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1 Introduction

In geological media, the large variety and complex configurations of fractured net-
works make it difficult to describe them precisely. A relevant approach is to model
them as Discrete Fracture Networks (DFN)[10, 19], with statistical properties in
agreement with in situ experiments [15, 13, 14]. A DFN is a 3D domain made of 2D
fractures intersecting each other. Steady state flow in DFN is considered, the rock
matrix is assumed impervious. Following a Monte-Carlo approach, a large number
of DFN has to be generated and for each, a flow problem has to be solved what-
ever the complexity of the generated networks. Moreover time and memory costs
for each simulation should be as lower as possible.

A nonconforming discretization of DFN allows to reduce the number of un-
knowns and facilitate mesh refinement. Sharp angles are managed by a staircase-
like discretizations of the fractures’ contours [34]. The non-matching feature at the
fractures’ intersections is handled via a Mortar method [4,5, 1] developed for DFN
in [33, 34] for a mixed hybrid finite element formulation. It consists in defining, for
each intersection between fractures, master and slave sides. Due to the staircase-
like discretizations, asharededge may be labeled several times with master and/or
slave properties, it is called in the paper a multi-labeled edge. Continuity conditions
are enforced between the unknowns on both sides. The derivedlinear system has
only inner and master traces of hydraulic head as unknowns. The matrixA of this
system is a symmetric definite positive (SPD) arrow matrix inpresence of Dirichlet
boundary conditions [34].

The challenge is to solve such linear systems with millions of unknowns [17]. Di-
rect solvers (like Cholmod [11]) are very efficient for smallsystems but suffer from
a high need of RAM memory when the system size becomes too large.Among itera-
tive solvers, multigrid methods are very efficient for most networks but for some, the
convergence rate is very slow [35, 17]. Preconditioned Conjugate Gradient (PCG)
is efficient and robust for every network tested [35].The natural decomposition of
the matrixA in subdomains encourages the use of domain decomposition methods
[7, 36, 31, 24]. The Schur complement of the matrixA is SPD and yields an interface
system with only master unknowns. This interface system canbe solved iteratively
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with PCG. The unknowns on inner edges are then derived locally in each fracture
plane by solving small local linear systems, with a direct solver for example.

Among possible preconditioners, the balancing domain decomposition (BDD)
method is based on a Neumann-Neumann preconditioner coupled with a coarse
level solver, to improve the preconditioner as the number ofsubdomains increases
[29, 30, 27]. BDD method applied to mixed finite element is done in [12]. The ap-
plication to a nonconforming discretization is proposed in[18, 32]. Meanwhile, an
alternative method has been developed, the Balancing Domain Decomposition by
Constraints (BDDC) [16], later applied to mortar discretization for geometrically
nonconforming partitions in [26].

In this paper, we use the BDD algorithm proposed in [32, 35] tosolve the linear
system arising from a nonconforming discretization of DFN.The coarse level is
defined following [37] and balancing is implemented as a preconditioning matrix
[21]. The algorithm is implemented in C++ in the parallel software SIDNUR [35].
For DFN, choosing one subdomain given by one fracture, instead of a set of fractures
has shown to be the most time saving decomposition [35].

The paper is organized in four sections. Section 2 describesthe flow model. Sec-
tion 3 recalls the linear system derived from a nonconforming discretization of the
DFN. Section 4 is the main contribution of this paper and presents the decomposi-
tion in local matrices. We apply the BDD method proposed in [32, 35] for networks
satisfying some hypotheses on the mesh. The last section illustrates the application
of the solver SIDNUR [35] on three stochastically generatedDFN.

2 Flow model

We consider flow in DFN assuming the rock matrix is impervious. In the entire
paper, an intersection is uniquely defined as the segment shared by two fractures.
We denoteΣk the kth intersection,k = 1, ...,Ni.

Poiseuille’s law and mass conservation apply in each fracture plane, denotedΩ f ,
f = 1, ...,N f . We assume there is no longitudinal flux at the fracture intersections.

