
Hybrid Space-Time Parallel Solution of
Burgers’ Equation

Rolf Krause1 and Daniel Ruprecht1,2

Key words: Parareal, spatial parallelization, hybrid parallelization

1 Introduction

Many applications in high performance computing (HPC) involve the integration
of time-dependent partial differential equations (PDEs). Parallelization in space by
decomposing the computational domain is by now a standard technique to speed up
computations. While this approach can provide good parallel scaling up to a large
number of processors, it nevertheless saturates when the subdomains become too
small and the time required for exchanging data starts dominating. Regarding the
anticipated massive increase of available cores in future HPC systems, additional
directions of parallelization are required to further reduce runtimes. This is espe-
cially important for time-critical applications like, for example, numerical weather
prediction, where there exists a very strict constraint on the total time-to-solution
for a forecast in order to be useful.

One possibility for providing such an additional direction of parallelization are
parallel-in-time integration schemes. A popular scheme of this type is Parareal, in-
troduced in [1, 7]. It has been applied successfully to a broad range of problems and
also undergone thorough analytical investigation. A large number of corresponding
references can be found, for example, in [6, 9].

While numerous works exist dealing with different aspects of Parareal in a purely
time-parallel approach, there seem to be few studies that address the combination
of Parareal with spatial parallelization, in particular with a focus on implementa-
tion. First results on combining Parareal with spatial domain decomposition are pre-
sented in [8]. While scaling of the algorithm is discussed, no runtimes are reported.
In [12, 13], computing times for a pure MPI-based combination of Parareal with
spatial domain decomposition for the two-dimensional Navier-Stokes equations are
given, but with ambiguous results: Either a pure time-parallel or a pure space-
parallel approach performed best, depending on the problem size. In [4], the ca-
pability of a purely MPI-based approach to speed up simulations for the 3D Navier-
Stokes equations beyond the saturation of the spatial parallelization is shown. Ex-
tensive scaling tests for the ”revisionist deferred correction” method (RIDC) for the

Institute of Computational Science, Università della Svizzera italiana, Via Giuseppe Buffi 13, 6900
Lugano, Switzerland, {rolf.krause,daniel.ruprecht}@usi.ch · Mathematisches In-
stitut, Heinrich-Heine-Universität, Universitätsstrasse 1, 40225 Düsseldorf, Germany

1

2 Rolf Krause and Daniel Ruprecht

linear heat equation, also in combination with domain decomposition, can be found
in [3].

The present paper investigates the performance of a combination of a shared
memory implementation of Parareal featuring explicit integrators with an MPI-
based parallelization of a stencil-based spatial discretization into a hybrid (see [10])
space-time parallel method. The code is an extension of the purely time-parallel,
OpenMP-based implementation used in [11]. Using shared memory for Parareal
avoids communication of volume data by message passing and thus reduces the
memory footprint of the code.

2 Algorithm and Implementation

The starting point for Parareal is an initial value problem

dq
dt

= f(q), q(0) = q0 ∈ Rd , (1)

where in the present work, the right hand side f stems from the spatial finite dif-
ference discretization of some PDE on a rectangular domain Ω ⊂ R2. The spatial
parallelization uses a standard non-overlapping decomposition of the domain, al-
lowing for a distributed computation of f(q), where every MPI-process handles the
degrees-of-freedom of one subdomain and ghost-cell values are exchanged at the
boundaries. The implementation described below can be used for all integrators that
involve only straightforward evaluations of f, that is explicit methods or implicit
methods where the arising linear or nonlinear system is solved with e.g. a fixed
point iteration. For more complex solvers, e.g. a multi-grid method, a hybrid strat-
egy will be more involved, because other parts like restriction or interpolation would
have to be included in the hybrid paradigm as well.

