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1 Introduction

We consider FETI-DP domain decomposition methods for optimal control problems
of the form

min
y,u

1
2

∫

Ω
(y(x)− yd(x))2 dx+

α
2

∫

Ω
(u(x))2 dx, (1)

where y ∈ V denotes the unknown state and u ∈U the unknown control, subject to
a PDE constraint

a(y,v) = ( f ,v)0 +(u,v)0 for all v ∈V. (2)

The function yd denotes a given desired state and α > 0 a cost parameters. By (·, ·)0,
we denote the standard L2 inner product. In this paper, a(·, ·) will be the bilinear form
associated with linear elasticity, i.e.,

a(y,v) = (2µε(y),ε(v))0 + (λ divy,divv)0, (3)

where µ , and λ are the Lamé parameters.
The state (displacement field) is sought in V = H1

0 (Ω ,∂ΩD)2 = {y ∈ H1(Ω)2 :
y = 0 on ∂ΩD}, where Ω ⊂ R2 and ∂ΩD is part of its boundary. For simplicity, we
consider the case of volume control, i.e., U = L2(Ω)2.

Dual-primal FETI methods were first introduced by Farhat, Lesoinne, Le Tallec,
Pierson, and Rixen [3] and have successfully scaled to 105 processor cores [6]. In [8]
a first convergence bound for scalar problems in 2D was provided. Numerical scal-
ability for FETI-DP methods applied to linear elasticity problems was first proven
in [7].

Balancing Neumann-Neumann domain decomposition methods for the optimal
control of scalar problems have been considered in Heinkenschloss and Nguyen [5,
4]. There, local optimal control problems on non-overlapping subdomains are con-
sidered and a Balancing Neumann-Neumann preconditioner is constructed for the
indefinite Schur complement. Multigrid methods have, of course, also been consid-
ered for optimal control problems, see, e.g., [10]. A review of block approaches to
optimal control problems can be found in [9]. A recent block approach can be found
in [11].
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orheinba@mi.uni-koeln.de, roland.herzog@mathematik.tu-chemnitz.de

1



2 Roland Herzog and Oliver Rheinbach

We discretize y by P1 finite elements, u by P0 finite elements and obtain the
discrete problem

min
y,u

1
2

yT My+
α
2

uT Qu− cT y (4)

s.t. Ay = f +Nu. (5)

2 Discrete Problem and Domain Decomposition

The necessary and sufficient optimality conditions are given by the discrete system



M 0 AT

0 αQ −NT

A −N 0







y
u
p


 =




c
0
f


 (6)

where A ∈ Rn×n, Q ∈ Rm×m, M ∈ Rn×n. Here, A = AT = (a(ϕi,ϕ j))i, j is a stiffness
matrix, whereas Q = (

〈
ψi,ψ j

〉
)i, j, M = (

〈
ψi,ψ j

〉
)i, j and N = (

〈
ϕi,ψ j

〉
)i, j are mass

matrices. We will denote the block system (6) by

Kx = b. (7)

We decompose Ω into N nonoverlapping subdomains Ωi, i = 1, . . . ,N, i.e. Ω =⋃N
i=1 Ω i , Ωi∩Ω j = /0 if i 6= j . Each subdomain is the union of shape-regular finite

element cells with matching nodes across the interface, Γ :=
⋃

i 6= j ∂Ωi∩∂Ω j, where
∂Ωi,∂Ω j are the boundaries of Ωi,Ω j, respectively.

For each subdomain, we assemble the local problem K(i), which represents the
discrete optimality system for (1)–(2), restricted to the subdomain Ωi. Let us denote,
for each subdomain, the variables that are on the subdomain interface by an index
Γ and the interior unknowns by I. Note that the interior variables also comprise the
variables on the Neumann boundary ∂Ω \ ∂ΩD. In block form, we can now write
the subdomain problem matrices K(i), i = 1, . . . ,N as

K(i) =




M(i) 0 A(i)T

0 αQ(i) −N(i)T

A(i) −N(i) 0


 =




M(i)
II M(i)

IΓ 0 A(i)
II A(i)

IΓ
M(i)T

IΓ M(i)
Γ Γ 0 A(i)T

IΓ A(i)
Γ Γ

0 0 αQ(i)
II −N(i)T

II −N(i)T
Γ I

A(i)
II A(i)

IΓ −N(i)
II 0 0

A(i)T
IΓ A(i)

Γ Γ −N(i)
Γ I 0 0




. (8)

We define the block matrices

K(i)
II =




M(i)
II 0 A(i)

II

0 αQ(i)
II −N(i)

II

A(i)
II −N(i)

II 0


 , K(i)

Γ Γ =

[
M(i)

Γ Γ A(i)
Γ Γ

A(i)
Γ Γ 0

]
, K(i)

IΓ =




M(i)
IΓ A(i)

IΓ
0 −N(i)T

Γ I

A(i)
IΓ 0


 . (9)
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Following the approach of FETI-type methods a continuity constraint Bx = 0 is
introduced to enforce the continuity of y and p across each interface Γ . The intro-
duction of Lagrange multipliers λ then leads to the FETI master system




K(1) B̂(1)

. . .
...

