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1 Introduction and motivations

In [2, 1] we have proposed an approach for the numerical naglef second-order
elliptic problems exhibiting a dominant direction in théehaviour: the solution
of interest can be regarded as a main component aligned lw@tbenterline of the
domain with the addition of local perturbations along tlamsverse directions. Ref-
erence application is given, e.g., by advection-diffusieaction problems in pipes
(like drug transport in the circulatory system). The badia of the approach is to
perform a finite element discretization along the mainstread a spectral modal
approximation for the transverse components. The ratoisathat the transverse
components are reliably captured by few modes (usualli0). In addition, the
number of modes can locally vary along the centerline to @rgdit the transverse
behaviour of the solution. Thus we get an actual hierarchedficed models: they
are essentially locally-enriched 1D models and differ for tevel of detail in de-
scribing the transverse behaviour of the full problem. Fis teason, we defined
this approach Hierarchical ModeH{-Mod) reduction.

So far we have essentially applied the Hi-Mod approach tdlirezar domains
[1, 2, 4]. This implies significant simplifications in the cpuatation of the reduced
model. Nevertheless, domains with a curved centerline k@lg of paramount
interest for practical applications. Aim of this paper igprform a complete devel-
opment of the Hi-Mod reduction in a generic non-rectilindamain.

2 Thegeometrical setting

A Hi-Mod reduction procedure relies upon a specific shapenefdomputational
domainQ ¢ IRY, with d = 2,3. More precisely, we assun@ to coincide with

a d-dimensionalfiber bundle where we distinguish a supporting one-dimensional
curved domaim2;p (aligned with the mainstream), and a set@f- 1)-dimensional
transverse fiberg  IRY~! (associated with the transverse components of the so-
lution). Following [1, 2], we map the current domaéd into a reference domain,

Q = Qip x Yy_1, With Q1p a straight line andy_1 a reference (transverse) fiber of
the same dimension 3s For this purpose, we introduce the mé#p Q — Q and

we denote by = (x,y) € Q andZ = (X,y) € Q a generic point i and the corre-
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Fig. 1 Sketch of the main geometrical quantites involved in the Hid\dooceduresd = 3)

sponding point in2, respectively so tha=W¥(z) = (¥4(z), %(2)), with X = W4 (2)
andy = Y(z). Likewise, we introduce the inverse map: Q — Q, defined as
zZ=®(2Z) = (P1(2), P2(2)), with x = P1(Z) andy = P,(Z) (see Fig. 1). Without
loss of generality, we assun2,p to coincide with the centerline @?, and analo-
gously forQip. We assume that bot® and @ are differentiable with respect o

Then, we define the Jacobian associated with the ¥hap

o
L W17}

@=2%_|x 7| R (1)
ax y

wherely is the gradient with respect o Notice that the first row in (1) accounts
for the centerline deformation and it is not trivially thesfirow of the identity matrix
as in the rectilinear case ([2]).

3 TheHi-Mod reduction procedure

Let us first introduce the model we aim at reducing, i.e., thealledfull problem
In particular, we consider directly the weak formulatioivem by

findueV : a(uv)=F(v) WeV, (2)

with VV a Hilbert spacea(-,-) : V xV — IR a continuous and coercive bilinear form
andF(-) : V — IR a continuous linear functional. Since we deal with secorakr
elliptic problems, we have C H1(Q).

The Hi-Mod reduction strongly relies upon the fiber struetof Q. The idea
is to tackle the dominant and transverse components of theigoin different
ways. In particular, with reference 1@, we introduce a one-dimensional spa@%
of functions compatible with the boundary conditions aseiyalong the extremal
faces ofQ, and a modal basi$@y}..n+ Of functions orthonormal with respect
to the L2-scalar product oiyy_1 and taking into account the boundary conditions
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imposed on the lateral faces &F. A suitable combination of the spalsv%1D with
the modal basis allows us to introduce a so-calfiedlarchically reduced modeln
particular, in the following, we focus on two possible Hi-Mpeduction procedures
proposed in [1, 2] and here generalized to the non-rectificase.

