
◦

B
p,q

i, j are the coarse
basis functions.

2D, 3D NURBS decomposition. The subdomains in physical space are defined
as the image of the subdomains in parameter space with respect to the mappingF

Ωkl = F(Ω̂kl), Ω ′
kl = F(Ω̂ ′

kl).

The local subspaces and the coarse space are, up to the usual modification for the
boundary subdomains,

Vkl = [span{Rp,q
i, j ◦F−1, sk− r ≤ i ≤ sk+1 + r, sl − r ≤ j ≤ sl+1 + r }]d,

V0 = [span{
◦

R
p,q

i, j ◦ F−1 := (
◦

B
p,q

i, j /w)◦ F−1, i = 1, ...,Nc, j = 1, ...,Mc}]
d,

where we recall thatw is the weight function, see (7).
Overlapping Schwarz preconditioners. Given the local and coarse embedding

operatorsIkl : Vkl →Vh, k = 1, ..,N, l = 1, ..,M andI0 : V0 →Vh, the discrete space
Vh can be decomposed into coarse and local space as

Vh = I0V0 +∑
k,l

IklVkl.

Define the local projections̃Tkl : Vh →Vkl by

a(T̃klu,v) = a(u, Iklv) ∀v∈Vkl,

and the coarse projectioñT0 : Vh →V0 by

a(T̃0u,v) = a(u, I0v) ∀v∈V0.

Defining Tkl = IklT̃kl andT0 = I0T̃0, our two-level Overlapping Additive Schwarz
(OAS) operator is then

TOAS:= T0 +
N

∑
k=1

M

∑
l=1

Tkl . (14)

The matrix form of this operator isTOAS= BOASA , whereA is the stiffness matrix
andBOAS is the Additive Schwarz preconditioner

BOAS= RT
0 A−1

0 R0 +
N

∑
k=1

M

∑
l=1

RT
kl A

−1
kl Rkl . (15)

Here,Rkl are restriction matrices with 0,1 entries returning the coefficients of the
basis functions belonging to the local spacesVkl andAkl are the local stiffness ma-
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trices restricted to the subspaceVkl. If the coarse space is nested into the fine space,
RT

0 is the coarse-to-fine interpolation matrix andA0 is the coarse stiffness matrix
associated with the coarse spaceV0. If the coarse space is non-nested,RT

0 is the
coarse-to-fineL2-projection matrix and the coarse space stiffness matrix isgiven by
A0 = R0A RT

0 .
A convergence rate bound. Given the overlap indexr defined before (12), we

define the overlap parameter
γ = h(2r +2), (16)

that is related to the widthδ of the overlapping region by the boundsγ = h(2r +2)≤

δ ≤ h(2r + p+1)≤ p+1
2 γ. Assuming that a) the parametric mesh is quasi-uniform,

and b) the overlap indexr is bounded from above by a fixed constant, we have the
following result (see [4]).

Theorem 1. The condition number of the 2-level additive Schwarz preconditioned
operator TOAS defined in (14), with either nested or non-nested coarse space, is
bounded by

κ2(TOAS) ≤C

(
1+

H
γ

)
,

whereγ = h(2r + 2) is the overlap parameter defined in (16) and C is a constant
independent of h,H,N,γ (but not of p,k).

4 Numerical results

In this section, we test the convergence properties of the isogeometric OAS pre-
conditioner defined in (15) for linear elasticity problems on 3D domains. The IGA
discretization with mesh sizeh, polynomial degreep, regularityk, is carried out
by using the Matlab isogeometric library GeoPDEs [7]. The domain is decomposed
into N overlapping subdomains of characteristic sizeH and overlap indexr. The re-
sulting linear system is solved by PCG with the isogeometricOAS preconditioner,
with zero initial guess and a stopping criterion of 10−6 reduction of the relative
residual.

Table 1 shows the scalability of the proposed isogeometric OAS preconditioner
for a reference cubic domain decomposed into an increasing number of subdomain-
schoN of fixed subdomain sizeH/h = 4 (scaled speedup test),p = 3, k = 2, over-
lap r = 0 andr = 1, and both nested (left) and non-nested (right) coarse spaces.
In addition to scalability, the results show that the two coarse spaces have similar
performances and both improve when increasing the overlap size.

Table 2 illustrates the robustness of the OAS preconditioner for composite mate-
rials where the Young modulusE presents discontinuities across subdomain bound-
aries. The deformed 3D domain is a twisted bar shown in Fig. 1 (right), discretized
by 16×16×8 fine elements,N = 4×4×2 subdomains, and NURBS withp = 3
andk = 2 (except at the subdomain interfaces wherek = 0). In the central jump
test, the jump region consists of the 2×2×2 central subdomains. Outside the jump
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nested coarse space non-nested coarse space
r = 0 r = 1 r = 0 r = 1

N κ2 = λmax/λmin nit κ2 = λmax/λmin nit κ2 = λmax/λmin nit choκ2 = λmax/λmin nit

2×2×2 16.3 = 8.03/0.49 22 9.1 = 8.25/0.91 1917.2 = 8.03/0.47 23 9.3= 8.25/0.89 21
3×3×3 18.5 = 8.04/0.43 2511.2 = 9.31/0.83 2222.8 = 8.04/0.35 28 12.8 = 9.68/0.76 25
4×4×4 19.8 = 8.04/0.41 2611.9 = 9.47/0.80 2320.1 = 8.04/0.40 27 12.0 = 9.47/0.79 24
5×5×5 20.2 = 8.04/0.40 2612.1 = 9.52/0.79 2320.5 = 8.04/0.39 27 12.4 = 9.53/0.77 25
6×6×6 20.4 = 8.05/0.40 2612.3 = 9.56/0.78 2320.6 = 8.05/0.39 27 12.5 = 9.56/0.76 25

Table 1 Scalability of OAS preconditioner with nested (left) and non-nested (right) coarse space:
condition numberκ2(TOAS), extremal eigenvaluesλmax, λmin and PCG iteration countsnit as a
function of the number of subdomainsN. Cubic domain, fixedH/h = 4, p = 3, k = 2, E = 6e+6,
ν = 0.3.
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Fig. 1 3D domains used in the numerical tests.

region,E = 6e+3 andν = 0.3, while inside such regionE has the value indicated
in Table 2. In the checkerboard test,E alternates between the valuesE = 6e+3 and
E = 6e+7, whileν = 0.3 everywhere. The results show that the unpreconditioned
PCG deteriorate whenE jumps towards 6e+ 7, while the 2-level OAS precondi-
tioner is very robust for jumps inE.
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