K(N) B̂(N)

B̂(1) . . . B̂(N) 0







x(1)

...
x(N)

λ


 =




b(1)

...
b(N)

0


 . (10)

In the context of our optimal control problem, B̂(i) is of the form B̂(i) =
[

B(i)
y 0 B(i)

p

]
.

Note that it is not appropriate to enfore continuity for the control variable u, since it
is an algebraic variable and has been discretized by discontinuous elements.

In dual-primal FETI methods the continuity constraint is enforced on a subset of
the variables on the interface Γ by partial finite element assembly. These variables
are denoted by the index Π (primal). Here, for our 2D problems, we use primal
vertex variables. For the remaining interface variables, the continuity is enforced by
Lagrange multipliers. Such interface variables are denoted by the index ∆ (dual).
We thus write the matrices M(i),A(i),N(i) appearing in (8) in the form

M(i) =




M(i)
II M(i)

I∆ M(i)
IΠ

M(i)T
I∆ M(i)

∆∆ M(i)
∆Π

M(i)T
IΠ M(i)T

I∆ M(i)
ΠΠ


 , A(i) =




A(i)
II A(i)

I∆ A(i)
IΠ

A(i)T
I∆ A(i)

∆∆ A(i)
∆Π

A(i)T
IΠ A(i)T

I∆ A(i)
ΠΠ


 , N(i) =




N(i)
II

N(i)
∆ I

N(i)
Π I


 , (11)

and Q(i) = Q(i)
II . Inserting this block form into (8), we obtain the block form of K(i)

ΠΠ ,

K(i)
ΠΠ =

[
M(i)

ΠΠ A(i)T
ΠΠ

A(i)
ΠΠ 0

]
. (12)

For the assembly of the primal variables yΠ and pΠ , we define the combined
assembly operator R̂(i)T

Π , i.e., we obtain for the assembled global matrix K̃ΠΠ

K̃ΠΠ = R̂T
Π KΠΠ R̂Π =

[
R̂(1)T

Π , . . . , R̂(N)T
Π

]



K(1)
ΠΠ 0

. . .

0 K(N)
ΠΠ







R̂(1)
Π

R̂(N)
Π




=
N

∑
i=1

R̂(i)T
Π K(i)

ΠΠ R̂(i)
Π =

N

∑
i=1

[
R(i)T

Π 0
0 R(i)T

Π

][
M(i)

ΠΠ A(i)T
ΠΠ

A(i)
ΠΠ 0

][
R(i)

Π 0
0 R(i)

Π

]

=
[

M̃ΠΠ ÃT
ΠΠ

ÃΠΠ 0

]
. (13)

The partially assembled system matrix is then
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K̃ =




K(1)
BB K̃(1)

BΠ
. . .

...
K(N)

BB K̃(N)
BΠ

K̃(1)T
BΠ . . . K̃(N)T

BΠ K̃ΠΠ




(14)

with the blocks

K(i)
BB =




M(i)
II M(i)

I∆ 0 A(i)
II A(i)

I∆
M(i)T

I∆ M(i)
∆∆ 0 A(i)T

I∆ A(i)
∆∆

0 0 αQ(i)
II −N(i)T

II −N(i)T
∆ I

A(i)
II A(i)

I∆ −N(i)
II 0 0

A(i)T
I∆ A(i)

∆∆ −N(i)
∆ I 0 0




, (15)

and

K̃(i)T
BΠ =

[
M̃(i)T

IΠ M̃(i)T
∆Π 0 Ã(i)T

IΠ Ã(i)T
∆Π

Ã(i)T
IΠ Ã(i)T

∆Π Ñ(i)T
IΠ 0 0

]

=

[
R(i)T

Π 0
0 R(i)T

Π

][
M̃(i)T

IΠ M̃(i)T
∆Π 0 Ã(i)T

IΠ Ã(i)T
∆Π

Ã(i)T
IΠ Ã(i)T

∆Π Ñ(i)T
IΠ 0 0

]
.