3.1 Uniform Hi-Mod reduction

The reduced spad&, characterizing a uniform Hi-Mod reduction essentiallyrcoi
cides with the set of the linear combinations of the modatfioms whose coeffi-
cients belong to the one-dimensional sp‘ds%, ie.,

Vin= {un(@) = 3 (W (2)) 9u(44(2). with v Vi ). @)
k=1

The mapW¥ plays a crucial role since all the functions involved arerdedion the
reference framework. Spad, establishes an actubkierarchyof reduced models
marked by the modal index, i.e., by the different level of detail in describing the
transverse behaviour of the full solution. The uniform Hedreduced formulation
for (2) reads: given a modal indeme IN™, find up, € Vi, such that

a(umavm) =F (Vm) VVm € Vm. (4)

To guarantee the well-posedness and the convergenggof, we introduce a con-
formity (Vim C V,¥Yme IN™) and a spectral approximability (I e (infy,ev, [[V—
Vm|lv) = 0,Vv € V) assumptions ok, ([1, 2]).

Let us detail now the uniform Hi-Mod reduction procedure ospecific dif-
ferential problem. In particular, we select the full mod2) és a standard linear
scalar advection-diffusion-reaction (ADR) problem coetpt with full homoge-
neous Dirichlet boundary conditions, so that H3(Q),

a(u,v) = /K;UDU'DVd-Q‘f‘/;) (b-Ou+ ou)vdQ, F(v):/;2 fvdQ, (5)

and where the following choices are made for the problem wedasure the well-
posedness of the weak form (&) L2(Q), u € L®(Q), with u > o > 0 a.e. in

Q,0€L°(Q),b=(by,by)T €L®(Q) x [L®(Q)]9L, with O-b € L*(Q) and such
that—30-b+0 > 0a.e.inQ.

Now we consider the reduced model (4); we replagewith the corresponding
modal representationn(z) = 3, uj(#4(2))9;(¥4(z)) and v with the product

3 (Yi(2)) dx(¥5(2)), whered , u; Vo, = H&(f)m) for j=1,...,m, to get

5 [ [, 0 402) 4 4) - D@ b)) a2 ©)
=
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+ [ b2) D(uy (W(2) 4)(4(2)) 9 (H(2) h(44(2)) de
+ | 0@ (@) 4i(45(2)9 (44(2) fu((2)) 402
= | @9 (%) h(42(2)dQ.

wherelJ denotes the gradient with respeciztd’ he actual unknowns of the Hi-Mod

reduced formulation (4) are the modal coefficiemts Vﬁm' We expand separately
the four integrals, by exploiting the gradient expansion

OW(Wi(2))¢s(¥2(2))) =
0¥ (2) 0%%(2)
W (H(2)) ps(¥a(2)) [ ox ] +W(Hi(2))ps(H5(2)) { ox ]
Oy¥i(2) Oy4(2)

wherew (¥4(2)) = dw/dX|g_y; (), §5(%6(2)) = dds/dY|y—_uys () and withw € Vﬁm'
The idea is to rewrite each term on the reference domain hyeplyexploiting the
maps¥, @. Let us first consider the diffusive contribution in (6):

/“ a(i))) + (0 %(@@))°] 4,9 ®

v ["%;X( ” D) 1oy @)0, o <>>} @)
[91F)BGGRS (R +9](7) 8Ty (R ()]

b [(PEZEN (0,0(02)7] /0T (R9 (0 } .7 (@),

with .# the Jacobian defined in (1). The convective term is changed in

LA @ ™A 4 by0)0,6(02)] 6:9) 8050 09
[ba(@(2) 220 by 0(2)) 0,95(0(2) 6] 9) 86y (009 (0}

.7 H(®(2)]dQ, (8)
while, for the reactive term, we have
/ﬁ o (®(2))9;(§)ox()Uj (X9 (%) H(D(2))] dQ. ©)

Finally, for the source term in (6), we simply obtain

[ f(@@)99)9 (017 H(@(@) 2. (10)
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From (7) we notice that the treatment of the diffusive termegates advective and
reactive contributions in the reduced setting. Similahg reduced convection term
(8) features also a reactive contribution. A straightfadveombination of (7)-(10)
leads to the following Hi-Mod reduced formulation for the Rproblem defined in
(5): find u; er_,lD with j =1,...,m, such that, for any evﬁm andk=1,...,m,

