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1 Introduction

Model Problem Let Ω ⊂R2 or R3 be a Lipschitz polytope with boundary ∂Ω =
ΓD∪ΓN , where ΓD∩ΓN = /0. We are interested in finding uh ∈V h

D(Ω) such that∫
Ω

α ∇uh ·∇vh dx = 〈 f , vh〉 ∀uh ∈V h
D(Ω). (1)

Above, V h
D(Ω) denotes the finite element space of continuous and piecewise linear

functions with respect to a mesh T h(Ω) that vanish on the Dirichlet boundary ΓD.
The functional f ∈V h

D(Ω)∗ is assumed to be composed of a volume integral over Ω

and a surface integral over ΓN .
The diffusion coefficient α ∈ L∞(Ω) is assumed to be uniformly positive, i.e.,

ess.infx∈Ω α(x) > 0. We allow α to vary by several orders of magnitude in an
unstructured way throughout the domain Ω . In particular, we allow α to be dis-
continuous and exhibit large jumps (high contrast). If the jumps occur at a scale
η � diam(Ω), one speaks of a multiscale problem (cf. e.g., [1]).

Problem (1) is equivalent to the linear system

Kh,α uh = fh , (2)

where the stiffness matrix Kh,α and load vector fh are defined with respect to the
standard nodal basis of V h

D(Ω). For a quasi-uniform mesh, one easily shows that

κ(Kh,α)≤C
ess.supx∈Ω α(x)
ess.infx∈Ω α(x)

h−2 .

Although in many cases, this might be a pessimistic bound, it is sharp in general.
Consequently, an ideal preconditioner for Kh,α should be robust in (i) the contrast in
α , (ii) the mesh size h, (iii) the scale η at which the coefficient varies, where here
we may assume that h≤ η ≤ diam(Ω).

Spectral Properties and the Weighted Poincaré Inequality To get an idea, how
difficult it is to precondition System (2), we display the entire spectrum of Kh,α for
the pure Neumann problem (ΓD = /0) on the unit square Ω = (0, 1)2 and for three
coefficient distributions α (see the top row of Fig. 1). The smallest eigenvalue of
Kh,α is always zero and not shown in the following plots.
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Fig. 1 Top row: three coefficient distributions α . Second row: spectra σ(Kh,α ) corresponding to
the three distributions. Third row: σ(diag(Kh,α )

−1Kh,α ). Bottom row: σ(M−1
h,α Kh,α ). In each case

structured mesh with mesh size h = 1/32. The contrast for αH = α
−1
L is 108.

The second row of Fig. 1 displays σ(Kh,α). We see that compared to the reference
coefficient α = 1, the spectrum is distorted in the two other cases αH , αL.

In the third and fourth row, we change the point of view, and display the spectrum
of diag(Kh,α)

−1Kh,α and of M−1
h,α Kh,α , where Mh,α denotes the weighted mass matrix

corresponding to the inner product (v, w)L2(Ω),α :=
∫

Ω
α vwdx. On a quasi-uniform

mesh, one can easily show that diag(Kh,α) and h−2 Mh,α are spectrally equivalent
with uniform constants. For this reason, the spectra in the third and fourth row differ
mainly by a simple shift. For coefficient αH , with 8 inclusions of large values (plot-
ted in black), we obtain 7 additional small eigenvalues compared to the reference
coefficient. This fact has been theoretically shown by Graham & Hagger [10].

For coefficient αL, with 8 inclusions of small values (plotted in light grey), the
spectra are essentially the same as for the reference coefficient. The theoretical ex-
planation of this fact is the so-called weighted Poincaré inequality [17].