(16)

Now, we can formulate the FETI-DP master system,
[

K̃ B̂T

B̂ 0

][
x̃
λ

]
=

[
b̃
0

]
, u ∈ Rn, λ ∈ Rm, (17)

from which the solution of the original finite element problem (6) can be obtained by
averaging the solution x̃ from (17) in the interface variables. Here, the jump operator
B̂ only acts on the variables y∆ and p∆ . The vectors x̃ and b̃ have the form

xT =
[
[y(i)T

I ,y(i)T
∆ ,u(i)T

I , p(i)T
I , p(i)T

∆ ], . . . , [y(N)T
I ,y(N)T

∆ ,u(N)T
I , p(N)T

I , p(N)T
∆ ], [ỹT

Π , p̃T
Π ]

]

bT =
[
[c(i)T

I ,c(i)T
∆ ,0, f (i)T

I , f (i)T
∆ ], . . . , [c(N)T

I ,c(N)T
∆ ,0, f (N)T

I , f (N)T
∆ ], [c̃T

Π , f̃ T
Π ]

]

After the elimination of x in (17) it remains to solve a system

Fλ = d (18)

where F is symmetric indefinite, i.e., with positive and negative eigenvalues, by a
suitable Krylov subspace method. The FETI-DP coarse problem is

S̃ΠΠ = K̃ΠΠ −
N

∑
i=1

K̃(i)
BΠ K̃(i)

ΠΠ K̃(i)T
BΠ . (19)
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To define the Dirichlet preconditioner, we consider the block submatrices of K(i)

defined in (9),

K(i) =

[
K(i)

II K(i)T
Γ I

K(i)
Γ I K(i)

Γ Γ

]
. (20)

Let us define the Schur complement

SΓ Γ =
N

∑
i=1

(K(i)
Γ Γ −K(i)

Γ I(K
(i)
II )−1K(i)T

Γ I ) =
N

∑
i=1

S(i)
Γ Γ , (21)

which can be computed completely in parallel. The Dirichlet preconditioner is then
given in matrix form by

M−1 = BDR̂T
Γ SΓ Γ R̂Γ BT

D =
N

∑
i=1

B(i)
D R̂(i)T

Γ S(i)
Γ Γ R̂(i)

Γ B(i)T
D , (22)

where BD is a variant of the jump operator B scaled by the inverse multiplicity
of the node. The matrices R(i)

Γ are simple restriction operators which restrict the

nonprimal degrees of freedom of a subdomain to the interface, i.e. R̂(i)
Γ =

[
0 I
0 0

]
, if

the variables are numbered [I,∆ ] on the right hand side and [∆ ,Π ] on the left hand
side of the operator.

3 Well-posedness of the local problems

In [4] the well-posedness of the local subdomain problems for the balancing
Neumann-Neumann method was considered. These considerations are also valid
for FETI-1-type methods. In contrast to FETI-1 and Balancing Neumann-Neumann
methods the coarse problems of the more recent FETI-DP and BDDC methods are
constructed from partial finite element assembly.

We therefore briefly comment on the well-posedness of the subdomain problems,
i.e. the local blocks K(i)

BB in (14), as well as the coarse problem (19). Each block K(i)
BB

represents a discrete optimality system local to the subdomain Ωi. In contrast to the
original problem (2), natural (stress) boundary conditions are imposed on ∂Ωi for
the state y, except in the (few) primal degrees of freedom on the interface boundary,
and except for the degrees of freedom on ∂Ωi ∩ ∂ΩD, where Dirichlet conditions
apply. These conditions are sufficient to exclude rigid body motions. Consequently,
the local elasticity system (the four A blocks in (15) combined), is well posed, and
thus it is straightforward to show that also the optimality system is well posed,
whence K(i)

BB non-singular. The non-singularity of the total matrix K̃ in (14) can be
shown along the same lines. And thus the non-singularity of the Schur complement
(19) follows.
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Fig. 1 Model problem: Undeformed configuration, desired state, and solution computed using
FETI-DP.

Finally, (21) is well defined since K(i)
II is non-singular. Note that each K(i)

II rep-
resents a discrete optimality system with all-Dirichlet boundary conditions on ∂Ωi
for the state and adjoint states, with these boundary degrees of freedom removed.

4 Numerical Results

Here we will report on the use of GMRES applied to the symmetric indefinite FETI-
DP system (18), using the symmetric indefinite Dirichlet preconditioner (22). Note
that there is no theory for the convergence of GMRES in this situation. The numeri-
cal results are nevertheless very encouraging. We also report on the convergence of
QMR. The stopping criterion is the relative reduction of the preconditioned residual
by 10 orders of magnitude. In [5, 4] a symmetric QMR was used for the Neumann-
Neumann method. The numerical results are nevertheless very encouraging. The
iteration counts using QMR and GMRES are very similar.

