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1 Introduction

In this paper a Nitsche-type discretization based on discontinuous Galerkin (DG)
method for an elliptic three-dimensional problem with discontinuous coefficients is
considered. The problem is posed on a polyhedral region 2 which is a union of
N disjoint polyhedral subdomains €2; of diameter O(H;) and we assume that this
partition is geometrically conforming. Inside each subdomain, a conforming finite
element space on a quasiuniform triangulation with mesh size O(#;) is introduced.
Large discontinuities on the coefficients and nonmatching meshes are allowed to
occur only across d€;. In order to deal with the nonconformity of the FE spaces
across subdomain interfaces, a discrete problem is formulated using the symmetric
interior penalty DG method only on the subdomain interfaces. For solving the re-
sulting discrete system, FETI-DP type of methods are designed and fully analyzed.
This paper extends the 2-D results in [2] to 3-D problems.

2 Differential and discrete problems

Consider the following problem: Find u, € H} () such that
a(ul,v) = f(v) forall ve HY(RQ), (1)

where

N
a(u,v) ::Z/Q pi(x)Vu-Vvdx and f(v) ::/vadx.
=17/

To simplify the presentation, we assume that p;(x) is equal to positive constant p;.
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We now consider the discrete problem associated to (1). Let X;(£2;) be the regular
finite element (FE) space of piecewise linear and continuous functions in £2; and
define

X(Q) = [TXi(Qi) = X1 (Q1) x Xa(2) x -+ x X (Qw).

We note that we do not assume that the functions in X;(€;) vanish on dQ; N Q.

Let us denote F;j := d€;NdQ; as a face of d€2; and Fj; := dQ2;NILQ; as a face
of dQ;. In spite of the common face F;; and Fj; being geometrically the same, they
will be treated separately since we consider different triangulations on F;; C 9€;
with a mesh parameter #; and on F i C 82 with a mesh parameter ;. We denote
the interior h;-nodes of F;; and the /;-nodes of Fj; by F;j;, and Fj;;, respectively.

Let us denote by %0 the set of indices j of £2; which has a common face F; with
;. To take into account also of these faces of £2; which belong to €, we introduce
a set of indices %‘9 to refer theses faces. The set of indices of all faces of €; is
denoted by .Z; := F2U 23. A discrete problem is obtained by a composite FE/DG
method, see [1], is of the form: Find u* = {u}}Y | € X(Q) where u; € X;(£2;), such
that

ap(u*,v) = f(v) forall v={v}¥, €X(Q), (2)
where
N b |
= ;ai(u,v), fv):= ;/Qifv,dx,
di(u,v) = {a;j(u,v) + pi(u,v)} +s;(u,v) = {d;(u,v)} + s:(u,v), 3)
where
a;(u,v) ::/ piVu; - Vvidx,
=X [ 2Py was
jeF; ' Fii lij ht}
and

(9 , 8v,~
Z /F l ( i v,)er,(;n(u]u,))ds
JEZF

Here, when j € Z?, we set [;; = 2 and let h;; := 2h;h;/(h; + h;), i.., the harmonic
average of 4; and hj. When j € .7, a, we denote the boundary faces F;; C d€; by
F;5y and set [;; = 1 and h;y = h;, and on the artificial face Fj; = Fj;, we set uy =0
and vy = 0. The partial derivative 3— denotes the outward normal derivative on
dQ; and § is the sufficiently large penalty parameter. For details on accuracy and
well-posedness, see [2, 1] and references there in. In particular, we show that exists
positive constants ¥ and 7;, which do not depend on the p;, ; and H;, such that

[V]z

Yoan(u,u) <Y di(u,u) < yap(u,u) forall ueX(Q).

l=1
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3 Schur complement systems and discrete harmonic extensions

This section is similar to Section 3 in [2] with a few natural changes when passing
from the 2-D to the 3-D case, and we refer to that for more details.

e Define the sets Q/, I, I;', I;, I, I'"’, I and Q' by
Q= Qi | J{UjepoFii}, LT=000\0Q, I =1 |J{U;cz0Fii}.

