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1 Introduction

Thin covers from different materials are often applied in engineering to improve the
functional properties of the surfaces of machines and structures components. On the
other hand, thin covers with certain mechanical properties are used to model the real
microstructure of surfaces, adhesion and glue bondings [6, 14, 15].

The classical methods for solution of contact problems for bodies with thin cov-
ers are grounded on integral equations and are reviewed in work [15]. Nowadays,
one of the most effective numerical methods for such contact problems are methods,
based on variational formulations and finite element approximations.

Efficient approach for solution of multibody contact problems is the use of do-
main decomposition methods (DDMs). Many DDMs for contact problems without
covers are obtained on discrete level [3, 16]. Among DDMs, proposed on continu-
ous level for contact problems without covers are methods presented in [1, 9, 12].
Domain decomposition methods for solution of problem of ideal contact between
two bodies, connected through nonlinear Winkler layer are proposed in [2, 8]. These
methods are based on saddle-point formulation and conjugate gradient methods.

In current contribution we consider a problem of unilateral contact between elas-
tic bodies with nonlinear Winkler covers. We give variational formulations of this
problem in the form of nonquadratic variational inequality on convex set and non-
linear variational equation in the whole space, and present theorems about existence
and uniqueness of their solution. Furthermore, we propose on continuous level a
class of parallel domain decomposition methods for solving the nonlinear varia-
tional equation, which corresponds to original contact problem. In each iteration of
these methods we have to solve in a parallel way linear variational equations in sep-
arate bodies, which are equivalent in a weak sense to linear elasticity problems with
Robin boundary conditions on possible contact areas. These DDMs are based on
abstract nonstationary iterative methods for variational equations in Banach spaces.
They are the generalization of domain decomposition methods, proposed by us ear-
lier in [4, 5, 10] for unilateral contact problems without covers. Some particular
cases of proposed DDMs can be viewed as a modification of semismooth Newton
method [7]. The numerical analysis of obtained DDMs is made for plane contact
problems using finite element approximations.
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2 Statement of the problem

Consider a unilateral contact ofN elastic bodiesΩα ⊂ R3 with sufficiently smooth
boundariesΓα , α = 1,2, ...,N (Fig.1a). Suppose that across each contact surface
there is a nonlinear Winkler layer. DenoteΩ =

⋃N
α=1 Ωα .
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Fig. 1 Unilateral contact between several elastic bodies through nonlinear Winkler layers

A stress-strain state in pointx = (x1,x2,x3)> of each solidΩα is described by the
displacement vectoruα = uα i ei , the tensor of strainŝεεεα = εα i j ei ej and the tensor
of stresseŝσσσα = σα i j ei ej . These quantities satisfy the following relations:

3

∑
j=1

∂σα i j (x)
∂x j

+ fα i(x) = 0, x ∈Ωα , i = 1,2,3, (1)

σα i j (x) =
3

∑
k,l=1

Cα i jkl (x)εα kl(x) , εα i j =
1
2

(
∂uα i

∂x j
+

∂uα j

∂xi

)
, i, j = 1,2,3, (2)

where fα i are the components of volume forces vectorfα = fα i ei , andCα i jkl are
symmetric elasticity constants, which are bounded in the following sense:

(∃bα ,cα > 0) (∀x)

{
bα

3

∑
i, j=1

ε2
α i j ≤

3

∑
i, j,k,l=1

Cα i jkl εα i j εαkl ≤ cα
3

∑
k,l=1

ε2
αkl

}
. (3)

On the boundaryΓα introduce a local orthonormal coordinate systemξξξ α , ηηηα , nα ,
wherenα is an outer unit normal, andξξξ α , ηηηα are unit tangents. Then the vec-
tors of displacements and stresses onΓα can be written in the following way:
uα = uα ξ ξξξ α +uαη ηηηα +uαnnα , σσσα = σ̂σσα ·nα = σαξ ξξξ α +σαη ηηηα +σαnnα .

