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1 Introduction

Thin covers from different materials are often applied in engineering to improve the
functional properties of the surfaces of machines and structures components. On the
other hand, thin covers with certain mechanical properties are used to model the real
microstructure of surfaces, adhesion and glue bondings [6, 14, 15].

The classical methods for solution of contact problems for bodies with thin cov-
ers are grounded on integral equations and are reviewed in work [15]. Nowadays,
one of the most effective numerical methods for such contact problems are methods,
based on variational formulations and finite element approximations.

Efficient approach for solution of multibody contact problems is the use of do-
main decomposition methods (DDMs). Many DDMs for contact problems without
covers are obtained on discrete level [3, 16]. Among DDMs, proposed on continu-
ous level for contact problems without covers are methods presented in [1, 9, 12].
Domain decomposition methods for solution of problem of ideal contact between
two bodies, connected through nonlinear Winkler layer are proposed in [2, 8]. These
methods are based on saddle-point formulation and conjugate gradient methods.

In current contribution we consider a problem of unilateral contact between elas-
tic bodies with nonlinear Winkler covers. We give variational formulations of this
problem in the form of nonquadratic variational inequality on convex set and non-
linear variational equation in the whole space, and present theorems about existence
and uniqueness of their solution. Furthermore, we propose on continuous level a
class of parallel domain decomposition methods for solving the nonlinear varia-
tional equation, which corresponds to original contact problem. In each iteration of
these methods we have to solve in a parallel way linear variational equations in sep-
arate bodies, which are equivalent in a weak sense to linear elasticity problems with
Robin boundary conditions on possible contact areas. These DDMs are based on
abstract nonstationary iterative methods for variational equations in Banach spaces.
They are the generalization of domain decomposition methods, proposed by us ear-
lier in [4, 5, 10] for unilateral contact problems without covers. Some particular
cases of proposed DDMs can be viewed as a modification of semismooth Newton
method [7]. The numerical analysis of obtained DDMs is made for plane contact
problems using finite element approximations.
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2 Statement of the problem

Consider a unilateral contact bf elastic bodie2, ¢ R? with sufficiently smooth
boundaried,, a = 1,2,...,N (Fig.1a). Suppose that across each contact surface
there is a nonlinear Winkler layer. Dende= U';‘Zl Q.
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Fig. 1 Unilateral contact between several elastic bodies through nonlinear Winkler layers

A stress-strain state in poiRt= (x1,X2,%3) | of each solid, is described by the
displacement vectar, = Uy g, the tensor of straing, = £qij & € and the tensor
of stresse®, = 0yij & €j. These quantities satisfy the following relations:

3 ngij(X)

de +fcxi(x):0, XeQG; i:1,273, (l)

=1

3 1/duyi Ougi
Oaij(X) = ) Caijk (X) Eaki(X), Eaij =<+ 1)7 i,i=123, (2
aij kgl aij a aij > 0Xj ax

where f,; are the components of volume forces vedtpr= fyi €, andCqyijx are
symmetric elasticity constants, which are bounded in the following sense:

3 3 3
(3bg,Cq > 0) (VX) {ba z €5 < Caijkl Eaij €akl < Cq Z £§k|}~ 3)
=1 i, kT=1 k=1

On the boundary, introduce a local orthonormal coordinate sys&mn,, nNq,
whereng is an outer unit normal, anél,, n, are unit tangents. Then the vec-
tors of displacements and stressesflgncan be written in the following way:
Ug = Uagfa‘i‘uanna‘FUannay 0q=0q-Ng = Uagfa+aanna+aanna-

Suppose, that the bounddry consists of three disjoint part&; = ;' U Uy,
F4=ry ry+0,S #0. On the part' homogenous Dirichlet boundary condi-
tions are prescribed, and on the paftwe consider Neumann boundary conditions:

Ug(X) =0, xely'; aq(X)=pa(x), Xely. (4)
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The partSy = Ugeg, Sup: Npee, Sup = 0 is the possible contact area of body
Qg with the other bodies. Herg,p is the possible unilateral contact area of body
Qq with body Qg, andB,y C {1,2,...,N} is the set of the indices of all bodies
in contact with bodyQ,. We assume that the surfacBgz C [y and Sz C I'g
are sufficiently close;g ~ Sgq), andng(x) =~ —ng(x’), x € Sy, X' = P(x) €
Sga, WhereP(x) is the projection of poink on S;g. Let dgg(x) = [[x—X/|| be
a distance between bodi€%, and Qg before the deformation. We suppose that
possible contact are&g andSgq, B € Bg, @ = 1,...,N have nonlinear Winkler
covers. Total compression, g of these covers is related with normal contact stress

as follows: gan(X) = Ign(X') = gap (Wep (X)), X € Syp, X' € Sgq, Wheregyg is
given nonlinear continuous function, which satisfies the following conditions:

Uap(0) =0, (VY,2) {y<Z= dap(y) <ap(@}, (5)

(IMgp > 0) (VY,2) { |9ap(Y) — dap(D| <Magly—12 }. (6)

On possible contact zon&sg, B € By, a = 1,2,...,N we consider the following
unilateral contact conditions through nonlinear Winkler layers:

Oge(X) = 0pg (X') =0, 0an(x) = 0p,(X') =0, (7)

Uan(X) = Gﬁn(xl) = gaB (WaB (X)) <0, Uan(x) +uBn(X/) +WaB (X) < daﬁ (X)a (8)
[Uan(X) + Ugn(X) +Wqp (X) —dap(X) | Oan(X) =0, X' =P(X), X€ Syp. (9)

3 Variational formulations

For each bodyR, consider Sobolev spatk = [H1(Q4)]® and the closed subspace
VO = {uqg €Vy: uqg =0 onlF}. All values of the elements from these spaces on
the parts of boundarfy, should be understood as traces. The trace of elemeat

V, on the parf! should belong to spadkl'/2(Y)]3, and the trace of element from
V0 on the part=yq = int (I \ I‘“) should belong t¢H1/2( o))

Define Hilbert spacey = [TN_; Vi with scalar productu, Vv, = SN (Ug,Va g
and norm|jully, = (u,u)y, va , U,v € Vo. Moreover, introduce the following spaces
W= {w= (WD,B){OHB}EQ' Wep € H00 (Zq)} andUp =Vo xW = {U = (u,w) " :
ueVo,weW}, whereQ={{a,B}: ae{1,2,...N}, B€By}.

In spacely consider the closed convex set of all displacements, which satisfy
nonpenentration contact conditioms= {U € Up : Ugn+Ugn+Wgg < dgg ON Sy,
{a,B} € Q}, whereugn =ng -Ug € Hééz(fa), Wqg,dag € Holéz(Ea).

Let us introduce bilinear forrA(u,v) = zgzlaa(ua,va), u,veWo, ag(Uqg,Va) =
Jo, 0a(Ua) : €a(Va)dQ, such thai\(u, u) represents the total elastic deformation
energy of the bodies, linear fortr(u) = SN_;14(Uq), la(Ug) = Jau fa - UgdQ +
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f,—aa Pa-UqdS fq € [L2(Q0)]3 Pa € [Ho’ol/z(za)]:*, which is equal to external forces
work, and nonquadratic functionsll(w) = z{a’ﬁ}leSaB [_[(\)N"B Oap(2)dz| dS
w € W, which represents the total deformation energy of nonlinear Winkler layers.
We have shown, that bilinear forsA is symmetric, continuous and coercive
if condition (3) holds, and nonquadratic functiortdlis Gateaux differentiable:
H'(W,2) = 5 (a.p3eQ Js,; 9ap(Wap) Zap dS, W,z € W.
Theorem 1.Suppose that conditions (3), (5), (6) hold. Then problem (1), (2), (4),
(7)—(9) has an alternative weak formulation as the following minimization problem:

F(U) = A(u,u)/2—L(u) +H(w) — min. (10)

Moreover, there exists a unique solution of problem (10), and this problem is equiv-
alent to the following nonquadratic variational inequality on &et

F/(U,V—-U)=A(uv—u)—L(v—u)+H'(w,z—w) >0, V(v,2) €K. (11)

Except this variational formulation, we also have proposed another weak formu-
lation of original contact problem in the form of nonlinear variational equation.
Let us introduce the following nonquadratic functional in spége

-dapfuanfuﬂn
J(u) = Z / [/ 0y5(2dz| dS, ueVp, (12)
{a.B]eQ”Sup L0

whereg, ;(2) = {0,2>0}Vv{gq4p(2), z< 0} is nonlinear function.
Functionall(u) is nonnegative and Gateaux differentiablé/gn
J(u,v) = — Z{G’B}leSgg Ugp(dap — Uan — Ugn) [Van + Vpn]dS We have shown
that if conditions (5) and (6) hold, then Gateaux differenfigli,v) satisfies the
following properties(Vu € Vo) (3R> 0) (Vv € Vo) { |3/ (u,v)| < R|[V|jv, },
(3D > 0) (Vu,v,w e Vo) { |J (u+w,v) = (u,v)| < D|V|jv W[ } (Vu,v € Vo)
{J(u+v,v)—J(u,v) > 0}. These properties helped us to prove the next theorem.
Theorem 2.Suppose that conditions (3), (5) and (6) hold. Then the contact prob-
lem (1), (2), (4), (7)—(9) is equivalent to problem (1), (2), (4), (7) with the following
nonlinear boundary value conditions on the possible contact areas:

an(X) = 0pn(X') = gy g (dap(X) — Uan(X) — Uga(X)) . X' =P(x), X€ Syp, (13)
and it is equivalent in weak sense to the next nongquadratic minimization problem:

Fi(u) =A(u,u)/2—L(u)+JI(u) — min. (14)

ueVp

Moreover, problem (14) has a unique solution and is equivalent to the following
nonlinear variational equation in spadé:

Fi(u,v) =A(u,v)+J(u,v) —L(v) =0, VVEVp, UEVp. (15)
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4 Nonstationary iterative methods

In reflexive Banach spadé consider an abstract nonlinear variational equation
P (uv)=Y(v), YVEV, ueyv, (16)

where® : V xV — R is a functional, which is linear imr, but nonlinear iru, and
Y : V — R is linear continuous form. For numerical solution of (16) consider the
following nonstationary iterative method [5, 11]:

GH(URTL,v) = G(UK,v) — & [cp (UX,v) —Y(v)] ,k=01,.., (17

whereG¥: V xV — R are some given bilinear formg! € R are iterative parame-

ters, andiX € V is thek-th approximation to the exact solution of problem (16).
Theorem 3.[5] Suppose that functionab satisfies the following properties:

(VueV)(3Rp > 0)(W e V){|®(u,v)| < Ro||V|lv}, (3De > 0) (Vu,v,w e V)

{|®(u+w,v)—®(u,v)| <Do|V|v|W|v }, (FBe > 0)(Vu,veV){ ® (u+V,Vv) —

@ (u,v) > Bo||V[|Z}. Then nonlinear variational equation (16) has a unique solu-

tion u € V. In addition, suppose that bilinear forn@&, k = 0,1, ... are symmetric,

continuous with constamMl; > 0, coercive with constarg, > 0, and the following

conditions hold:(Jko € No) (Vk > ko) (Vu € V) { G¥(u,u) > G¥1(u,u)},

(Fe € (0,y), v* =BoBg/D%) (Fka) (Vk > ki) { Y € [, 2y" — €] }.

Then||uk — ]|y k—;o, where{uk} C V is obtained by iterative method (17).

5 Domain decomposition schemes

Now let us apply nonstationary iterative method (17) for solving the nonlinear vari-
ational equation (15), which corresponds to original contact problem. This equa-
tion can be written in form (16), wher@(u,v) = A(u,v) +J'(u,v), Y(v) = L(v),
u,veV,V =\Vp, and iterative method (17) applied to solve (15) rewrites as follows:

GR(URL,v) = GK(UK,v) — & [A(uk,v) +IWV) —LW)|, k=0,1,.... (18)
Note, that in general case iterative method (18) does not lead to domain decom-

position. Let us propose such variants of this method, which involve the domain
decomposition. At first, let us take bilinear fori®& in method (18) as follows:

GX(u,v) = 3%F(u¥,u,v) = A(u,v) +023(uX,u,v), u,ve Vo, (19)
d2J(uk,u,v) = . XKoo 5 (dgg — Uk, —u ) d
V)= Z aB 9ap(dap = Ugn — Ugp [u“”+u5n] [Va”+vﬁn] S
{a.BleQ” s

XLI;B = _[Sgn(daﬁ - ulén - ulﬁ(in)]7 = {07 dC{B - ult(xn - ulﬁ(?n > O} \ { 1’ else}. (20)
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Hered?Fy(uk,u,v), 32J(uX,u,v) are one of the second subdifferentials of function-

alsF; andJ in pointuX € V. In the case whep = 1, k= 0,1, ..., iterative method

(18) with bilinear forms (19) corresponds to semismooth Newton method for varia-

tional equation (15). However, this method does not lead to domain decomposition.
Now, let us take bilinear form&* in the following way:

G*(u,v) = A(u,v) +XX(u,v), u,v eV, (21)

XK(u,v) = / t,UaBgaﬁ( ap — u'én)uanvands, u,velo, (22)
a= 1BeBa

wheret,u'o‘,ﬁ(x) ={1lxe S‘;ﬁ tv{0,xe Sag\gég } are characteristic functions of
some given subseégﬁ C Syp Of possible contact areas.
Iterative method (18) with bilinear forms (21) can be written in such way:

AL )+x'<( k1 v) = L(v) + XUk, v) = I (UK, v), Vv e Vp. (23)
=i (1Y Uk, k=0,1,.... (24)

Since the common quantities of the subdomains are known from the previous
iteration, variational equation (23) splits inkb separate equations in subdomains
Qq, and iterative method (23)—(24) can be written in the following equivalent form:

ag (0™, va / %,5 g (dap — U/;n)ﬁlétlvandsz
BEBD,
=la(Va)+ / %B gaﬁ( aB — ulf(in) U'meandS+
BGBa
/ gaﬁ ap — Ul[gn)vandsv Vva € Vg, (25)
BGBa
Ut = Kk L (- Uk a=1,2,..,N, k=0,1,.... (26)

In each iteratiork of method (25)—(26), we have to sollinear variational
equations (25) in parallel, which correspond to linear elasticity problems in separate
bodiesQ, with Robin boundary conditions on possible contact areas. Therefore,
this method refers to parallel Robin—Robin type domain decomposition schemes.

