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1 Introduction

In this paper a Nitsche-type discretization based on discontinuous Galerkin (DG)
method for an elliptic three-dimensional problem with discontinuous coefficients is
considered. The problem is posed on a polyhedral region Ω which is a union of
N disjoint polyhedral subdomains Ωi of diameter O(Hi) and we assume that this
partition is geometrically conforming. Inside each subdomain, a conforming finite
element space on a quasiuniform triangulation with mesh size O(hi) is introduced.
Large discontinuities on the coefficients and nonmatching meshes are allowed to
occur only across ∂Ωi. In order to deal with the nonconformity of the FE spaces
across subdomain interfaces, a discrete problem is formulated using the symmetric
interior penalty DG method only on the subdomain interfaces. For solving the re-
sulting discrete system, FETI-DP type of methods are designed and fully analyzed.
This paper extends the 2-D results in [2] to 3-D problems.

2 Differential and discrete problems

Consider the following problem: Find u∗ex ∈ H1
0 (Ω) such that

a(u∗ex,v) = f (v) for all v ∈ H1
0 (Ω), (1)

where

a(u,v) :=
N

∑
i=1

∫
Ωi

ρi(x)∇u ·∇vdx and f (v) :=
∫

Ω

f vdx.

To simplify the presentation, we assume that ρi(x) is equal to positive constant ρi.
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We now consider the discrete problem associated to (1). Let Xi(Ωi) be the regular
finite element (FE) space of piecewise linear and continuous functions in Ωi and
define

X(Ω) =
N

∏
i=1

Xi(Ωi)≡ X1(Ω1)×X2(Ω2)×·· ·×XN(ΩN).

We note that we do not assume that the functions in Xi(Ωi) vanish on ∂Ωi∩∂Ω .
Let us denote F̄i j := ∂Ωi∩∂Ω j as a face of ∂Ωi and F̄ji := ∂Ω j ∩∂Ωi as a face

of ∂Ω j. In spite of the common face Fi j and Fji being geometrically the same, they
will be treated separately since we consider different triangulations on F̄i j ⊂ ∂Ωi
with a mesh parameter hi and on F̄ji ⊂ ∂Ω j with a mesh parameter h j. We denote
the interior hi-nodes of Fi j and the h j-nodes of Fji by Fi jh and Fjih, respectively.

Let us denote by F 0
i the set of indices j of Ω j which has a common face Fji with

Ωi. To take into account also of these faces of Ωi which belong to ∂Ω , we introduce
a set of indices F ∂

i to refer theses faces. The set of indices of all faces of Ωi is
denoted by Fi := F 0

i ∪F ∂
i . A discrete problem is obtained by a composite FE/DG

method, see [1], is of the form: Find u∗ = {u∗i }N
i=1 ∈ X(Ω) where ui ∈ Xi(Ωi), such

that
ah(u∗,v) = f (v) for all v = {vi}N

i=1 ∈ X(Ω), (2)

where

ah(u,v) :=
N

∑
i=1

a′i(u,v), f (v) :=
N

∑
i=1

∫
Ωi

f vi dx,

a′i(u,v) := {ai(u,v)+ pi(u,v)}+ si(u,v)≡ {di(u,v)}+ si(u,v), (3)

where
ai(u,v) :=

∫
Ωi

ρi∇ui ·∇vi dx,

pi(u,v) := ∑
j∈Fi

∫
Fi j

δ

li j

ρi

hi j
(u j −ui)(v j − vi)ds,

and

si(u,v) := ∑
j∈Fi

∫
Fi j

1
li j

(
ρi

∂ui

∂n
(v j − vi)+ρi

∂vi

∂n
(u j −ui)

)
ds.

Here, when j ∈F 0
i , we set li j = 2 and let hi j := 2hih j/(hi +h j), i.e., the harmonic

average of hi and h j. When j ∈ F ∂
i , we denote the boundary faces Fi j ⊂ ∂Ωi by

Fi∂ and set li∂ = 1 and hi∂ = hi, and on the artificial face Fji ≡ F∂ i, we set u∂ = 0
and v∂ = 0. The partial derivative ∂

∂n denotes the outward normal derivative on
∂Ωi and δ is the sufficiently large penalty parameter. For details on accuracy and
well-posedness, see [2, 1] and references there in. In particular, we show that exists
positive constants γ0 and γ1, which do not depend on the ρi, hi and Hi, such that

γ0ah(u,u)≤
N

∑
i=1

di(u,u)≤ γ1ah(u,u) for all u ∈ X(Ω).
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3 Schur complement systems and discrete harmonic extensions

This section is similar to Section 3 in [2] with a few natural changes when passing
from the 2-D to the 3-D case, and we refer to that for more details.