N N
r=Jr, F’:HF,-’, L=QN\I/, I=
1=

N
i\
i=1 i=

N
I and Q' =]]&/
i=1 i=1

e Define the space W;(£2]) by

Wi(Qf) = Xi(Q:) x [T Xi(Fji), where Xi(Fji) = X;(2)) 7.

jeF?
A function u; € W;(£2/) will be represented as
wi = {(ui)i, {(wi) j} je 70}

where (1;); := u, Ie? (u; restricted to Q;) and ()= Ui\, (u; restricted to Fj;).
e For the definition of the discrete harmonic extension operators jﬁ' and 7 (elim-
ination of /; variables) with respect to the bilinear forms ag and q;, see [2].
e The matrices A. and S! are defined by

a;(ui,vi) = (Aui,vi) ui,vi € Wi(&2)), ai(ui,vi) = (Siui,vi) ui,vi € Wi(I7').

o W;(I;) C W;(2}) denotes the .7#/-discrete harmonic functions.

e Define W(Q') =[I¥., Wi(Q]) and W(I'") = [T, Wi(I}").

e Let the subspace W(Q') C W(Q') consist of functions u = {u;}Y , € W(Q')
which are continuous on I, that is, for all 1 <i < N satisfy

(u;)i(x) = (uj)i(x) forall x€ F; forall j& F0
and
(u;)j(x) = (u;);(x) forall x € Fj forall j& .

We note that W (') can be identified to X ().

e W(I'"") denotes the subspace of W (Q') of #'-discrete harmonic functions.

e The rest of Section 3 in [2] remains the same for 3-D problems. In particular, by
eliminating the interior variables I from the system (2), we obtain

Sup =gr. 4)

We note that S can be assembled from Siie., S= ):f/:, RIT_,S:.RF/, where Ry is
i i i

the restriction operator from I" to I;'.
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4 FETI-DP with corners, average edges and faces constraints

We now design a FETI-DP method for solving (4). We follow to the abstract ap-
proach described in pages 160-167 in [3].

Let us define the set of indices gi() of pairs (j,k) of Q; and Q, j # k, for which
Ejjy := 0F;j N dFy, for j.k € F?, is an edge of d€;. In spite of the common edges
E;jr, Ejix, and Ey;; being geometrically the same, we treat them separately since
we consider different triangulations on E;j; C d€2; with a mesh parameter /;, E i C
00 ; with a mesh parameter 4 and Ey;; C 0 with a mesh parameter h;. We denote
the interior edge nodes of these triangulations by E; i, E i, and Ej jp,, respectively.

Let us introduce the nodal points associated to the corner unknowns by

Y= {U(j,k)eé”l-anijk} and 4//[,’ ={% U {U(j,k)eé’l-o anik u&Ek,-j}}.
We say that u = {u;}Y ; € W(£') is continuous at the corners ¥; if
(ui)i(x) = (u))i(x) = (ux)i(x) atall x € .

Definition 1. (Subspaces W (') and W(I'")). The W (') consists of functions u =
{u,}i\’: | € W(&') for which, for all 1 <i <N, the following conditions are satisfied:

e Atall corners ¥, u is continuous.
e Onall edges E; for (j,k) € &°

(ﬁi)isEijk = (ﬁj>iinjk = (ﬁk)i7Eijk'
e Onall faces F;; for j € F?
(i)i.r; = ())i,F,

where 1 |

Uj PEjy = 7/ u;)ids, Uj)iF; = 7/ u;i)ds.

( ) jk |El]k| Eijk( ) ( j), j |Flj| Fij( ])
The W (I"’) denotes the subspace of W (') of functions which are discrete harmonic
in the sense of J#. It is easy to see that W(I'") ¢ W(I"') ¢ W(I").

Let A be the stiffness matrix which is obtained by assembling the matrices A]
for 1 <i <N, from W(Q’) to W(Q'). We represent u € W(Q') as u = (uy,urz,up)
where the subscript I refers to the interior degrees of freedom at the nodal points
on I, the IT refers to the degrees of freedom at the corners {#}? | and edges and
faces averages, and the /\ refers to the remaining degrees of freedom, i.e., the nodal
values on {I;\ 7/ f\': | with edges and faces average equal to zero. For details on A,
see (4.5) in [2], and its Schur complement S (after eliminating the / and II degrees
of freedom from A), see (4.6) in [2].