Suppose, that the boundaryΓα consists of three disjoint parts:Γα =Γ u
α

⋃
Γ σ

α
⋃

Sα ,
Γ u

α = Γ u
α , Γ u

α 6= /0, Sα 6= /0. On the partΓ u
α homogenous Dirichlet boundary condi-

tions are prescribed, and on the partΓ σ
α we consider Neumann boundary conditions:

uα(x) = 0, x ∈ Γ u
α ; σσσα(x) = pα(x), x ∈ Γ σ

α . (4)
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The partSα =
⋃

β∈Bα Sαβ ,
⋂

β∈Bα Sαβ = /0 is the possible contact area of body
Ωα with the other bodies. HereSαβ is the possible unilateral contact area of body
Ωα with body Ωβ , and Bα ⊂ {1,2, ...,N} is the set of the indices of all bodies
in contact with bodyΩα . We assume that the surfacesSαβ ⊂ Γα and Sβα ⊂ Γβ
are sufficiently close (Sαβ ≈ Sβα ), andnα(x) ≈ −nβ (x′), x ∈ Sαβ , x′ = P(x) ∈
Sβα , whereP(x) is the projection of pointx on Sαβ . Let dαβ (x) = ±‖x−x′‖ be
a distance between bodiesΩα and Ωβ before the deformation. We suppose that
possible contact areasSαβ andSβα , β ∈ Bα , α = 1, ...,N have nonlinear Winkler
covers. Total compressionwαβ of these covers is related with normal contact stress
as follows:σαn(x) = σβn(x′) = gαβ

(
wαβ (x)

)
, x ∈ Sαβ , x′ ∈ Sβα , wheregαβ is

given nonlinear continuous function, which satisfies the following conditions:

gαβ (0) = 0, (∀y,z)
{

y < z⇒ gαβ (y) < gαβ (z)
}

, (5)

(∃Mαβ > 0
)

(∀y,z)
{∣∣gαβ (y)−gαβ (z)

∣∣≤Mαβ |y−z|} . (6)

On possible contact zonesSαβ , β ∈Bα , α = 1,2, ...,N we consider the following
unilateral contact conditions through nonlinear Winkler layers:

σαξ (x) = σβξ (x′) = 0, σαη(x) = σβη(x′) = 0, (7)

σαn(x) = σβn(x
′) = gαβ

(
wαβ (x)

)≤ 0, uαn(x)+uβn(x
′)+wαβ (x)≤ dαβ (x), (8)

[
uαn(x)+uβn(x

′)+wαβ (x)−dαβ (x)
]

σαn(x) = 0, x′ = P(x) , x ∈ Sαβ . (9)

3 Variational formulations

For each bodyΩα consider Sobolev spaceVα = [H1(Ωα)]3 and the closed subspace
V0

α = {uα ∈Vα : uα = 0 onΓ u
α }. All values of the elements from these spaces on

the parts of boundaryΓα should be understood as traces. The trace of elementuα ∈
Vα on the partΓ u

α should belong to space[H1/2(Γ u
α )]3, and the trace of element from

V0
α on the partΞα = int(Γα \Γ u

α ) should belong to[H1/2
00 (Ξα)]3.

Define Hilbert spaceV0 = ∏N
α=1Vα with scalar product(u ,v)V0

= ∑N
α=1 (uα ,vα)Vα

and norm‖u‖V0
= (u ,u)1/2

V0
, u,v ∈ V0. Moreover, introduce the following spaces

W = {w = (wαβ )>{α ,β}∈Q : wαβ ∈ H1/2
00 (Ξα)} andU0 = V0×W = {U = (u,w)> :

u ∈V0, w ∈W}, whereQ = {{α ,β} : α ∈ {1,2, ...,N} , β ∈ Bα}.
In spaceU0 consider the closed convex set of all displacements, which satisfy

nonpenentration contact conditions:K = {U∈U0 : uαn+uβn+wαβ ≤ dαβ on Sαβ ,

{α, β} ∈Q}, whereuα n = nα ·uα ∈ H1/2
00 (Ξα), wαβ ,dαβ ∈ H1/2

00 (Ξα).
Let us introduce bilinear formA(u,v)= ∑N

α=1aα(uα ,vα), u,v∈V0, aα(uα ,vα)=∫
Ωα

σ̂σσ α(uα) : ε̂εεα(vα)dΩ , such thatA(u,u) represents the total elastic deformation
energy of the bodies, linear formL(u) = ∑N

α=1 lα(uα), lα(uα) =
∫

Ωα
fα ·uα dΩ +
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∫
Γ σ

α
pα ·uα dS, fα ∈ [L2(Ωα)]3, pα ∈ [H−1/2

00 (Ξα)]3, which is equal to external forces

work, and nonquadratic functionalH(w) = ∑{α,β}∈Q
∫

Sαβ

[∫ wαβ
0 gαβ (z)dz

]
dS,

w ∈W, which represents the total deformation energy of nonlinear Winkler layers.
We have shown, that bilinear formA is symmetric, continuous and coercive

if condition (3) holds, and nonquadratic functionalH is Gateaux differentiable:
H ′(w,z) = ∑{α,β}∈Q

∫
Sαβ

gαβ (wαβ )zαβ dS, w,z∈W.