By taking different characteristic functiorn/.*zgp, we can obtain different partic-
ular cases of domain decomposition method (25)—(26). Thus, ta}xmgx) =0
(Q;B =0), Va, 3, vk, we get parallel Neumann—Neumann domain decomposition
scheme. Other borderline case is whgffy (x) = 1 (S5 = Sup), Va, B, Vk.

Moreover, we can choose characteristic functleﬁ by formula (20), i.e.

l,UaB = XorB Numerical experiments, provided by us, have shown, that such DDM
has higher convergence rate than other particular domain decomposition schemes.
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6 Numerical analysis

Numerical analysis of proposed DDMs has been provided for plane problem of uni-
lateral contact between two isotropic bod@sand Q,, one of which has a groove
(Fig.1b). The bodies are loaded by normal stress with intewsitylOMPa. Each
body has length = 4cm and heighb = 1cm. The elasticity constants of the bodies
are the sameE; = E; = 2.1- 10°MPa, v; = v, = 0.3. The distance between bodies
isdia(X) =r{[1—(x1 —I)2/b2]+}3/2, X € S», whereb = 1cm,r = 5-10"%cm.

Across possible contact ar&g there is a nonlinear Winkler layer. The relation-
ship between normal contact stresses and displacements of this layer is described
by the following power functiongy, (Wa2(X)) = B~/2sgn(wi2(x)) [wiz(x)[¥3, x €
Si2, where parametei anda are taken from the interva € [10-%cm/(MPa)?3,
2-10~%cm/(MPa)?], ac [0.1, 1]. For such choice of these parameters the nonlinear
Winkler layer models a roughness of the possible contact surface [6].

This problem has been solved by DDM (25)—(26) with stationary iterative pa-
rametersyX = y, Yk and characteristic functiongy,, taken by formula (20), i.e.

W, = xX,, Vk. For solving linear variational problems (25) in each iteratome
have used finite element method with 8192 linear triangular elements for each body.
We have used the following initial guesses for displacemehi) = ud, (x) =

10~“cm, and the next stopping criteriopk™ = ||ut — uk,|[, / [lukhtl, < e

a = 1,2, where|ugn||, = 1/ ¥ j [Uan(x})]? is discrete normy) € Sy, are finite ele-

ment nodes on the possible contact area,sgne 0 is relative accuracy.

T T
IRTRWANIAN
. \4\{¥§§§

a) 2

Fig. 2 Relative error (a), and normal contact stress (b)
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At Fig.2a the relative errop'2< of displacementi,, on different iterationgk, ob-
tained forB = 2.5-10"°cm/(MPa)?, a= 0.5, is represented for different values of
parametey. Curves 1-9 correspond o= 0.02, 0.03, 0.05, 0.6, 0.8 (0.3), 0.9, 0.95,
0.97, 0.98. For these values of parameteDDM (25)—(26) reaches the accuracy
g, =102in 110, 83, 58, 7, 12 (14), 29, 60, 102, 155 iterations respectively. Thus,
we conclude, that the best convergence rate reaclyes @.6. The convergence rate
is good ify € [0.1, 0.9]. However, it becomes slow wheris close to 0 or to 1. For
y = 0.98the method is still convergent, but the convergence becomes nonmonotone.
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We also have established, that the convergence rate of proposed DDMs does not

deppend strongly on the number of finite element nadeseach body. Fom =43,
149, 553, 2129, 8353, and 33089, DDM (25)—(26) with parametel0.6 reaches
the accuracy, = 10°°in 15, 15, 14, 14, 14, and 14 iterations respectively.

At Fig.2b the normal contact stresg, = 02, Obtained by DDM (25)—(26) for

B =10"°cm/(MPa) and different values of parametexis represented. Curves 1—

4 correspond to numerical solution fae= 0.3, 0.6, 0.8, 1. Dashed curve represents
the analytical solution, obtained in [13] for contact between two halfspaces without
nonlinear layer. Here we conclude, that for small values @ < 0.3) the influence

of nonlinear layer on the contact behavior is not so large and the numerical solutions
are close to the solution without layer. However, for larger values(af> 0.5) the
influence of nonlinear layer becomes more significant and can not be neglected.
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