A vector u € W(I'’) can uniquely be represented by u = (urg,u ), therefore, we
can represent
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W) =Wn(I'") x Wa (),

where Wyp(I™") refers to the IT-degrees of freedom of W(I'") while W (I'’) to the
/\-degrees of freedom of W (I™"). The vector space W (I"’) can be decomposed as

N

WA ") = [Win (17,
i=1

where the local space W; A (I}') refers to the degrees of freedom associated to the
nodes of Fi’\“//i' for 1 <i <N with zero averages on F;; and Fj;, fori € 551»0, and on
Eijkv Ejik and Ekij’ for (],k) S (o@io.

The jump operator B : Wa(I™') — U,

By =BY BY ... BWY)

is defined as follows. Each B(Ai) maps Wa (I'') to U;» (jumps on edges and faces),
where v; = BOu, is defined by:

e For each face Fj; for j € 7, let
vi(x) = (uin)i(x) = (ujn)i(x) forall x € Fjp.
e For each edge E;j for (j,k) € éj-o, let v; = {v;1,vi2}, where
Vi1 (x) = (uip)i(x) = (ujp)i(x) forall x € Ejjen,
via(x) = (u;p)i(x) — (ug,p)i(x) forall x € Ejjp.

Let U, = (Ui, --,Uy,) where U, is the range of B(Ai), and note that the U; , also
has zero average on edges and faces. The space U, will also be denoted as the space
of Lagrange multipliers. We note that by setting B(Al) un = 0, we have one constraint
for each node on F;j; and two constraints for each node on E; ;. The saddle point
problem is defined as in [2], except that here we replace W by Uy, and the problem

(4) is reduced to: Find u}, € WA (I'') and A* € U, such that

Su*A + BZ}L* =gn
Bauy =

e

Hence, it reduces to
FA® =g, o)

where
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4.1 Dirichlet Preconditioner

We now define the FETI-DP preconditioner for F, see (5). Let S , be the Schur
complement of S restricted to W; o (I7') C W;(I7), and define S/ = diag{S » }~.,.

Let us introduce diagonal scaling matrices D; : U;, — U;,, for 1 <i < N as
follows. For B € [1/2,00), define the diagonal entry of D; by:

e For each face Fj; for j € F, let

Dj(x) = pf (plﬁ 4—pf)*1 =:y;; forall x € Fj,.

e For each edge E;j for (j,k) € éaio, let D; = {D;,D;}, where

D 1(x) =Pf(P,~ﬁ +Pf+P5)71 =Yk forall x & Ejju,
Din(x) = pf (o +pf +pf) " = pij forall x € Eyje.

We now introduce Bp A : U, — U, by Bp o = (DlB(A”7 “ee 7DNBXV)) and the op-

erator Pp : Wa(I'') — Wa(I'') by Pp := BL \Ba. We can check that for up =
{ui n}Y. | € WA(I), that va := Paup satisfies:

(vin)i = Yiil(uipn)i— (ujp)il on Fp, (6)
(vin)i=Yijl(ujn)i—(uin)i] on Fyjy, (7
vin)i = Vil (wip)i — (wj A)i] + Yeij[ (i p)i — (urn)i] o Ejn, (8)
(via)i = YVikl(uj.n)i = (i n)i] + Wijl(ujn)i — (u.n)i] - on Ejjen, )

vin)i = Yijul(uen)i — (i )il + Vil (wr,p )i — (wjn)i] on Egjn. (10)
We note from [(6) - (7)] that on F;j, it holds
[(via)i— (vja)il = [(win)i — (ujn)il, (1)
and from [(8) - (9)] + [(8) - (10)] that on E; j, it holds
((Vin)i = (vja)idl +via)i— ea)i] = [(win)i — (uj0)i + [ 2)i — (ue.n)il,
and it follows that BAP, = Bp and PX = Px.