The DFN is embedded in a cube of sizeL. Some fractures are truncated by the
cube faces. Classical permeameter boundary conditions apply on the cube faces.
The two opposite faces of the cube with Dirichlet boundary conditions (prescribed
valuepD) are calledΓD (ΓD 6= /0) and the lateral faces with homogeneous Neumann
boundary conditions are calledΓN . The boundary of the fracturef is calledΓf . In
the following, we assume there is only one cluster of fractures connected to the
Dirichlet boundary conditions and we consider only this cluster.

In each fracture plane, withx ∈ R
2, the following equations link the unknown

hydraulic head scalar functionp(x) and the flux per unit length functionu(x):

∇ ·u(x) = f (x) for x ∈ Ω f , (1)

u(x) =−T (x)∇p(x) for x ∈ Ω f , (2)

p(x) = pD(x) onΓD ∩Γf , (3)
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u(x).ν = 0 onΓN ∩Γf , (4)

u(x).µ = 0 onΓf \{(Γf ∩ΓD)∪ (Γf ∩ΓN)}, (5)

whereν (respectivelyµ) denotes the outward normal unit vector of the borders with
respect to the fractureΩ f . The parameterT (x) is a given SPD transmissivity field
(unit [m2.s−1]). The functionf (x) ∈ L2(Ω f ) represents the sources/sinks.

Let Il be a segment shared by several incident fractures,l = 1, ...,Nl . It can be
the intersection itself or only a part of it if intersectionsoverlap.Let Fl be the set of
fractures which containsIl . On eachsegment, continuity conditions are imposed to
ensure the continuity of hydraulic heads and the conservation of fluxes [20], [38]:

p f ,l = pl onIl , ∀ f ∈ Fl , (6)

∑
f∈Fl

u f ,l .n f ,l = 0 onIl , (7)

wherep f ,l is the trace of hydraulic head onIl in the fractureΩ f , pk is the unknown
hydraulic head on the segmentIl andu f ,l .n f ,l is the normal flux throughIl coming
from the fractureΩ f , with n f ,l the outward normal unit vector of the segmentIl

with respect to the fractureΩ f .

3 A Mortar method applied to DFN

3.1 Mesh generation

With a stochastic generation, fractures can cross in a very intricate way.We define
the contour of a fracturef as its border and all segmentsIl which belong tof . To
preserve a good mesh quality whatever the generated fractured networks, staircase
like discretizations of thecontourare performed in each fracture plane.

Each fracture is meshed with its own mesh step:

1. A temporary uniform grid is built that encompasses the fracture, with a grid step
chosen as input;

2. 1D staircase-like meshes of thecontourare built using the centers of the grid
elements as discretization points;

3. From these 1D discretizations, a 2D triangle mesh of the fracture is built.

We call shared edges the edges of the triangles that discretize the segmentsIl ,
l = 1, ...,Nl within the different fractures inFl . All other edges are called inner
edges. Notice a given segmentIl may have different discretizations in the different
fractures inFl as shown on figure 1.The total mesh is made ofNin inner edges and
of NΣ shared edges. In the following, we will use the subscriptin to refer to the
inner edges andΣ to shared edges.
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Fig. 1 Mesh generation - Simple example with two fractures

3.2 Derivation of the linear system

The Mortar method applied to DFN is presented in [34]. It consists, for each in-
tersectionΣk, of choosing a master fracturem and a slave fractures. We denote

Nm =
Ni

∑
k=1

Nk,m, Ns =
Ni

∑
k=1

Nk,s, with Nk,{m,s} the number of edges that discretize the

master (respectively slave) side of the intersectionΣk.
The traces of hydraulic head unknowns areΛin on inner edges,Λm andΛs on

master and slave edges. Additionnally,each shared edgehas an unknown calledΛΣ .
The additional unknownsΛΣ allow to deal with multi-labeled edges which belong
to several intersections. The unknownsΛs andΛΣ are derived fromΛm following
the relations (see [34]):

Λs =CΛm, (8)

ΛΣ = PmΛm +PsΛs = (Pm +PsC)Λm. (9)

The matrixC is an intersection block matrix of dimensionNsxNm, with the blockCk

a matrix of sizeNk,sxNk,m for the intersectionΣk that represents theL2-projection
from the master side to the slave side.