2.1 Parareal

Parareal allows one to parallelize the integration of (1) by combining a number of
time-steps into one coarse time-slice and performing an iteration where multiple
time-slices are treated concurrently. Let Fδ t denote a numerical integration scheme
of suitable accuracy, using a time-step δ t. A second integration scheme is required,
typically called G∆ t , using a time-step ∆ t � δ t, which has to be much cheaper in
terms of computation time but can also be much less accurate. Denote by

q̃g = G∆ t(q, t̃, t), q̃f = Fδ t(q, t̃, t) (2)

the result of integrating forward in time from an initial value q at time t to a time
t̃ > t using G∆ t or Fδ t . Parareal uses G∆ t to produce approximate solutions at nodes

Hybrid Space-Time Parallel Solution of Burgers’ Equation 3

Algorithm 1 Parareal algorithm implemented with OpenMP using Nc threads
1: q0

0 = q0, k := 0
2: for i = 0 to Nc−1 do
3: q0

i+1 = G∆ t(q0
i , ti+1, ti)

4: end for
5: repeat
6: omp parallel for
7: for i = 0 to Nc−1 do
8: q̃k

i+1 = Fδ t(qk
i , ti+1, ti)

9: end for
10: omp end parallel for
11: for i = 0 to Nc−1 do
12: qk+1

i+1 = G∆ t(qk+1
i , ti+1, ti)+ q̃k

i+1−G∆ t(qk
i , ti+1, ti)

13: end for
14: k := k+1
15: until k = Nit

(ti)i=0,...,Nc of a coarse temporal mesh (lines 2 – 4 in Algorithm 1). These guesses
are then used as initial values for running Fδ t concurrently on all Nc time intervals
[ti, ti+1] (lines 6–10). A correction is then propagated sequentially by another sweep
of G∆ t (lines 11 – 13). The procedure is iterated and converges towards the solution
that would be obtained by running Fδ t sequentially from t0 to tNc . For a detailed
explanation and properties of the algorithm we refer to [6] and references therein.
Note that an MPI-based implementation of Parareal requires communication of full
volume data in line 12, which is avoided by the shared memory parallelization in
time used here.

For a given time interval [t0, tNc], denote by Nf the number of fine steps required to
integrate from t = t0 to t = tNc , by τc and τf the execution time of one single coarse
or fine time-step and by Nit the number of performed iterations. Further, assume
that G∆ t always performs one single step, so that Nc is also the number of coarse
steps between t0 and tNc . The speedup obtainable by Parareal for a given number of
processors can be estimated by

s(Np)≈
1

(1+Nit)
Nc
Nf

τc
τf
+ Nit

Np

≤
Np

Nit
. (3)

Note that the maximum parallel efficiency is bounded by 1/Nit. Because of this
limit, Parareal is commonly considered on top of a saturated spatial parallelization
for problems where minimizing time-to-solution is critically important. Recently,
a new scheme named PFASST, based on a combination of Parareal with spectral
deferred correction methods, has been introduced in [5].

4 Rolf Krause and Daniel Ruprecht

Fig. 1 Sketch of a decomposition of a 4x4 cells domain (left) into 4 sub-domains with 2x2 cells
each (right). Cell-centers are marked as dots. The grey cells mark the halo values that have to be
send to the processor handling the upper left sub-domain before each evaluation of f if a simple
5-point star is used. For stencils with wider support, the halos also need to be wider and commu-
nication between diagonally adjacent processors might be required. In the time-parallel OpenMp
version, halo data has to be exchanged for each thread. In the implementation used here, the master
thread handles all halo exchanges as sketched in Figure 2.

Thread 0 Thread 1 Thread 2 Thread 0 Thread 1 Thread 2

Eval f Eval f Eval f

Eval f Eval f Eval f

Eval f Eval f Eval f

Eval f Eval f Eval f

Fig. 2 Flow chart of halo exchange in funneled mode with 2 nodes, each running 3 threads: Before
each evaluation of the right hand side f, the master thread (thread 0) exchanges up-to-date halo
values (represented by three grey bars) for all threads with the other node. The other threads are
idle during communication. After communication has finished, all threads continue with evaluating
f. Synchronization is achieved by the OpenMp BARRIER directive while MPI calls are enclosed
in MASTER directives to ensure they are only executed by the master thread.