Theorem 1.Suppose that conditions (3), (5), (6) hold. Then problem (1), (2), (4),
(7)–(9) has an alternative weak formulation as the following minimization problem:

F(U) = A(u,u)/2−L(u)+H(w)→ min
U∈K

. (10)

Moreover, there exists a unique solution of problem (10), and this problem is equiv-
alent to the following nonquadratic variational inequality on setK:

F ′(U,V−U) = A(u,v−u)−L(v−u)+H ′(w,z−w)≥ 0, ∀(v,z)> ∈ K . (11)

Except this variational formulation, we also have proposed another weak formu-
lation of original contact problem in the form of nonlinear variational equation.

Let us introduce the following nonquadratic functional in spaceV0:

J(u) = ∑
{α,β}∈Q

∫

Sαβ

[∫ dαβ−uαn−uβn

0
g−αβ (z)dz

]
dS, u ∈V0 , (12)

whereg−αβ (z) = {0, z≥ 0}∨{gαβ (z) , z< 0} is nonlinear function.
FunctionalJ(u) is nonnegative and Gateaux differentiable inV0:

J′(u,v) = −∑{α ,β}∈Q
∫

Sαβ
g−αβ (dαβ − uαn− uβn) [vαn + vβn]dS. We have shown

that if conditions (5) and (6) hold, then Gateaux differentialJ′(u,v) satisfies the
following properties:(∀u ∈V0) (∃ R̃> 0) (∀v ∈V0){|J′(u,v)| ≤ R̃‖v‖V0},
(∃ D̃ > 0)(∀u,v,w ∈V0){|J′(u+w,v)−J′(u,v) | ≤ D̃‖v‖V0‖w‖V0 }, (∀u,v ∈V0)
{J′(u+v,v)−J′(u,v)≥ 0}. These properties helped us to prove the next theorem.

Theorem 2.Suppose that conditions (3), (5) and (6) hold. Then the contact prob-
lem (1), (2), (4), (7)–(9) is equivalent to problem (1), (2), (4), (7) with the following
nonlinear boundary value conditions on the possible contact areas:

σαn(x) = σβn(x
′) = g−αβ

(
dαβ (x)−uαn(x)−uβn(x

′)
)

, x′ = P(x) , x∈Sαβ , (13)

and it is equivalent in weak sense to the next nonquadratic minimization problem:

F1(u) = A(u,u)/2−L(u)+J(u)→ min
u∈V0

. (14)

Moreover, problem (14) has a unique solution and is equivalent to the following
nonlinear variational equation in spaceV0:

F ′1(u,v) = A(u,v)+J′(u,v)−L(v) = 0, ∀v ∈V0 , u ∈V0 . (15)
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4 Nonstationary iterative methods

In reflexive Banach spaceV consider an abstract nonlinear variational equation

Φ (u,v) = Y(v) , ∀v ∈V, u ∈V, (16)

whereΦ : V×V → R is a functional, which is linear inv, but nonlinear inu, and
Y : V → R is linear continuous form. For numerical solution of (16) consider the
following nonstationary iterative method [5, 11]:

Gk(uk+1,v) = Gk(uk,v)− γk
[

Φ (uk,v)−Y(v)
]
, k = 0,1, ... , (17)

whereGk : V×V → R are some given bilinear forms,γk ∈ R are iterative parame-
ters, anduk ∈V is thek-th approximation to the exact solution of problem (16).

Theorem 3.[5] Suppose that functionalΦ satisfies the following properties:
(∀u ∈V)(∃RΦ > 0)(∀v ∈V){|Φ(u,v)| ≤ RΦ‖v‖V}, (∃DΦ > 0) (∀u,v,w ∈V)
{ |Φ (u+w,v)−Φ (u,v) | ≤DΦ‖v‖V‖w‖V }, (∃BΦ > 0)(∀u,v∈V){Φ (u+v,v)−
Φ (u,v) ≥ BΦ‖v‖2

V}. Then nonlinear variational equation (16) has a unique solu-
tion ū ∈V. In addition, suppose that bilinear formsGk, k = 0,1, ... are symmetric,
continuous with constantM∗

G > 0, coercive with constantB∗G > 0, and the following
conditions hold:(∃k0 ∈ N0)(∀k≥ k0) (∀u ∈V) {Gk(u,u)≥Gk+1(u,u)},
(∃ε ∈ (0, γ∗), γ∗ = BΦB∗G/D2

Φ)(∃k1)(∀k≥ k1){γk ∈ [ε, 2γ∗− ε]}.
Then‖uk− ū‖V →

k→∞
0, where{uk} ⊂V is obtained by iterative method (17).