Definition 1. Let {Di} be a finite partition of Ω into polytopes, let α be piecewise
constant w.r.t. {Di} with value αi on Di, and let `∗ be an index such that α`∗ =
maxi αi. Then α is called quasi-monotone on Ω iff for each i we can find a path
D`1 ∪D`2 ∪ . . .∪D`n of subregions connected through proper faces with `1 = i, `n =
`∗ such that α`1 ≤ α`2 ≤ . . .≤ α`n .
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Def. 1 is independent of the choice of `∗: if α attains its maximum in more than one
subregion, then α is either not quasi-monotone, or all the maximum subregions are
connected. In our example, αL is quasi-monotone, whereas αH is not.

Theorem 1. If α (as in Def. 1) is quasi-monotone on Ω , then there exists a constant
CP,α(Ω) independent of the values αi and of diam(Ω) such that

inf
c∈R
‖u− c‖L2(Ω),α ≤CP,α(Ω)diam(Ω) |u|H1(Ω),α ∀u ∈ H1(Ω),

where ‖v‖2
L2(Ω),α

:=
∫

Ω
α v2 dx and |v|H1(Ω),α :=

∫
Ω

α |∇v|2 dx.

For the geometrical dependence of CP,α(Ω) on the partition {Di} (in our previous
example, the scale η), we refer to [17]. The infimum on the left hand side is attained
at the weighted average c = uΩ ,α :=

∫
Ω

α udx/
∫

Ω
α dx. Due to the fact that the

coefficient αL in Fig. 1 is quasi-monotone, λ2(M−1
h,α Kh,α)≥CP,α(Ω)−2 diam(Ω)−2

and thus bounded from below independently of the contrast in αL.

Related Preconditioners The simple examples in Fig. 1 show that it is not nec-
essarily contrast alone, which makes preconditioning difficult, but a special kind of
contrast. The fact that a small number of large inclusions leads to essentially well-
conditioned problems has, e.g., been exploited in [22]. Overlapping Schwarz theory
is given in [11] for coefficients of type αH , and in [7, 18] for locally quasi-monotone
coefficients. Robustness theory of FETI methods for locally quasi-monotone coef-
ficients has been developed in [15, 16, 14, 13]. Achieving robustness in the general
case requires a good coarse space (either for overlapping Schwarz or FETI). Spectral
techniques, in particular solving local generalized eigenvalue problems to compute
coarse basis functions, have come up in [8, 5, 19] (see also the references therein).
Very recently, this approach has been even carried over to FETI methods by Spillane
and Rixen [20]; see also Axel Klawonn’s DD21 talk and proceedings contribution.
Although the spectral approaches above guarantee robust preconditioners, the di-
mension of the coarse space may be large, therefore making the preconditioner in-
efficient. For analyzing the coarse space dimension, tools like the weighted Poincaré
inequality are quite useful, cf. [5].

Outline In this paper, we shall

(i) review the available theoretical results of FETI methods for coefficients that
are—on each subdomain (or a part of it)—quasi-monotone (i.e., of type αL),

(ii) present novel theoretical robustness results of FETI methods for coefficients
which result from a large number of inclusions with large values (i.e., of type αH
far from quasi-monotone). In particular, we allow the inclusions to cut through
or touch certain interfaces of the (non-overlapping) domain decomposition.

In both cases, the coarse space is the usual space of constants in each subdomain.
After fixing some notation in Sect. 2, we present our review (i) in Sect. 3. Sect. 4
deals with technical tools needed for the novel theory of (ii), which is contained in
Sect. 5. In the end, we draw some conclusions.
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2 FETI and TFETI

FETI Basics We briefly introduce classical and total FETI; for details see e.g.,
[21, 13]. The domain Ω is decomposed into non-overlapping subdomains {Ωi}s

i=1,
resolved by the fine mesh T h(Ω). The interface is defined by Γ :=

⋃s
i6= j=1(∂Ωi∩

∂Ω j)\ΓD. Let Ki denote the “Neumann” stiffness matrix corresponding to the local
bilinear form

∫
Ωi

α ∇u ·∇vdx, and let Si be the Schur complement of Ki after elim-
inating the interior degrees of freedom and those corresponding to non-coupling
nodes on the Neumann boundary. In the classical variant of FETI [6], the corre-
sponding local spaces are chosen to be

Wi := {v ∈V h(∂Ωi \ΓN) : v|ΓD = 0}.