2.2 Implementation

For the OpenMP-based parallelization sketched in Algorithm 1 to be efficient, the
implementation of the fine propagator Fδ t has to be suitably designed for mul-
tithreading. This involves a number of technical issues like taking care of ”non-
uniform memory access” (NUMA) inside compute nodes by ensuring that the data
a core accesses while running a thread is located in the memory closest to this core.
A detailed introduction into efficient OpenMp programming can be found in [2].

2.2.1 Ghost-Cell Exchange

To combine the OpenMp implementation of Parareal with parallelization in space,
frequent exchange of boundary values between processors handling different sub-
domains is necessary: Figure 1 sketches the decomposition of a 4× 4 cell domain
into 4 sub-domains. In order to evaluate e.g. a standard five-point stencil discrete
Laplacian, every processor needs to receive a ”halo” of up-to-date values before
evaluating the stencil (halo cells for the upper left sub-domain are marked in grey in

Hybrid Space-Time Parallel Solution of Burgers’ Equation 5

Figure 1). Communication of these halo data is done here through message passing
using MPI.

For using MPI in conjunction with OpenMp, different options exists for the ini-
tialization of the MPI library that govern how MPI routines can be called by different
threads. Here, we use the option MPI THREAD FUNNELED which allows only
the master thread to make calls to the MPI library. As the ghost-cell communication
in Fδ t takes place in the multithreaded part of the code, suitable OpenMP directives
have to be used to synchronize threads and ensure compliance with the funneled op-
tion (OMP BARRIER and OMP MASTER). The coarse integrator is outside the
parallel OpenMp region in Algorithm 1 so that no thread synchronization is required
there. Organization of the ghost-cell exchange is sketched in Figure 2: Prior to every
evaluation of the right hand side function f, the master thread (thread 0) exchanges
halo data for all threads on the node. While the master thread is busy communicat-
ing, the other threads are idle. This ”idle threads problem” is one of the drawbacks
of the funneled approach pointed out in [10]. Then, after the master thread has fin-
ished communicating, all threads continue with the computation of f and update
the solution according to the integration method used for Fδ t . After every update
(in case of a Runge-Kutta method for example, that means after every stage), the
new halo values have to be exchanged again by the master thread before the next
evaluation of f and so on.

3 Numerical Results

The performance of the hybrid space-time parallel approach is analyzed here for the
two-dimensional, nonlinear, viscous Burgers equation

ut +uux +uuy = ν∆u (4)

on a domain [−2,2]× [−2,2] with initial value

u(x,y,0) = sin(2πx)sin(2πy), (5)

a parameter ν = 0.02, a mesh width ∆x = ∆y = 1/40 and periodic boundary con-
ditions. A two-dimensional decomposition of the domain into square or rectangular
subdomains, depending on the number of MPI-processes, is performed and a carte-
sian communicator for MPI is used. Parareal uses time-steps ∆ t = 2× 10−3 and
δ t = 2×10−5. For G∆ t , the spatial discretization uses 3rd-order upwind finite differ-
ences for the advection term and 2nd-order centered differences for the Laplacian,
while Fδ t uses a 5th-order upwind stencil for the advection and a 4th-order centered
stencil for the Laplacian. Hence, a two-cell wide halo has to be exchanged in the
coarse and a three-cell wide halo in the fine propagator. The simulations are run until
T = 0.5 and G∆ t always performs one single step per coarse interval, so the number
of restarts of Parareal depends on the number of threads assigned for the tempo-
ral parallelization. A forward Euler scheme is used for G∆ t and a Runge-Kutta-2

6 Rolf Krause and Daniel Ruprecht

MPI-P time-serial hybrid Parareal speedup
1 59.9 s 29.5 s 2.0
2 34.6 s 15.4 s 2.2
4 21.2 s 9.4 s 2.3
8 14.2 s 6.0 s 2.4
16 9.2 s 4.2 s 2.2
20 9.5 s – –