5 Domain decomposition schemes

Now let us apply nonstationary iterative method (17) for solving the nonlinear vari-
ational equation (15), which corresponds to original contact problem. This equa-
tion can be written in form (16), whereΦ(u,v) = A(u,v)+J′(u,v) , Y(v) = L(v) ,
u,v∈V, V =V0 , and iterative method (17) applied to solve (15) rewrites as follows:

Gk(uk+1,v) = Gk(uk,v)− γk
[
A(uk,v)+J′(uk,v)−L(v)

]
, k = 0,1, ... . (18)

Note, that in general case iterative method (18) does not lead to domain decom-
position. Let us propose such variants of this method, which involve the domain
decomposition. At first, let us take bilinear formsGk in method (18) as follows:

Gk(u,v) = ∂ 2F1(uk,u,v) = A(u,v)+∂ 2J(uk,u,v) , u,v ∈V0 , (19)

∂ 2J(uk,u,v) = ∑
{α,β}∈Q

∫

Sαβ
χk

αβ g′αβ (dαβ −uk
αn−uk

βn)
[
uαn +uβn

][
vαn +vβn

]
dS,

χk
αβ =−[sgn(dαβ −uk

αn−uk
βn) ]

− = {0, dαβ −uk
αn−uk

βn ≥ 0}∨{1, else}. (20)
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Here∂ 2F1(uk,u,v), ∂ 2J(uk,u,v) are one of the second subdifferentials of function-
alsF1 andJ in point uk ∈V0. In the case whenγk = 1, k = 0,1, ... , iterative method
(18) with bilinear forms (19) corresponds to semismooth Newton method for varia-
tional equation (15). However, this method does not lead to domain decomposition.

Now, let us take bilinear formsGk in the following way:

Gk(u,v) = A(u,v)+Xk(u,v) , u,v ∈V0 , (21)

Xk(u,v) =
N

∑
α=1

∑
β∈Bα

∫

Sαβ
ψk

αβ g′αβ (dαβ −uk
αn−uk

βn)uαnvαndS, u,v ∈V0 , (22)

whereψk
αβ (x) = {1, x ∈ Sk

αβ }∨{0, x ∈ Sαβ\Sk
αβ } are characteristic functions of

some given subsetsSk
αβ ⊆ Sαβ of possible contact areas.

Iterative method (18) with bilinear forms (21) can be written in such way:

A(ũk+1,v)+Xk(ũk+1,v) = L(v)+Xk(uk,v)−J′(uk,v) , ∀v ∈V0 . (23)

uk+1 = γk ũk+1 +(1− γk)uk, k = 0,1, ... . (24)

Since the common quantities of the subdomains are known from the previous
iteration, variational equation (23) splits intoN separate equations in subdomains
Ωα , and iterative method (23)–(24) can be written in the following equivalent form:

aα(ũk+1
α ,vα)+ ∑

β ∈Bα

∫

Sαβ
ψk

αβ g′αβ (dαβ −uk
αn−uk

βn) ũk+1
αn vαndS=

= lα(vα)+ ∑
β ∈Bα

∫

Sαβ
ψk

αβ g′αβ (dαβ −uk
αn−uk

βn)uk
αnvαndS+

+ ∑
β ∈Bα

∫

Sαβ
g−αβ (dαβ −uk

αn−uk
βn)vαndS, ∀vα ∈V0

α , (25)

uk+1
α = γk ũk+1

α +(1− γk)uk
α , α = 1,2, ...,N, k = 0,1, ... . (26)

In each iterationk of method (25)–(26), we have to solveN linear variational
equations (25) in parallel, which correspond to linear elasticity problems in separate
bodiesΩα with Robin boundary conditions on possible contact areas. Therefore,
this method refers to parallel Robin–Robin type domain decomposition schemes.