In the case of the total FETI (TFETI) method [4], the Dirichlet boundary conditions
are not included into Ki, and correspondingly Wi := V h(∂Ωi \ΓN). We set W :=
∏

s
i=1 Wi and S := diag(Si)

s
i=1. Let R be a block-diagonal full-rank matrix such that

ker(S) = range(R), and let B : W →U be a jump operator such that ker(B) = Ŵ ,
where Ŵ ⊂W is the space of functions being continuous across Γ and fulfilling the
homogeneous Dirichlet boundary conditions. The rows of Bu = 0 are formed by all
(fully redundant) constraints ui(xh)−u j(xh) = 0 for xh ∈ ∂Ωi∩∂Ω j \ΓD. In TFETI,
there are further local constraints of the form ui(xh) = 0 for xh ∈ ∂Ωi∩ΓD. Finally,

System (2) is reformulated as
[

S B>

B 0

][
u
λ

]
=

[
f
0

]
, where f contains the reduced

local load vectors, and further reformulated by

find λ̃ ∈ range(P) : P>F λ̃ = d̃ := P>BS†( f −B>λ0), (3)

where S† is a pseudo-inverse of S, F := BS† B>, P := I−QG(G>QG)−1G>, G :=
BR, λ0 = QG(G>QG)−1R> f , and Q is yet to be specified. The solution u can be
recovered easily from λ = λ0 + λ̃ by using S† and (G>QG)−1.

Scaled Dirichlet Preconditioner For each subdomain index j and each degree
of freedom (i.e., node) xh ∈ ∂Ω j ∩Γ , we fix a weight ρ j(xh)> 0 and define

δ
†
j (x

h) :=
ρ j(xh)γ

∑k∈Nxh
ρk(xh)γ

∈ [0, 1], ∑
j∈Nxh

δ
†
j (x

h) = 1.

Above, Nxh is the set of subdomain indices sharing node xh and γ ∈ [1/2, ∞] (the
limit γ → ∞ has to be carried out properly, cf. [13, Rem. 2.27]). We stress that
in the presence of jumps in α , the choice of the weights ρ j(xh) (or the scalings
δ

†
j (x

h)) is highly important for the robustness of the Dirichlet preconditioner and
will be discussed further below. Let us note that for any choice ρ j(xh) above and
any exponent γ ∈ [1/2,∞], we have the elementary inequality

ρi(xh)δ
†
j (x

h)2 ≤ min(ρi(xh), ρ j(xh)) ∀i, j ∈Nxh . (4)
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The weighted jump operator BD is defined similarly to B, but each row of BD w = 0
is of the form δ

†
j (x

h)wi(xh)−δ
†
i (x

h)w j(xh) = 0 for xh ∈ ∂Ωi∩∂Ω j \ΓD. In TFETI,
there are further rows of the form wi(xh) = 0 for xh ∈ ∂Ωi∩ΓD. The preconditioned
FETI system now reads

find λ̃ ∈ range(P) : PM−1 P>F λ̃ = PM−1 d̃, (5)

where M−1 := BD SB>D . Since P>F is SPD on range(P) up to ker(B>), this system
can be solved by CG. Hence, one is interested in a bound on the condition number
κFETI := κ(PM−1P>F|range(P)/ker(B>)). In the sequel, we set Q = M−1. To avoid
complications, we exclude the case of TFETI with ΓD = ∂Ω , and the case γ = ∞;
otherwise GM−1G> may be singular. As the analysis in [21], [13, Chap. 2] shows,
the estimate

|PD w|2S ≤ µ |w|2S ∀w ∈W⊥ , (6)

implies κFETI ≤ 4 µ . Above, PD := B>DB is a projection (due to the partition of unity
property of δ

†
j ), W⊥=∏

s
i=1 W⊥i , and each W⊥i ⊂Wi is any complementary subspace

such that the sum Wi = ker(Si)+W⊥i is direct. Note that the same estimate implies
a bound of the related balancing Neumann-Neumann (BDD) method.