Zl { _ /ﬁm [ﬁfj’l&) U5 (%) 9" (%) + 7y PR U5 (%) 9 (%) + Fg™ (%) uj (%) 8/ (%) (11)

+ 7P Ru®em|at = [ [ [ 1(0@)e)lr (@(@)]dy]9(Rex

where

RE(R) = /y %9 H@@)d, st=01 k=1..m (12)
d-1

with
'@ = 1(®2) @) 9 §)o(T), 1 (2) = u(P(2)3(2) $](T)9x(),
r°(2) = u(®(2)) 5(2) 6;(9)di(Y) + Bu2) $; (T w(Y), (13)

re’(2) = u(P(2) a2(2)9] (V) $(¥) + B2(2) §] (V) $(T) + 0 (P(2)) ; (V) bk (T,

ai(2) = (M)2+ (Dy‘”(‘p(?)))z =12,

ox
Bi(2) = bl((D(f))w +bo(®(2))-O,H(P(2)) =12, (14)
o(2) = PPN TEID) . 0, w0) 0,s(0)

In the reduced model (11) the dependence of the solution@xdiminant and on
the transverse directions is split. The Hi-Mod reductioogedure yields apecial
one-dimensional modeksociated with the main curved stream, whose coefficients,
?ksj‘t, are properly enriched to include the effects of the trarss/eomponents. In
particular, the coefficients in (13) reduce to the ones irf¢tfectilinear domains,
whered¥; /ox = 1 andly ¥ = 0. From a computational viewpoint, the solution to
(11) requires solving a system wfcoupled one-dimensional problems instead of a
full d-dimensional problem. Following [1, 2], we discretize tae problems by
introducing a finite element discretization alofXjp, while preserving the modal
expansion in correspondence with the transverse directMe are led to solve a
linear system with am x m block matrix, where each block is af x N, matrix
with the sparsity pattern of the selected finite elementapgowith dim(X,) = Np,.

An appropriate choice of the modal indexin (3) is certainly a critical issue of
the uniform Hi-Mod reduction. In [2] a “trial and error” apmach is suggested:
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we move from the computationally cheapest chaite- 1 and then we gradually
increase such a value until the addition of the successiv@ahfanction does not
significantly improve the accuracy of the reduced solutibinis strategy may be
sometimes speeded up, e.g., when a partial physical kngevletithe phenomenon
at hand is available, so that the initial guess can be prppalibrated.

3.2 Piecewise Hi-Mod reduction

The uniform approach may become really uneffective whemtbaningful trans-
verse components of the solution are strongly localizedrgel number of modal
functions is employed on the whof2, even though it would be strictly necessary
only where significant transverse components are presbistjustifies the proposal
of a new formulation, where a different number of modes isleyega in different
parts ofQ: many modes where the transverse components are impdexmodes
where these are less significant. The modal inddecomes therefore a piecewise
constant vector: this justifies the name of this approacimdre detail, let us assume
to locates subdomaing2; in Q such thatQ = U?_; Q;, with 5; = Q; N Qi1 the in-
terface betwee®; andQ; 1, and Iet{f)i}?=1 be the corresponding partition @,
with 5 = W)= QiN Qi1 (see Fig. 1). In particular, we emplay modal func-
tions onQ;, fori =1,...,s. Following [3], the piecewise Hi-Mod reduced formula-
tion for (2) reads: given a modal multi-index = {m}$_, € [IN*]3, find um € VB,
such that

ag (Um,Vin) = Fo(Vm)  VVim € V2, (15)

whereag (Um,Vim) = ¥4 & (Um|a; Vin @), Fa(Vim) = 351 Fi(Vin|gy) with a(-,-)
and.% () the restriction ta®; of the bilinear and of the linear form in (2), respec-
tively. The reduced space in (15) is a subset of the brokenl8ebpacei(Q, 7)
associated with the partitioflp = {Q;}?_,, and it is defined by

mo
Vnt')l = {Vm € LZ(Q) : Vm‘.Qi(Z) = Z Vlk((.l.l_l_(z))(pk(q_lz(z)) c Hl(Q|)
k=1
Vi=1,...,s withvi e H}(Qip ) and s.t.yk=1,...,m with j=1,...,5-1,
/VLH Vinl @1 (P(Z))) = Viml @, (@(Z)))] $(¥) dY = 0}7