In the FETI-DP method, the preconditioner M~ is defined as follows:

N |
M~ =BpS, By =Y DBYS. ,(BY) D,
i=1
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The main result of this paper is the following:

Theorem 1. For any A € U,, it holds that
H.,
(MA, L) < (FAA) < C(1 —Hogz) (MA, L),
where C is a positive constant mdependent of hi, H;, A and the jumps of p;. Here

and below, log(%) := max!_ llog( L)

Proof. Using the same algebraic arguments as in [2], it reduces to Lemma 1. The
proof of Lemma 1 for the 3-D case is new and given with details below.

Lemma 1. For any up € Wa(I'), it holds that

H
1Paually, <C(1+1og =) luall3, (12)

where C is a positive constant independent of h;, H;, up and the jumps of p;.

Proof. Given un € Wa(I'"), let u = (ur,un) € W(I'') be the solution of
(Sup,up) =min(S'w,w) =: (S'u,u), (13)

where the minimum is taken over w = (wr,wa) € W(I'') such that wry € Wiz (I'™)
and wa = ua. Hence, we can replace ||ua |5 in (12) by ||ul|s.

Let us represent the u defined above as {u;}Y ; € W(I"’) where u; € W;(I}'). Let
Ve W(F ! ) be equal to Paup at the A-nodes and equal to zero at the IT-nodes, i.e.,
v=0on ¥ for | <i<N and zero average on faces and edges. Let us represent v
as {vi}}., € W(I'"), where v; € W;(I;'). We have

N
2 2 2
1Paunlly, =g = Y IIvills

in view of the definition of S;A and Sp, see (4.18), (3.5) and (4.6) in [2]. Hence, to
prove the lemma it remains to show that

12 Hopn
2 vill < €(1+1og ) Julls
i=1

since by (13) we obtain (12). By Corollary 3.2 in [2] we need to show

~ H -
d;i(vi,v;) <C(1+1log d(ui,u,-),

e

Mz
ﬁMz

1

where, see (2.9) in [2], d;(v;,v;) = d;(5v;, #v;) and

diviyvi) = pi | V(Hwi)i 2oy + X,

3. 112
167 ll]hl] H Vz i (Vl)] ||L2(F’J) . (14)
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Here, (v;); = (%v;); and (u;); = (F%u;); inside of the subdomains €;.
To estimate the terms of the right-hand side (RHS) of (14) we represent (v;); as

Wi= Y, O+ Y, 6, () (15)
F,jC(a.Q,'\a.Q) E,-jkcaﬂ,-

and 77 is discrete harmonic on €;. Here, OF;,(vi); := Ihi(ﬁpij(vi),) and O, (vi); :=
I (g, (vi)i), where Uf,; and U, are the standard face and edge cutoff functions

and I” the finite element interpolator. We note that we do not have any vertex terms
in (15) since (v;); = 0 on ¥;. From now on, we denote V(. %wy), by V(wy), for
¢ =1i,j,k and w = v,u. Hence, using (15), we have

IVOi)illfz o) < €LY 1168, (vi); ||21/2 + Y 118, (illz2g, (16)

jez? (Fi) (jk)e&?

by well-known estimates, see [3]. Note that (16) is also valid for substructures €;
which intersect d2 by using the same arguments as for the 2-D case; see [2]. Using
6), (ﬁ,')mj = (ﬁj)iypl.j and Lemma 4.26 in [3], we obtain

pi [l O, (vi)i ||2égz(ﬂj>:piy]2'i I 6k, ()i — ()il 1212 (7

Hoo (F,,)
H;
< Cpivy(1+1og F)2|(ui)i - (“j)iﬁp/z(ﬂj)-

Let Qi r,; be the L*-projection onto X;(F;;), the restriction of X;(£2;) on F;;. Using

the triangle and inverse inequalities, and the H 1/2_and L2-stability of the Qi r; pro-
jection, we have

|<”i)i_<”j)i|?{l/2( ) (18)
< C{|Qir; [(ui)i — (uj)”Hl/z o 100k, [(u)); — (Mj)i]\,i,l/z(ﬁj)