Choice of Weights Table 1 shows several choices for the weights ρ j(xh). In each
row, we display a theoretical choice, which has been used in certain analyses, and
then a practical choice, which tries to mimic the theoretical one. Choices (a)–(c) in
Table 1 are not suitable for coefficients with jumps (see column problems). The the-
oretical choice (d) will be used in the analyses below and leads to “good” condition
number bounds under suitable assumptions; however, it is practically infeasible. Un-
der suitable assumptions on the variation of α , the practical choice (d) can be shown
to be essentially equivalent to the theoretical one, if one sets γ = ∞. “Good” means
that the bounds are robust with respect to contrast in α . However, they depend on
the spatial scale η of the coefficient variation.

ρ j(xh) theoretical practical problems
(a) 1 1 (multiplicity scaling) jumps across interfaces
(b) αmax

Ω j
‖Kdiag

j ‖`∞ jumps within subdomains

(c) max
τ⊂Ω j :xh∈τ

α|τ Kdiag
j (xh) (stiffness scaling)

oscillating coefficients,
unstructured meshes

(d) max
Y (k)

j :xh∈Y (k)
j

αmax
Y (k)

j

{
1 if Kdiag

j (xh)'maxk∈Nxh Kdiag
k (xh)

0 else
small geometric scale η

Table 1 Various choices for the weights ρ j(xh). Here, Kdiag
j denotes the diagonal of K j , ‖ · ‖`∞

the maximum norm, Kdiag
j (xh) the diagonal entry of K j corresponding to node xh, and {Y (k)

j }k is
a partition of a neighborhood of ∂Ω j ∩Γ , as coarse as possible, such that α is constant or only

mildly varying in each subregion Y (k)
j , cf. [13, Sect. 3.3].
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Remark 1. A further choice, named Schur scaling, has been suggested in [3], see
also [2]. There, for each subdomain vertex/edge/face G , the scalar values δ

†
j (x

h)

for xh ∈ G are replaced by the matrix (∑k∈NG
Sk,G G )

−1 S j,G G , where Sk,G G denotes
the restriction of Sk to the nodes on the subdomain vertex/edge/face G . This choice
is the only known (practical) candidate that could allow for robustness also with
respect to the spatial scale η , but its analysis is still under development, cf. [2].
Nevertheless, it has been successfully analyzed in the context of BDDC methods
for the eddy current problem curl(α curlu)+β u = f, where α,β > 0 are constant
in each subdomain [3].

3 Robustness Results for Locally Quasi-monotone Coefficients

In this section, we review robustness results of TFETI, developed originally in [15,
16] and further refined in [13, Chap. 3]. Because of space limitation, we do not list
the full set of assumptions, but refer to [13, Sect. 3.3.1, Sect. 3.5]. The essential
assumption is that α is piecewise constant with respect to a shape-regular mesh
T η(Ω), at least in the neighborhood of the interface Γ and the Dirichlet boundary
ΓD, and that this mesh resolves Γ ∪ΓD. For simplicity of the presentation, we assume
further that each subdomain Ωi is the union of a few elements of a coarse mesh
T H(Ω), and that the three meshes T h(Ω), T η(Ω), and T H(Ω) are nested, shape-
regular, and globally quasi-uniform with mesh parameters h≤ η ≤ H.

All the following results hold for the TFETI method as defined in Sect. 2 with
the theoretical choice (d) for ρ j(xh) and with Q = M−1, where the regions Y (k)

j are
unions of a few elements from T η(Ω). The general bound reads

κFETI ≤ C
(H

η

)β

(1+ log(η/h))2 , (7)

where C is independent of H, η , h, and α . The exponent β is specified below in
each particular case.