with m’L =min(m;, m;j;1) andﬁlD,i = ﬁlD N ﬁi. The integral condition weakly en-
forces the continuity of the solution in correspondencéwit minimum number of
modes employed on the whot2. This does not guaranteepriori the conformity

of the reduced solution, (see section 4.2.2 in [2] for more details). According to
[3], we resort to a relaxed iterative substructuring DiletiNeumann method to im-
pose the weak continuity at the interfaces. From a communaliviewpoint, at each
iteration of the Dirichlet/Neumann scheme, we apply a uniféli-Mod reduction
on each subdomaif?;, i.e., we solves systems of coupled 1D problems which are
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Fig. 2 Full solution and uniform Hi-Mod reduced solutiong us, uz (top-bottom, left-right)

suitably approximated via a finite element discretizatitong Qup, analogously
to the uniform case. The choice of the modal multi-ingexn (15) is hereafter
based on af priori approach, driven by some knowledge of the solutioifhe

generalization of the approach proposed in [3] for re@#indomains, where amn
posteriorimodeling error estimator drives the automatic selectiobath theQ;’s

andm is a possible follow up of this work.

4 Numerical results

We numerically assess the two proposed Hi-Mod reductiocqatores in a two-
dimensional setting. In particular, we use affine finite edats to discretize the
problem alongQ4p, while employing sinusoidal functions to model the tramsee
components. We evaluate the integrals of the sine functi@Gaussian quadrature
formulas, with, at least, four quadrature nodes per wagglerOf course, different
choices are possible for the modal basis (Legendre polysisnwavelets, suitable
eigenfunctions).

We reduce the ADR problem defined in (5) on the annular reglobetween
the two concentric circles? 4+ y? = 1 andx? +y? = 9. We selec = 1, the circu-
lar clockwise advective fielth = (30sinatan2y,x)), —30 cogatanZy, x)))T, with
—mn<atan?y,x) < 1, 0 = 30x+ with x+ = {(X,y) € Q : x> 0}, and the source term
f = 1000xp localized in the small circular regidd = {(x,y) : (x+2)?+(y—1)? <
0.05}. Finally, full homogeneous Dirichlet boundary conditiamnplete the prob-
lem. The choice of the data identifies a full solution chazdzed by a peak iD; it
is convected by the field and damped by the reaction (see Fig. 2, top-left).
Figure 2 gathers the reduced solutions provided by the umitdi-Mod reduction
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Fig. 3 Piecewise Hi-Mod reduced solutiongs 1, (left) anduy7 3 (right)

for different choices of the modal indew and when a uniform finite element dis-
cretization of sizeh = /40 is employed or2;p. Solutionug clearly fails in de-
tecting the peak iD. At least seven modal functions are demanded to get a reliabl
reduced model: the peak afis well captured for this choice, while the successive
modes essentially do not improve the accuracypf

The most significant localization of the transverse comptsim the left part of
Q suggests us employing a higher number of modes in this péneadomain, ac-
cording to a piecewise Hi-Mod reduction. We sglitinto two subdomains via the
interface>; = {0} x (1, 3); then we make two different choices for the modal multi-
index,m = {5,1} andm = {7,3}, while preserving the finite element partition of
the uniform approach. Concerning the domain decomposiigorithm, we set the
convergence tolerance for the relative error to3@nd the relaxation parameter to
0.5. Moreover, to guarantee the well-posedness of the ADRreblgms, we assign
the Dirichlet and the Neumann condition on the right- andhenléft-hand side of
21, respectively. The algorithm converges after ten iteretifor both choices ah.
Figure 3 shows the reduced solutiang ;, (left) andu7 3 (right) at the last iter-
ation. As expectedy; 3, provides a better approximation of the full solution; in
particular, by comparing the color maps, we can state uhai, essentially coin-
cides withuz in Fig. 2, bottom-right. Finally, according to [2], boths 1, andu,7 3,
areH-conforming approximations: the model discontinuity awB; is therefore
consequence of the truncation of the iterative domain deosition algorithm.
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