By taking different characteristic functionsψk
αβ , we can obtain different partic-

ular cases of domain decomposition method (25)–(26). Thus, takingψk
αβ (x) ≡ 0

(Sk
αβ = /0), ∀α,β , ∀k, we get parallel Neumann–Neumann domain decomposition

scheme. Other borderline case is whenψk
αβ (x)≡ 1 (Sk

αβ = Sαβ ), ∀α,β , ∀k.

Moreover, we can choose characteristic functionsψk
αβ by formula (20), i.e.

ψk
αβ = χk

αβ . Numerical experiments, provided by us, have shown, that such DDM
has higher convergence rate than other particular domain decomposition schemes.
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6 Numerical analysis

Numerical analysis of proposed DDMs has been provided for plane problem of uni-
lateral contact between two isotropic bodiesΩ1 andΩ2, one of which has a groove
(Fig.1b). The bodies are loaded by normal stress with intensityq = 10MPa. Each
body has lengthl = 4cm and heighth= 1cm. The elasticity constants of the bodies
are the same:E1 = E2 = 2.1·105MPa,ν1 = ν2 = 0.3. The distance between bodies
is d12(x) = r

{
[1− (x1− l)2

/
b2]+

}3/2
, x ∈ S12, whereb = 1cm, r = 5·10−4cm.

Across possible contact areaS12 there is a nonlinear Winkler layer. The relation-
ship between normal contact stresses and displacements of this layer is described
by the following power function:g12(w12(x)) = B−1/asgn(w12(x)) |w12(x)|1/a, x ∈
S12, where parametersB anda are taken from the intervalsB∈ [10−6cm/(MPa)a,
2·10−4cm/(MPa)a ] , a∈ [0.1, 1]. For such choice of these parameters the nonlinear
Winkler layer models a roughness of the possible contact surface [6].

This problem has been solved by DDM (25)–(26) with stationary iterative pa-
rametersγk = γ, ∀k and characteristic functionsψk

12, taken by formula (20), i.e.
ψk

12 = χk
12, ∀k. For solving linear variational problems (25) in each iterationk we

have used finite element method with 8192 linear triangular elements for each body.
We have used the following initial guesses for displacementsu0

1n(x) = u0
2n(x)≡

10−4cm, and the next stopping criterion:ρk+1
α =

∥∥uk+1
αn −uk

αn

∥∥
2 /

∥∥uk+1
αn

∥∥
2 ≤ εu,

α = 1,2, where‖uα n‖2 =
√

∑ j [uα n(x j)]2 is discrete norm,x j ∈ S12 are finite ele-
ment nodes on the possible contact area, andεu > 0 is relative accuracy.

1 2 3 4
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k
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9876

4 5

Fig. 2 Relative error (a), and normal contact stress (b)

At Fig.2a the relative errorρk
2 of displacementu2n on different iterationsk, ob-

tained forB = 2.5 ·10−5cm/(MPa)a, a = 0.5, is represented for different values of
parameterγ. Curves 1–9 correspond toγ = 0.02, 0.03, 0.05, 0.6, 0.8 (0.3), 0.9, 0.95,
0.97, 0.98. For these values of parameterγ, DDM (25)–(26) reaches the accuracy
εu = 10−3 in 110, 83, 58, 7, 12 (14), 29, 60, 102, 155 iterations respectively. Thus,
we conclude, that the best convergence rate reaches ifγ = 0.6. The convergence rate
is good ifγ ∈ [0.1, 0.9]. However, it becomes slow whenγ is close to 0 or to 1. For
γ = 0.98the method is still convergent, but the convergence becomes nonmonotone.
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We also have established, that the convergence rate of proposed DDMs does not
deppend strongly on the number of finite element nodesm in each body. Form= 43,
149, 553, 2129, 8353, and 33089, DDM (25)–(26) with parameterγ = 0.6 reaches
the accuracyεu = 10−6 in 15, 15, 14, 14, 14, and 14 iterations respectively.

At Fig.2b the normal contact stressσ1n = σ2n, obtained by DDM (25)–(26) for
B= 10−5cm/(MPa)a and different values of parametersa is represented. Curves 1–
4 correspond to numerical solution fora = 0.3, 0.6, 0.8, 1. Dashed curve represents
the analytical solution, obtained in [13] for contact between two halfspaces without
nonlinear layer. Here we conclude, that for small values ofa (a≤ 0.3) the influence
of nonlinear layer on the contact behavior is not so large and the numerical solutions
are close to the solution without layer. However, for larger values ofa (a≥ 0.5) the
influence of nonlinear layer becomes more significant and can not be neglected.
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