Definition 2. For each subdomain index i, the boundary layer Ωi,η is the union of
those elements from T η(Ω) that lie in Ωi and touch Γ ∪ΓD.

The following theorem is essentially [13, Thm. 3.64] and shows that contrast in
the interior of subdomains is taken care of by TFETI (in form of the subdomain
solves), except that the geometrical scale shows up in the condition number bound.
The original result on classical FETI can be found in [15, Thm. 3.3].

Theorem 2 (Constant Coefficients in the Boundary Layers). If α is constant in
each boundary layer Ωi,η , i = 1, . . . ,s, then (7) holds with β = 2. The exponent
β = 2 is sharp in general. If the values of α in Ωi \Ωi,η do not fall below the
constant value in Ωi,η for each i = 1, . . . ,s, then (7) holds with β = 1.



On Iterative Substructuring Methods for Multiscale Problems 7

The next theorem (cf. [13, Sect. 3.5.2]) extends the above result to coefficients
that are quasi-monotone in each boundary layer.

Theorem 3 (Quasi-monotone coefficients in the Boundary Layers). If α is
quasi-monotone in each boundary layer Ωi,η , i = 1, . . . ,s, then (7) holds with β = 2
if d = 2 and β = 4 if d = 3. Under suitable additional assumptions on α in Ωi,η ,
one can achieve β = 2 for d = 3 as well.

In many cases, quasi-monotonicity may not hold in each boundary layer, but in
a certain sense on a larger domain. The following theorem summarizes essentially
[13, Sect. 3.5.3]. We note that the concept of an artificial coefficient in the context
of FETI goes back to [16].

Theorem 4 (Quasi-monotone Artificial Coefficients). If for each i= 1, . . . ,s there
exists an auxiliary domain Λi with Ωi,η ⊂ Λi ⊂ Ωi and an artificial coefficient αart

such that

α
art = α in Ωi,η ,

α
art ≤ α in Λi \Ωi,η ,

α
art quasi-monotone on Λi ,

then (7) holds with C independent of α and αart. The exponent β depends on Λi
and αart. If Λi = Ωi then β ≤ 2d. Under additional assumptions on αart, one can
achieve, e.g., β ≤ d +1.

Remark 2. The proofs of Thm. 3 and Thm. 4 make heavy use of the weighted
Poincaré inequality (Thm. 1). We note that Thm. 3 and Thm. 4 can be generalized to
so-called type-m quasi-monotonicity (see [17]). Also, all the results of this section
can be generalized to (i) coefficients that vary mildly in each element of T η(Ω)
in the neighborhood of Γ ∪ΓD, (ii) to a certain extent to suitable diagonal choices
of the matrix Q, and (iii) under suitable conditions to classical FETI. However, we
do not present these results here but refer to [13, Chap. 3] and [15, 16] for the full
theory.

4 Technical Tools

In this section, we present two technical tools needed for Sect. 5. The first tools is
an extension operator on so-called quasi-mirrors.

Definition 3. Let D1, D2 ⊂Rd be two disjoint Lipschitz domains sharing a (d−1)-
dimensional manifold Γ . For i = 1,2 let Dia and Dib be open and disjoint Lip-
schitz domains such that Di = Dia∪Dib. We say that (D2a,D2b) is a quasi-mirror of
(D1a,D1b) iff there exists a continuous and piecewise C1 bijection φ with ‖∇φ‖L∞

and ‖∇φ−1‖L∞ bounded, such that Dia, Dib, Γ are mapped to D̂ia, D̂ib, Γ̂ , respec-
tively, where Γ̂ lies in the hyperplane xd = 0 and D̂2a, D̂2b are the reflections through
that hyperplane of D̂1a, D̂1b, respectively (for an illustration see Fig. 2).
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Fig. 2 Illustration of Def. 3: a
quasi-mirror in 2D. Γ
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Lemma 1. Let (D2a,D2b) be a quasi-mirror of (D1a,D1b) as in Def. 3. Then there
exists a linear operator E : H1(D1)→H1(D2) such that for all v∈H1(D1), we have
(Ev)|Γ = v|Γ and

|E v|H1(D2a)
≤C |v|H1(D1a)