Let denotemE (respectivelysE ) the number of timesa shared edgeE is labeled
with a master (respectively slave) property. LetnE = sE +mE . The values(i, j) of

the matricesPm (respectivelyPs) of sizeNΣ xNm (respectivelyNΣ xNs) is
1

nE
if the

unknownΛm( j) (respectivelyΛs( j)) is associated to an edge withΛΣ (i) asshared
unknown, and 0 otherwise.

At the network scale, the linear system reduces to a system with unknownsΛin

andΛm [34]:
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A

(

Λin

Λm

)

=

(

Fin

Fm

)

. (10)

The second member is a vector of dimensionNin +Nm, which corresponds to the
source/sink function, to the imposed Dirichlet and Neumannboundary conditions.

The matrixA is SPD in presence of Dirichlet boundary conditions [34] andwrites
as:















A =

(

Ain,in Ain,m

AT
in,m Am,m

)

,

Ain,m = Ain,Σ (Pm +Ps C),

Am,m = (Pm +Ps C)T AΣ ,Σ (Pm +Ps C).

(11)

The matrixAin,in is a block diagonal matrix of orderNin made of blocksA f ,in,in

associated to the inner edges in the fractureΩ f .

4 A Mortar BDD method for DFN system

The arrow shape of the matrixA allows to reduce the linear system(10) to an inter-
face problem with onlyΛm as unknowns:

SΛm = Bm, (12)

S = Am,m −AT
in,mA−1

in,inAin,m, (13)

Bm = Fm − (PT
m +CT PT

s )AT
in,Σ A−1

in,inFin. (14)

with S the Schur complement of sizeNmxNm.
Since S is SPD, the linear system(12) can be solved iteratively via a PCG

method. To apply a balancing preconditioner, we need the local Schur complements
S f , f = 1, ...,N f .

4.1 Local Schur complements

Let N f ,m (respectivelyN f ,s) be the number of master (respectively slave) unknowns
associated with master (respectively slave) edges in the fracture f . Let N f ,o be the
number of master unknowns associated with the slave edges inthe fracturef fol-
lowing the relations(8). Let N f ,Σ be the number ofsharededges in the fracturef .
We define the local matrices(Pm +Ps C) f as:

(Pm +Ps C) f =
(

Pf ,m Pf ,sC f
)

(15)

with Pf ,m of size N f ,Σ xN f ,m and Pf ,s of size N f ,Σ xN f ,s. The matrixC f of size
N f ,sxN f ,o is a block matrix whose blocksCk are extracted from the matrixC for
the intersectionsΣk in the fracturef .
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The local problem in the fracturef writes as:

A f ,Σ =

(

A f ,in,in A f ,in,Σ
AT

f ,in,Σ A f ,Σ ,Σ

)

(16)

Its associated Schur complement writes as:S f ,Σ = A f ,Σ ,Σ −AT
f ,in,Σ A−1

f ,in,inA f ,in,Σ .

At the fracture scale, local matricesA f , of order(N f ,in +N f ,m +N f ,o) are built
from A f ,Σ :























A f =

(

A f ,in,in A f ,in,m

AT
f ,in,m A f ,m,m

)

,

A f ,in,m =
(

A f ,in,Σ Pf ,m A f ,in,Σ Pf ,s C f
)

,

A f ,m,m =

(

PT
f ,mAΣ ,Σ Pf ,m PT

f ,mAΣ ,Σ Pf ,s C f

(PT
f ,mAΣ ,Σ Pf ,s C f )

T (Pf ,s C f )
T AΣ ,Σ Pf ,s C f

)

.

(17)

The blockA f ,in,m is of sizeN f ,inx(N f ,m +N f ,o) and the blockA f ,m,m is of size
(N f ,m +N f ,o)x(N f ,m +N f ,o).

The local Schur complementS f associated to the matrixA f (17) of the fracture
Ω f writes:

S f = A f ,mm −AT
f ,in,m A−1

f ,in,in A f ,in,m = (Pm +Ps C)T
f S f ,Σ (Pm +Ps C) f . (18)

As each intersection involves two fractures, one slave and one master, the Schur
complementS of sizeNmxNm is the sum of the local Schur complements:

S =

N f

∑
f=1

RT
f S f R f , (19)

whereR f is the rectriction matrix from the network to the fracturef .