MPI-P time-serial hybrid Parareal speedup
1 16.4 s 7.3 s 2.2
2 10.5 s 4.9 s 2.1
4 6.9 s 3.3 s 2.1
8 4.7 s 2.2 s 2.1
16 3.3 s 1.5 s 2.2
20 4.5 s – –

Table 1 Runtimes of the time-serial code and the hybrid Parareal code using 8 threads on each
node for different numbers of spatial sub-domains, each corresponding to one MPI process. Shown
are runtimes for a grid with 160×160 cells (left) and for a grid with 80×80 cells (right). Note that
using more than 16 sub-domains no longer reduces runtime of the serial code in both cases.

scheme for Fδ t . To assess accuracy, a reference solution with δ t/10 is computed
sequentially. With a fixed number of Nit = 3 in Parareal, the relative ‖ · ‖∞-error
of the time-parallel solution is εpara ≈ 2.2× 10−8 and of the time-serial solution
εseq ≈ 1.8× 10−8, so that both solutions are of comparable accuracy. The coarse
integrator run alone results in εcoarse ≈ 2.9×10−2.

The used machine is a cluster consisting of 42 nodes, each containing 2 quad-core
AMD Opteron CPUs with 2,700 MHz and 16 GB RAM per node. In the example
below, the time parallelization always uses eight threads per node, in order to utilize
one full node. The nodes are connected by an INFINIBAND network.

3.1 Runtimes and Scaling

Reported runtimes are measured with the MPI WTIME routine provided by MPI
and do not contain I/O operations.

3.1.1 Speedup from Parareal

With the used parameters, the speedup obtainable by Parareal using eight threads
is bounded by s ≤ 2.57 according to (3). The ratio τc/τf = 0.35 has been deter-
mined experimentally fby running G∆ t and Fδ t serially on a single core. The value
varies when using multiple processes, but the effects of the variation on the speedup
estimate are small. Table 1 (left) shows the runtimes of the time-serial and the hy-
brid Parareal solution for different numbers of subdomains and corresponding MPI-
processes. To further illustrate performance of the approach, runtimes for the 80×80
cell mesh are also shown (right). Runtimes obtained for a 40×40 mesh not shown
here indicate similar speedups from Parareal using one, two and four MPI-processes
as well as no further reduction of runtime of the time-serial code if more than four
MPI-processes are used.

While the time-serial solution assigns each process to one core, the time-parallel
solution assigns each process to one node and uses the eight cores inside the node

Hybrid Space-Time Parallel Solution of Burgers’ Equation 7

0 20 40 60 80 100 120 140
0

5

10

15

Total number of cores

T
o
ta

l
s
p
e
e
d
u
p

Time−serial

Hybrid Parareal (8 threads)

Fig. 3 Total speedup achieved by the space-parallel, time-serial (blue) and the hybrid space-time-
parallel scheme (red) depending on the total number of used cores for the 160×160 cell mesh.

for the temporal parallelization. In both cases, the speedups from Parareal actually
achieved by the hybrid implementation are between 78% and 93% of the theoret-
ical maximum, despite the overhead caused by the funneled mode, supporting the
efficiency of the hybrid space-time parallel approach.

3.1.2 Total scaling

As discussed above, one essential motivation for time-parallel schemes is to pro-
vide an additional direction of parallelization to achieve further reduction of time-
to-solution after spatial parallelization saturates. Figure 3 shows the total speedup,
that is compared against the time-serial solution on one core, for the time-serial
and hybrid Parareal scheme. Because the considered problem is quite small and the
underlying stencil-based discretization is comparably cheap to evaluate in terms of
computation time, the pure spatial parallelization scales only to 16 cores (cf. Ta-
ble 1). Beyond that point, using more cores does not further reduce runtime. Also,
near perfect scaling is seen only up to two cores, after this the parallel efficiency
is noticeable less than one. Note that the slow increase in speedup for the hybrid
scheme is caused by the efficiency bound (3) of Parareal: For lower numbers of
cores where the spatial parallelization is not yet saturated, the time-serial version
performs better, because the efficiency of the parallelization in space, although no
longer optimal, is still better than that of the time-parallel scheme. The advantage of
the space-time-parallel scheme is that it can provide a significantly greater overall
speedup. Hence, for a time-critical application where minimizing time-to-solution
is of paramount importance and a purely spatial parallelization does not provide
sufficient runtime reduction, a space-time parallel scheme can reduce runtime be-
low some critical threshold if sufficient computational resources are available. The
example clearly demonstrates the potential of the hybrid space-time parallelization
to provide runtime reductions beyond the saturation of the space parallelization.