, |E v|H1(D2b)
≤C |v|H1(D1b)

,

‖E v‖L2(D2a)
≤C‖v‖L2(D1a)

, ‖E v‖L2(D2b)
≤C‖v‖L2(D1b)

.

The constant C is dimensionless, but depends on the transformation φ from Def. 3.

The proof of the above and the next lemma can be found in [12, Sect. 4]. Our
second tool is a special Scott-Zhang quasi-interpolation operator.

Lemma 2. Let the domain D be composed from two disjoint Lipschitz regions D =
D1∪D2 with interface Γ = ∂D1∩∂D2, and let Σ ⊂ ∂D be non-trivial. Let T h(D)
be a shape-regular mesh resolving Γ and Σ , and let V h(D) denote the corresponding
space of continuous and piecewise linear finite element functions. Then there exists
a projection operator Πh : H1(D)→ V h(D) such that (i) for any v ∈ H1(D) that is
piecewise linear on Γ and Σ , (Πhv)Γ∪Σ = v|Γ∪Σ and (ii) for all v ∈ H1(D),

|Πhv|H1(Di)
≤C |v|H1(Di)

, ‖Πhv‖L2(Di)
≤C‖v‖L2(Di)

, for i = 1, 2,

where the constant C only depends on the shape-regularity of the mesh.

5 Novel Robustness Results for Inclusions

For this section, we adopt again the notations of Sect. 2 and 3. However, we restrict
ourselves to coefficients α ∈ L∞(Ω), given by

α(x) =

{
αk if x ∈ Dk for some k = 1, . . . ,nH ,
αL else, (8)

where αk ≥ αL are constants and the regions Dk ⊂Ω are pairwise disjoint (discon-
nected) Lipschitz polytopes that are contractible (i.e., topologically isomorphic to
the ball). Furthermore, we assume that the subdomains Ωi as well as the inclusion
regions Dk are resolved by a global mesh T η(Ω). For the sake of simplicity let
T h(Ω) and T η(Ω) be nested, shape-regular, and quasi-uniform with mesh sizes
h and η , respectively (h ≤ η). Our main assumption concerns the location of the
inclusion regions Dk relative to the interface.
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Assumption A1. Each region Dk, k = 1, . . . ,nH , is either
(a) an interior inclusion: Dk ⊂⊂Ωi for some index i,
(b) a docking inclusion: there is a unique index i with Dk ⊂Ωi and Dk∩∂Ωi 6= /0, or
(c) a (proper) face inclusion: there exists a subdomain face Fi j (shared by only two
subdomains Ωi, Ω j) such that

• Dk ∩Γ ⊂⊂Fi j,
• ∂ (Dk ∩Ωi)∩Fi j = ∂ (Dk ∩Ω j)∩Fi j,
• Dk ∩Γ is simply connected,
• the neighborhood Uk constructed from Dk by adding one layer of elements from

T η(Ω) fulfills Dk ⊂⊂Uk ⊂Ωi∪Ω j.

Above, ⊂⊂ means compactly contained. Note that since the regions Dk are dis-
joint and resolved by T η(Ω), in Case (c) above, it follows that α = αL in Uk \Dk.
The second condition in (c) avoids that a part of Dk is only “docking”. The third
condition ensures that Dk passes through the face Fi j only once.

Theorem 5. Let the above assumptions, in particular Assumption A1, be fulfilled.
For the case of classical FETI, assume that for d = 3 the intersection of a subdomain
with ΓD is either empty, or contains at least an edge of T η(Ω). For the case of
TFETI, assume that none of the docking inclusions in Assumption A1(b) intersects
the Dirichlet boundary. Then

κFETI ≤C(η)(1+ log(η/h))2 ,

where C(η) is independent of h, the number of subdomains, and αk, αL.