• Define the sets Ω ′
i , Γi, Γ ′

i , Ii, Γ , Γ ′, I and Ω ′ by

Ω
′
i = Ω i

⋃
{∪ j∈F 0

i
F̄ji}, Γi = ∂Ωi\∂Ω , Γ

′
i = Γi

⋃
{∪ j∈F 0

i
F̄ji},

Γ =
N⋃

i=1

Γi, Γ
′ =

N

∏
i=1

Γ
′

i , Ii = Ω
′
i\Γ

′
i , I =

N

∏
i=1

Ii and Ω
′ =

N

∏
i=1

Ω
′
i .

• Define the space Wi(Ω ′
i ) by

Wi(Ω ′
i ) = Xi(Ωi)× ∏

j∈F 0
i

Xi(F̄ji), where Xi(F̄ji) = X j(Ω j)|F̄ji
.

A function ui ∈Wi(Ω ′
i ) will be represented as

ui = {(ui)i,{(ui) j} j∈F 0
i
},

where (ui)i := ui |Ω i
(ui restricted to Ω i) and (ui) j := ui |F̄ji

(ui restricted to F̄ji).
• For the definition of the discrete harmonic extension operators H ′

i and Hi (elim-
ination of Ii variables) with respect to the bilinear forms a′i and ai, see [2].

• The matrices A′
i and S′i are defined by

a′i(ui,vi) = 〈A′
iui,vi〉 ui,vi ∈Wi(Ω ′

i ), a′i(ui,vi) = 〈S′iui,vi〉 ui,vi ∈Wi(Γ ′
i ).

• Wi(Γ ′
i )⊂Wi(Ω ′

i ) denotes the H ′
i -discrete harmonic functions.

• Define W (Ω ′) = ∏
N
i=1 Wi(Ω ′

i ) and W (Γ ′) = ∏
N
i=1 Wi(Γ ′

i ).
• Let the subspace Ŵ (Ω ′) ⊂ W (Ω ′) consist of functions u = {ui}N

i=1 ∈ W (Ω ′)
which are continuous on Γ , that is, for all 1 ≤ i ≤ N satisfy

(ui)i(x) = (u j)i(x) for all x ∈ F̄i j for all j ∈ F 0
i

and
(ui) j(x) = (u j) j(x) for all x ∈ F̄ji for all j ∈ F 0

i .

We note that Ŵ (Ω ′) can be identified to X(Ω).
• Ŵ (Γ ′) denotes the subspace of Ŵ (Ω ′) of H ′

i -discrete harmonic functions.
• The rest of Section 3 in [2] remains the same for 3-D problems. In particular, by

eliminating the interior variables I from the system (2), we obtain

Ŝu∗Γ = gΓ . (4)

We note that Ŝ can be assembled from S′i, i.e., Ŝ = ∑
N
i=1 RT

Γ ′
i
S′iRΓ ′

i
, where RΓ ′

i
is

the restriction operator from Γ to Γ ′
i .
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4 FETI-DP with corners, average edges and faces constraints

We now design a FETI-DP method for solving (4). We follow to the abstract ap-
proach described in pages 160-167 in [3].

Let us define the set of indices E 0
i of pairs ( j,k) of Ω j and Ωk, j 6= k, for which

Ēi jk := ∂Fi j ∩∂Fik, for j,k ∈ F 0
i , is an edge of ∂Ωi. In spite of the common edges

Ei jk, E jik, and Eki j being geometrically the same, we treat them separately since
we consider different triangulations on Ei jk ⊂ ∂Ωi with a mesh parameter hi, E jik ⊂
∂Ω j with a mesh parameter h j and Eki j ⊂ ∂Ωk with a mesh parameter hk. We denote
the interior edge nodes of these triangulations by Ei jkh, E jikh and Eki jh, respectively.

Let us introduce the nodal points associated to the corner unknowns by

Vi := {∪( j,k)∈E 0
i

∂Ei jk} and V ′
i := {Vi

⋃
{∪( j,k)∈E 0

i
∂E jik ∪∂Eki j}}.

We say that u = {ui}N
i=1 ∈W (Ω ′) is continuous at the corners Vi if

(ui)i(x) = (u j)i(x) = (uk)i(x) at all x ∈ Vi.

Definition 1. (Subspaces W̃ (Ω ′) and W̃ (Γ ′)). The W̃ (Ω ′) consists of functions u =
{ui}N

i=1 ∈W (Ω ′) for which, for all 1≤ i≤ N, the following conditions are satisfied:

• At all corners Vi, u is continuous.
• On all edges Ei jk for ( j,k) ∈ E 0

i

(ūi)i,Ei jk = (ū j)i,Ei jk = (ūk)i,Ei jk .

• On all faces Fi j for j ∈F 0
i

(ūi)i,Fi j = (ū j)i,Fi j ,

where
(ūi)i,Ei jk =

1
|Ei jk|

∫
Ei jk

(ui)ids, (ū j)i,Fi j =
1
|Fi j|

∫
Fi j

(u j)ids.

The W̃ (Γ ′) denotes the subspace of W̃ (Ω ′) of functions which are discrete harmonic
in the sense of H ′

i . It is easy to see that Ŵ (Γ ′)⊂ W̃ (Γ ′)⊂W (Γ ′).