We consider the volume control of a linear elastic problem on the unit square.
The desired displacement yd is a obtained from applying a linear transformation
to the unit square, i.e., yd(x,y) = ( 2

5 x, 2
5 y)T ; see Fig. 1. The Dirichlet boundary is

on the left. The material data is E = 1 (Young’s modulus) and ν = 0.3 (Poisson’s
ratio) in all cases, which are related to the Lamé constants via E = µ (2µ+3λ )

µ+λ and

ν = λ
2(µ+λ ) .

We numerically observe scalability with respect to the number of subdomains
as known for CG in the symmetric positive case, i.e., the number of iterations ap-
proaches a limit for an increasing number of subdomains N if H/h is maintained
fixed, see Tab. 1. Moreover the number of iterations grows only weakly with H/h
for a fixed number of subdomains N, see Tab. 2. In Tab. 3 we see that the methods
shows robustness with respect to α . In Tab. 4 we report on the strong parallel scal-
ability of the largest problem from Tab. 2 using the GMRES implementation from
PETSc [1]. We have used UMFPACK 4.3 [2] for the solution of the subdomain
problems.
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DIRICHLET PRECONDITIONER - Weak Scaling - GMRES and QMR
N #Points #Elem #gmres #qmr #Points #Elem #gmres #qmr #Points #Elem #gmres #qmr

H/h = 2 H/h = 4 H/h = 8
2×2 25 32 8 9 81 128 11 11 289 512 13 14
4×4 81 128 14 14 289 512 19 20 1089 2048 25 27
6×6 169 288 15 16 625 1152 22 24 2401 4608 30 32
8×8 289 512 15 16 1089 2048 24 25 4225 8192 32 34
10×10 441 800 16 16 1681 3200 24 25 6561 12800 33 36
12×12 625 1152 16 17 2401 4608 25 26 9409 18432 34 38
16×16 1089 2048 16 17 4225 8192 25 26 16641 32768 35 38
20×20 1681 3200 16 17 6561 12800 25 26 25921 51200 36 39
24×24 2401 4608 16 18 9409 18432 25 26 37249 73728 36 39
28×28 3249 6272 16 18 12769 25088 26 26 50625 100352 36 40
32×32 4225 8192 16 18 16641 32768 26 27 66049 131072 37 40
36×36 5329 10368 16 18 21025 41472 26 27 83521 165888 37 41
40×40 6561 12800 16 18 25921 51200 26 27 103041 204800 37 41
48×48 9409 18432 16 18 37249 73728 26 27 148225 294912 37 41
56×56 12769 25088 16 18 50625 100352 26 27 201601 401408 37 41
64×64 16641 32768 16 19 66049 131072 26 27 263169 524288 37 41

Table 1 Weak scaling. The number of GMRES and QMR iterations is scalable with respect to
the number of subdomains, i.e., it is bounded independently of N. α = 0.01. Material parameters
E = 1, ν = 0.3. The iteration is stopped when the preconditioned residual has been reduced by 10
orders of magnitudes. The largest problem has 2101252 = 4×263169+2×524288 d.o.f.
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DIRICHLET PRECONDITIONER - GMRES and QMR
H/h #Points #Elem #gmres #qmr #Points #Elem #gmres #qmr #Points #Elem #gmres #qmr

N = 2×2 N = 3×3 N = 4×4
2 25 32 8 9 49 72 12 13 81 128 14 14
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12 625 1152 14 14 1369 2592 23 25 2401 4608 28 31
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96 37249 73728 19 19 83521 165888 34 38 148225 294912 46 50
128 66049 131072 19 20 148225 294912 36 39 263169 524288 49 52

Table 2 The number of GMRES and QMR iterations grows only weakly with the subdomain size.
α = 0.01. Material parameters E = 1, ν = 0.3. The iteration is stopped when the preconditioned
residual has been reduced by 10 orders of magnitudes. The largest problem has 2102452 = 2×
2×263169+524288 d.o.f.

DIRICHLET PRECONDITIONER
- GMRES and QMR

N H/h α #gmres #qmr
8×8 4 1 19 20
8×8 4 0.1 22 22
8×8 4 0.01 24 25
8×8 4 0.001 23 24
8×8 4 0.0001 19 21

Table 3 Dependence on α . The preconditioner is robust with respect to the choice of the cost
parameter α > 0.
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11. Schöberl, J., Zulehner, W.: Symmetric indefinite preconditioners for saddle point problems
with applications to PDE-constrained optimization problems. SIAM J. Matrix Anal. Appl.
29(3), 752–773 (electronic) (2007)