4.2 Neumann-Neumann preconditioner

In the following, a subdomainΩ f is said to be floating if it does not contain any
Dirichlet boundary conditions, non floating otherwise.

The Neumann-Neumann preconditioner [25, 9, 28] writes as:

M−1
NN = D∑

f

RT
f S†

f R f D, (20)

where

S†
f =

{

S−1
f if S f is non singular,

S̃−1
f otherwise, withS̃ f a non singular approximation ofS f .

(21)
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The matrixD is a diagonal matrix of orderNm. With a nonconforming discretiza-
tion, a definition of one fracture as one subdomain and an homogeneous transmis-
sivity, D = 1

2Id since each master unknown is defined for an intersection between
two subdomains.

From the definition ofM−1
NN , one needs to solve local subdomain problems with

the matrixS f , like S f z f = r f . However the kernel ofS f may not be trivial. If the
matrix (Pm +PsC) f is of full rank, the kernel ofS f is that if S f ,Σ : {0} for a non
floating subdomain, else{const}. We assume that(Pm +PsC) f is of full rank if the
following conditions are satisfied:

(H1) the master side of an intersection must have the smallest number of
discretization edges:Nk,m ≤ Nk,s,∀k ∈ 1, ...,Ni;

(H2) There are no multi-labeled edges:nE = 1 for eachsharededgeE yield-
ing: NΣ = Nm +Ns.

If the subdomain is floating, in order to get a SPD approximation S̃ f , we add one
arbitrary Dirichlet condition, since the kernel is of dimension 1 [35].

4.3 Balancing preconditioner

As the number of subdomains increases, the efficiency of the Neumann-Neumann
preconditioner decreases [27] and one has to couple it with acoarse level solver
[29, 30]. We use the following balancing preconditioner:

M−1
b = PT M−1

NN , (22)

as in [37, 21, 35] where the projection matrixP, of orderNm, is defined as:

P = I −SZ S−1
c ZT . (23)

The matrixZ is a Nmx Nc subspace matrix with full rank,Nc < Nm, andSc =
ZT SZ is the invertible matrix corresponding to the coarse problem.

This formulation is based on the PCG initial value:

Λm,0 = Z S−1
c ZT Bm, (24)

such that, for all iterationsit of PCG, the residualsrit = SΛm,it −Bm satisfyZT rit = 0
andPrit = rit [35]. Thus applying(22) is equivalent to applyPT M−1

NN P+Z S−1
c ZT

[37, 35].

A possible choice for the full rank matrixZ is to use a subdomain deflation as
defined in [22, 35].HereNc ≤ N f andZ is sparse.
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5 Numerical experiments

We present preliminary numerical experiments on three random DFN that satisfy
hypotheses(H1)− (H2), generated with the software MPFRAC of the H2OLab
platform http://h2olab.inria.fr/. We checked there is only one con-
nected cluster. We build the local matricesA f and use the software SIDNUR which
implements the BDD method [35].

5.1 Geometry and boundary conditions

The position of the fractures is taken as uniform in the domain. Their orientation
is uniform and their length follows a power law distributionof exponent 2.7 [8].
We takepD = 1m on the cube face aty = L/2 andpD = 20m on the cube face at
y = −L/2. The transmissivity tensor is homogeneous and equal toT = T Id, with
T = 8.2e−7 m2.s−1. We consider 3 networks:

• L6 NF28: L=6 andN f =28;
• L10 NF18: L=10 andN f =18;
• L10 NF24: L=10 andN f =24.

5.2 Mesh procedure and basic optimization

The nonconforming mesh is generated according to the mesh procedure described
in subsection 3.1. With this approach, adaptative mesh refinement can be done at
the fracture level [2, 3, 39, 6].

A basic mesh coarsening consists in meshing finely only the fractures that take
part significantly in the flow. Let us run a first simulation with a coarse mesh step
2∗∆ . The output flux for each fracture is computed, as well as the total output flux
on the output cubic face. We choose to refine, with a mesh step∆ , the fractures that
have an output flux above 5 % of the total output flux. The simulation is performed
again on this refined mesh.