1
<C {‘(”i)i@l(gi) + ‘(”j)j|Hl(gj) =+ n ||(”j)j - (”j)i||1242(ﬂj)}-

1

Substituting (18) into (17) and using p,y2 < min{p;,p,} if B € [1/2,00), we obtain

pl||6Fi'i(vl)l||HSéz(Ej) < 19)
<c( +10g@)2 {ou1()i P o+ Pl )21 ) + P21 u) = ()il )
= h; i) iTa @) TP i (o5) T NI Jill2 (k)
H; . -
< C(1+log j)z{di(ui,ui) +dj(uju;)}.
1
We now estimate the second term of (16). Using (8), we have

piHGEijk(v[)iHiz(Eijk) gzpi{y}ik”(”i i~ ”/ ||L2 +71%z/|| ui)i — (ug)i ||L2 )}-
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Using (i;);,k;,, = (#))i E;; and Lemma 4.17 in [3], and the same arguments given in

(18), and p,yzlk < min{p;,p;} for B € [1/2,20), we obtain

PiYirll )i = ()il ) < C(1+10g 2= )P:szkl( Di= Wil 20)
< C(1+tog TP )+ 931 07) iy + 221107~ il )
< C(1+log L {di ) + )}
and similarly
PR i = (i3 < O+ log M) + i)} 1)
Hence, by adding (20) and (21), we obtain
pillOe, vi)ill7a s,y < C(1 +10g%){fii(ui»ui) +dj(uj,uj) +di(u, )y (22)
Substituting (19) and (22) into (16), we get
pillVviill 2 g, < €1 +log > {di (i, wi) +dj(uj,u)) + di (e, )} (23)

We now estimate the second term of the RHS of (14). Note that (v;); and (v;); are
defined on different meshes. In addition, the nodal values of (v;);(x), are defined by
different formulas if a node x belongs to Fjj;, or to E;jx, C dF;j, see (6) and (8). The
same holds for (v;);(x). These issues must be taken into account when estimating
the second terms of the RHS of (14). We have

H(w)i—(w)jllizm_j) < 2{[|(vi)i — Qi,p; (vi) IILz ) HI0)j = Qir; (i), IILzE }
=2{I+1I}. (24)

Using (15) and that w; = 6p,w; + GaF,-jWi for w; € Xi(Qi)mj, we have
1< {1107, [(v)i = Qi i) M 72s,) + 11027, ()i = Qi (V) 72, )}
= C{Ip, + o, }- (25)
To estimate f;;, we first represent (v;)j = 6, (vi) + 0aF, (vi) j to obtain
Ir, < 241165, {(v)i — Qir, O, () 1)1 725 ) + 108, Qi O, (Vi) 2}
= 2{1\) +I5)). (26)

Using (6) and (7), we have
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) < OO, {[(we)i — ())i] = Qi Oy [ () — () 1}
Fl] — J LI YEji ) J7] LZ(FU)

and by adding and subtracting 6r; Qi ;; 0ar, [(ui); — (u;),], we obtain

I}‘,} < CY{ 1108 {[(wi)i — ()il — Qi gy (i) — (”f)/])}”%Z(F,-j) +
+ 1168, Qi B2 [ (i) — ()i} 1720}
SCﬁNuu—@m()hz S+ )i @mwwﬁmm+
X Al = )20 < ORI W)= ()72, +

J,kca
Y — ()12 h~11ﬂ ;= ()17
)i = ) s+ 50 g 01w = )i
< ORI )i~ () g+ 10)i — () 2 + @n

H.
o+ (1-+og 2 2) (gl g + sl 1) 3 g + 11 )i = () s
J

where we have used the Lz-stability of Qiﬂj and Gpj,., the constraint (i;) JEj =
(1) j.Ejy and Lemma 4.17 in [3]. For the last inequality of (27), we have used a
similar argument as in (18).

To estimate / ,(vi) , first note that

2
1) < Chll )12 o) <Chy X, 10012, (28)

EjixCIFji
and using the definition of (v;);, see (9), we have
10030 z2 ) < 240l () 5 = ()72
The first term of the RHS of (29) is estimated as in (20) while the second term as
hWW‘Wf@gﬁQMWW_WWQMWWWF@W%@M
< C(1+1log 1) 151003) i g+ 100, = i,

(il )+ 100 ;= @kl Fa ey }- (30)

)+ W) = 1172, - (29)

tk

Substituting (29) and (30) into (28) and adding with (27), see (26), we obtain

pid

I, < C(1 410 1) ) + #dwmm+ Y g m)}.