The dependence of C(η) on η can theoretically be made explicit but is ignored here.
In general, it is at least (H/η)2. Due to space limitations, we can only give a sketch
of the proof for the case of classical FETI; the detailed proof can be found in [12].
To get the condition number bound, we show estimate (6). If ker(Si) = span{1},
we choose W⊥i := {w ∈Wi : w∂Ωi = 0}, and W⊥i = Wi otherwise. Let w ∈W⊥ be
arbitrary but fixed. To estimate |PDw|S, we decompose the interface Γ into globs
g. These are vertices, edges, or faces of the mesh T η(Ω), with one exception: for
a face inclusion Dk, we combine all vertices/edges/faces of T η(Ω) contained in
Dk ∩Γ into a single glob g. Following [13, Lem. 3.21, Lem. 3.27], we get

|(PD w)i|2Si
≤ C ∑

g⊂∂Ωi∩Γ

∑
j∈Ng\{i}

(δ †
j|g)

2 |Ih(ϑg(w̃
g
ii− w̃g

i j))|
2
H1(Ui,g),α︸ ︷︷ ︸

=:ϒi,g

, (9)

where ϑg ∈ V h(Ω) is a cut-off function (yet to be specified) that equals one on all
the nodes on g and vanishes on all other nodes on Γ , Ih is the nodal interpolation
operator, and Ui,g = supp(ϑg)∩Ωi. The (generic) constant C above only depends
the shape regularity constant of T η(Ω) and is thus uniformly bounded. For j ∈Ng,
the function w̃g

i j ∈ V h(Ui,g) is an extension of w j (yet to be specified) in the sense
that w̃g

i j(x
h) = w j(xh) for all nodes xh on g. We treat two cases.
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Case 1: g is not part of a face inclusion, i.e., for all k ∈ {1, . . . ,nH} with Dk being a
face inclusion, Dk ∩g = /0. We choose the cut-off function ϑg like in [21, Sect. 4.6]
(where the subdomains there are the elements of T η(Ω)). Using that

(δ †
j|g)

2
ρi|g ≤min(ρi|g, ρ j|g) = αL ∀ j ∈Ng \{i}, (10)

and the available techniques from [16, 13], one can show that

ϒi,g ≤C ∑
j∈Ng

αL

(
ω

2 |w̃g
i j|

2
H1(Ui,g)

+
ω

η2 ‖w̃
g
i j‖

2
L2(Ui,g)

)
, (11)

where above and in the following, ω := (1+ log(η/h)).
Case 2: g is part of a face inclusion (see Assumption A1), i.e., there exists k with
g= Dk∩Γ . Recall that in this case g can be the union of many vertices/edges/faces
of T η(Ω). We choose a special cut-off function ϑg supported in Ui,g := Uk ∩Ωi:

• ϑg(xh) = 1 for all nodes xh ∈ Dk,
• ϑg(xh) = 0 for all nodes xh ∈ ∂Uk ∪ (Uk ∩ (Γ \g)),
• on the elements of the layer, i.e., those elements T ∈ T η(Ω) with T ⊂Uk \Dk,

we set ϑg to the sum of local cut-off functions (similar to Case 1).