In table 1, we compare the mesh obtained with this basic mesh coarsening, so-
called coarser mesh, with a mesh where the step is∆ for all fractures, so-called fine
mesh. The min and mean of the quality mesh criterionQK ∈ [0;1] is also given,
whereQK is defined for each triangleK as [23]:

QK = 4
√

3
SK

h2
s
, (25)

with SK the surface of the triangleK andhs =
√

∑3
i=1 h2

i , with hi the length of the
edgei of the triangleK. The closerQK is to 1, the better the triangle quality is.
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Table 1 Comparison between a mesh with step∆ for all fractures and a mesh with step∆ for
fractures with an output flux above 5 % of the total output flux and 2∗∆ otherwise

Simulation name ∆ Fine mesh - step∆ Coarser mesh - step∆ or 2∆
Number of edgesMin(QK ) Mean(QK ) Number of edgesMin(QK ) Mean(QK )

L6 NF28 0.05 122306 0.43 0.95 90533 0.23 0.95
L10 NF18 0.1 62409 0.45 0.95 57462 0.19 0.95
L10 NF24 0.1 78652 0.51 0.95 67765 0.25 0.95

Table 1 shows that this basic mesh coarsening reduces the number of edges from
7.93 % to 25.96 % at the price of somehow lower mesh quality. Indeed the length
of some fractures is too small compared with 2∆ , yielding too few discretization
points. As future work, we could define a minimal mesh step perfracture according
to its length.

5.3 Solution with SIDNUR

Using the coarser mesh, we solve the linear system(12) with the BDD method. We
checked these networks satisfy hypotheses(H1)− (H2). From the computed val-
ues ofΛm, we derive the unknownsΛs andΛΣ according to(8)− (9). The inner
unknownsΛin are derived locally in each fracture plane by solving small linear sys-
tems (see(10)). From these traces of hydraulic head unknowns, one can derive the
mean head values and the fluxes [34]. Figures 2, 3 and 4 give themean head values
on the three DFN.Figure 5 displays the mean head values for the DFNL10 NF24
obtained by solving the linear system(12) with CHOLMOD to illustrate the good
agreement of the results obtained with the two methods.

Table 2 gives the numbersNin, Nm andNs with NΣ = Nm +Ns (hypothesis(H2)).
This table also provides the number of PCG iterations, the final L2-norm of the

residual and theL2-norm of therelative differencebetween the solutions

(

Λin

Λm

)

computed with SIDNUR and with the direct solver CHOLMOD [11].

Table 2 Solution with SIDNUR. Comparison with CHOLMOD

Simulation name Nin Nm Ns # PCG it.PCG final residualComparison with CHOLMOD
L6 NF28 89732365 436 13 6.02e-17 4.15e-12
L10 NF18 56939247 276 15 2.47e-18 9.56e-13
L10 NF24 66899412 454 18 8.71e-19 1.47e-12

On such small linear systems with very small CPU times, the solver SIDNUR is
not competitive with respect to a direct solver. However this preliminary test phase
demonstrates the possibility of solving linear system arising from a nonconform-
ing discretization of networks satisfying hypotheses(H1)− (H2) with the BDD
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Fig. 2 L6 NF28 - Mean head - SIDNUR Fig. 3 L10 NF18 - Mean head - SIDNUR

Fig. 4 L10 NF24 - Mean head - SIDNUR Fig. 5 L10 NF24 - Mean head - CHOLMOD

method. Using SIDNUR relies on a suitable decomposition of the local matrices.
Moreover SIDNUR requires less RAM memory than a direct solver and is parallel.

6 Conclusion

This paper describes a Balancing Domain Decomposition method, implemented in
the so-called SIDNUR solver, to simulate flow in DFN with a nonconforming mesh.
DFN and local matrices are generated with the so-called MPFRAC software. Our
current work is to extend the method to more general discretizations, which do not
satisfy hypotheses(H1)− (H2), in the perspective of solving linear systems with
several millions of unknowns. The parallelism of SIDNUR will be very helpful
to reduce the time and memory costs. Moreover the very basic technic we use to
coarsen the mesh could be improved by defining suitablea posteriori estimators.
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