1_/kC‘9th Y

We now estimate Iy, see (25). Note that (¥;) ,r;, = 0 implies a zero average of
Qi r;(vi)j on F;j. We also have (7)), r;; = 0. Using previous arguments, we obtain
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g, < Chil|(vi)i — Qi,P}j(Vi)j”iz(apij)
< Chi{[|(va)ill7 ary) + ||Qiﬂj9F,,-(Vi)j||iz(aﬂj) + ||Qi,FijGaFﬁ(Vi)j||i2(aFij)}
<C Y Anllo0ilzzg, +hi||Qi,Fi_/9F,~1(Vi)/||iz(gl.jk) +h,-||(v,-),-||iz(Eﬁk)}

ljkcaE/
— +1%
=C %F {1 +I, ) €2))
t]k ij

It is not hard to see, using the same argument as priviously, that
1
I = hall il (us)i = ()i + g )i = )] o, (32)
H.
< C(1+log #){ﬁk(hi|(ui)i|zl(gi) il () 130 ) 1) = (@il Z2s )
+ 7131; h | ‘1—11 Q) +hi|(”k)k|%-1l(g,{) + ||(”k)k - (”k)iHiz(Fik))}a

I8) < Chrl| i, B, () — () M 2 Gy

ijk)

< Chivi{1|Qiry [(uj); — ()] H%Z(Eijk) + Qi 6o, [(u); — (ui) ] ||i2(E,-,-k>

H;
< i1+ log ) () = (i) 772, + il () = (i) 12 g 3

}

H
< CYilhi+hj) (1 +1og ) () = (1) /2
2 2 ! L
< Cyi(hi+hy)(1+1og — ){|( il g 101 (0;) + 5 )i = (i) jll2 g ) 3

3 H:
15, < Chl (il e) = () + () = () 1) | < €1+ log W)
Yzik + Vzik h | “‘)i‘lz-ﬂ(g,-) +hj‘(”‘j)j|?11(gj) + [[ (ui)i — (”i)jHiZ(pij))
2 (il )il )+ sl 0k o)+ M)k = )l )Y B

Substituting (32), (33) and (34) into (31), we obtain

) H  _hi+h - - ha -
P Iyr, < C(1+log —){ = (di(ui,ui) + dj(uj,u;)) + Y I G, mi)}.
lijhiy " A .

EjxCOF;

It remains to estimate /7 in (24). Using a L?-projection property, we have

11 < Chil(vi); |H1/2 <C{h |9F (vi); |H1/2 +h |93F (vi); ‘?{1/2(1:/.1.)}
= C{]IFﬁ +IlaFji}' (35)
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Using similar arguments as above, we obtain

I, < Chy( l+1ogh A (36)

|2
il

h.
2 2 i 2
C(l +10g h yz{h | |H1 )+hi|(”j)j|Hl(Q )Jr /’Tj”(ul)l - (Mi)jHLz(Fij)}’
Iy, SC ||99F O)illE2gey <Chi X 100 il72g,00 37
’ E_,-,-kcaF/-i
and
H.
hill i) 122 ) < €O +1og 2D (Ve + Vi) + (38)
J
h.

(al ()il )+ il () 15 )+ }T; 1) j = ()il 72, )

hi
+ h*jH(Mk)j = ()il 72}

+7kij(hi|(”k)k‘%[1(9k) + hi|(”j)j|%11(9
Substituting (38) into (37) and adding (36), see (35), we obtain

hjk h
h]

pi0

2d
L I (uge,u) }-

H;  h
—— I <C(1+log—~ n I)(

- h; -
h—d i (ui, ui) + h—d (wjuj)+ Z
ij

E; jkC JF; j
The proof is complete.

Remark 1. The proof of Lemma 1 also works with minor modifications when £;; =
00;,NdN ; is an union of faces, also, for FETI-DP with corner and average face
constraints only, or with corner and edge constraints only.
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