By construction, ϑg = 1 on Dk, where α = αk. On the remainder, Uk \Dk, by the
assumptions on the coefficient, α = αL. A careful analysis shows that

ϒi,g ≤C ∑
j∈Ng

(
ω

2 |w̃g
i j|

2
H1(Ui,g),α

+αL
ω

η2 ‖w̃
g
i j‖

2
L2(Ωi∩(Uk\Dk))

)
. (12)

Choice of w̃g
i j in Case 1: We set w̃g

i j := Eh
j,gH

α,h
j w j, where H α,h

j : Wj → V h(Ω j)

denotes the discrete extension operator such that |w j|S j = |H
α,h

j w j|H1(Ω j),α
and

Eh
j,g is a suitable transfer operator (see [13, Sect. 2.5.7] or [16, Lem. 5.5]). This

results in the estimates

|w̃g
i j|H1(Ui,g)

≤C|H α,h
j w j|H1(U′j,g)

, ‖w̃g
i j‖L2(Ui,g)

≤C‖H α,h
j w j‖L2(U′j,g)

. (13)

where U′j,g ⊂Ω j is an element of T η(Ω) with g ⊂ U
′
j,g.

Choice of w̃g
i j in Case 2: Recall that in this case we are dealing with a face inclusion

such that g is part of the face shared by Ωi and Ω j and we choose Ui,g = Uk ∩
Ω j. To define the extension w̃g

i j ∈ V h(Ui,g), we shall combine the technical tools
from Sect. 4. Let U′j,g := Uk ∩Ω j. It can be seen from Assumption A1 that (Ui,g \
Dk, Ui,g∩Dk) is a quasi-mirror of (U′j,g \Dk, U

′
j,g∩Dk). We can therefore set

w̃g
i j := Π

h,α
j,g E α

j,gH
α,h
j w j ,

where Π
h,α
j,g is the Scott-Zhang interpolator from Lem. 2, E α

j,g the extension operator

from Lem. 1, and H α,h
j is defined as above. It has now to be argued that the trans-
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formation φ in Def. 3 can be chosen such that E α
j,gH

α,h
j w j is still piecewise linear

on the interface U ′
j,g∩∂Dk. This implies that w̃g

i j is indeed an extension of w j. Due
to the properties of the above operators, we obtain the total stability estimates

|w̃g
i j|H1(Ui,g),α

≤C|H α
j w j|H1(U′j,g),α

, ‖w̃g
i j‖L2(Ui,g)

≤C‖H α
j w j‖L2(U′j,g)

(14)

for all w j ∈ V h(∂Ω j), with C independent of αL and αk. Combining the local esti-
mates (11), (12), (13), and (14), using a finite overlap argument, as well as a con-
ventional Poincaré or Friedrichs inequality, one arrives at (6) with µ =C ω2.

6 Conclusions

Section 3 shows robustness of TFETI for (artificial) coefficients that are quasi-
monotone in boundary layers. Sect. 5 shows that these conditions are far from nec-
essary for the robustness of FETI or TFETI. Note that the assumptions and robust-
ness properties of Sect. 5 are similar to the theory in [11] for overlapping Schwarz.
Actually, several ideas from the latter theory have been reused in the analysis of
Sect. 5. However, the robustness for overlapping Schwarz requires a sophisticated
coarse space, whereas for FETI/TFETI, the usual coarse space can be used, which
simplifies the implementation a lot.

A combination of the two theories (Sect. 3 and Sect. 5) is of course desirable.
However, the general case of α remains open. The problematic cases in FETI/TFETI
are certainly (a) a multiple number of inclusions on vertices (or edges in 3D), and
(b) long channels that traverse through more than one face, or traverse a face more
than once; this is seen in numerical examples; see [12, Sect. 6].

Item (a) might be fixed using suitable FETI-DP/BDDC methods, and we hope
that novel analysis of Sect. 5 will have a positive impact here (the known theory of
FETI-DP/BDDC for multiscale coefficients is yet limited, cf. [13, 14, 9]). Item (b)
can only be addressed by a larger coarse space: either by FETI-DP/BDDC with
more sophisticated primal DOFs and/or by spectral techniques as suggested in [20].
Robustness in the spatial scale η is achieved neither in Sect. 3 nor Sect. 5. We
believe that the only possibility to gain robustness is a more sophisticated weight
selection (cf. Rem. 1) and probably again a larger coarse space.
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