8 Rolf Krause and Daniel Ruprecht

4 Conclusions

A shared memory implementation of the Parareal parallel-in-time integration scheme
is combined with a standard distributed memory parallelization of a stencil-based
spatial discretization. In the resulting hybrid space-time parallel scheme, each spa-
tial subdomain is handled by one MPI-process which is assigned to one compute
node. The time-slices from Parareal are assigned to different threads spawned by
the process, with each thread running on one core of the node. The capability of the
hybrid implementation to provide runtime reduction beyond the saturation of the
spatial parallelization is documented.

Acknowledgements This work is funded by the Swiss ”High Performance and High Productivity
Computing” initiative HP2C.

References

1. Bal, G., Maday, Y.: A ”parareal” time discretization for non-linear PDE’s with application to
the pricing of an american put. In: L. Pavarino, A. Toselli (eds.) Recent Developments in
Domain Decomp. Meth., LNCSE, vol. 23, pp. 189–202. Springer Berlin (2002)

2. Chapman, B., Jost, G., van der Pas, R.: Using OpenMp: Portable shared memory parallel
programming. Scientific and Engineering Computation Series. The MIT press, Cambridge,
London (2008)

3. Christlieb, A.J., Haynes, R., Ong, B.W.: A parallel space-time algorithm. SIAM Journal on
Scientific Computing 34, C233–C248 (2012)

4. Croce, R., Ruprecht, D., Krause, R.: Parallel-in-space-and-time simulation of the three-
dimensional, unsteady Navier-Stokes equations for incompressible flow. ICS-Preprint 2012-
03 (2012)

5. Emmett, M., Minion, M.L.: Toward an efficient parallel in time method for partial differential
equations. Comm. App. Math. and Comp. Sci. 7, 105–132 (2012)

6. Gander, M.J., Vandewalle, S.: Analysis of the parareal time-parallel time-integration method.
SIAM J. Sci. Comp. 29(2), 556–578 (2007)

7. Lions, J.L., Maday, Y., Turinici, G.: A ”parareal” in time discretization of PDE’s. C. R. Acad.
Sci. – Ser. I – Math. 332, 661–668 (2001)

8. Maday, Y., Turinici, G.: The parareal in time iterative solver: A further direction to parallel
implementation. In: R. Kornhuber, et al. (eds.) Domain Decomposition Methods in Science
and Engineering, LNCSE, vol. 40, pp. 441–448. Springer, Berlin (2005)

9. Minion, M.L.: A hybrid parareal spectral deferred corrections method. Comm. App. Math.
and Comp. Sci. 5(2), 265–301 (2010)

10. Rabenseifner, R., Hager, G., Jost, G.: Hybrid MPI/OpenMP parallel programming on clus-
ters of multi-core SMP nodes. In: 17th Euromicro International Conference on Parallel, Dis-
tributed and Network-based processing, pp. 427–436 (2009)

11. Ruprecht, D., Krause, R.: Explicit parallel-in-time integration of a linear acoustic-advection
system. Computers & Fluids 59, 72–83 (2012)

12. Trindade, J.M.F., Pereira, J.C.F.: Parallel-in-time simulation of the unsteady Navier-Stokes
equations for incompressible flow. Int J. Numer. Meth. Fluids 45, 1123–1136 (2004)

13. Trindade, J.M.F., Pereira, J.C.F.: Parallel-in-time simulation of two-dimensional, unsteady,
incompressible laminar flows. Num. Heat Trans., Part B 50, 25–40 (2006)