Let Ã be the stiffness matrix which is obtained by assembling the matrices A′
i

for 1 ≤ i ≤ N, from W (Ω ′) to W̃ (Ω ′). We represent u ∈ W̃ (Ω ′) as u = (uI ,uΠ ,u4)
where the subscript I refers to the interior degrees of freedom at the nodal points
on I, the Π refers to the degrees of freedom at the corners {Vi}N

i=1 and edges and
faces averages, and the 4 refers to the remaining degrees of freedom, i.e., the nodal
values on {Γ ′

i \V ′
i }N

i=1 with edges and faces average equal to zero. For details on Ã,
see (4.5) in [2], and its Schur complement S̃ (after eliminating the I and Π degrees
of freedom from Ã), see (4.6) in [2].

A vector u ∈ W̃ (Γ ′) can uniquely be represented by u = (uΠ ,u4), therefore, we
can represent
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W̃ (Γ ′) = ŴΠ (Γ ′)×W4(Γ ′),

where ŴΠ (Γ ′) refers to the Π -degrees of freedom of W̃ (Γ ′) while W4(Γ ′) to the
4-degrees of freedom of W̃ (Γ ′). The vector space W4(Γ ′) can be decomposed as

W4(Γ ′) =
N

∏
i=1

Wi,4(Γ ′
i ),

where the local space Wi,4(Γ ′
i ) refers to the degrees of freedom associated to the

nodes of Γ ′
i \V ′

i for 1 ≤ i ≤ N with zero averages on Fi j and Fji, for i ∈F 0
i , and on

Ei jk, E jik and Eki j, for ( j,k) ∈ E 0
i .

The jump operator B4 : W4(Γ ′)→Ur

B4 = (B(1)
4 ,B(2)

4 , · · · ,B(N)
4 )

is defined as follows. Each B(i)
4 maps W4(Γ ′) to Ui,r (jumps on edges and faces),

where vi = B(i)u4 is defined by:

• For each face Fi j for j ∈F 0
i , let

vi(x) = (ui,4)i(x)− (u j,4)i(x) for all x ∈ Fi jh.

• For each edge Ei jk for ( j,k) ∈ E 0
i , let vi = {vi,1,vi,2}, where

vi,1(x) = (ui,4)i(x)− (u j,4)i(x) for all x ∈ Ei jkh,

vi,2(x) = (ui,4)i(x)− (uk,4)i(x) for all x ∈ Ei jkh.

Let Ur = (U1,r, · · · ,UN,r) where Ui,r is the range of B(i)
4 , and note that the Ui,r also

has zero average on edges and faces. The space Ur will also be denoted as the space
of Lagrange multipliers. We note that by setting B(i)

4 u4 = 0, we have one constraint
for each node on Fi jh and two constraints for each node on Ei jkh. The saddle point
problem is defined as in [2], except that here we replace Ŵ4 by Ur, and the problem
(4) is reduced to: Find u∗4 ∈W4(Γ ′) and λ ∗ ∈Ur such that{

S̃u∗4 + BT
4λ ∗ = g̃4

B4u∗4 = 0.

Hence, it reduces to
Fλ

∗ = g, (5)

where
F := B4S̃−1BT

4, g := B4S̃−1g̃4.
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4.1 Dirichlet Preconditioner

We now define the FETI-DP preconditioner for F , see (5). Let S′i,4 be the Schur
complement of S′i restricted to Wi,4(Γ ′

i )⊂Wi(Γ ′
i ), and define S′4 = diag{S′i,4}N

i=1.
Let us introduce diagonal scaling matrices Di : Ui,r → Ui,r, for 1 ≤ i ≤ N as

follows. For β ∈ [1/2,∞), define the diagonal entry of Di by:

• For each face Fi j for j ∈F 0
i , let

Di(x) = ρ
β

j (ρβ

i +ρ
β

j )−1 =: γ ji for all x ∈ Fi jh.

• For each edge Ei jk for ( j,k) ∈ E 0
i , let Di = {Di,1,Di,2}, where

Di,1(x) = ρ
β

j (ρβ

i +ρ
β

j +ρ
β

k )−1 =: γ jik for all x ∈ Ei jkh,

Di,2(x) = ρ
β

k (ρβ

i +ρ
β

j +ρ
β

k )−1 =: γki j for all x ∈ Ei jkh.

We now introduce BD,4 : Ur →Ur by BD,4 = (D1B(1)
4 , · · · ,DNB(N)

4 ) and the op-
erator P4 : W4(Γ ′) → W4(Γ ′) by P4 := BT

D,4B4. We can check that for u4 =
{ui,4}N

i=1 ∈W4(Γ ′), that v4 := P4u4 satisfies:

(vi,4)i = γ ji[(ui,4)i− (u j,4)i] on Fi jh, (6)

(v j,4)i = γi j[(u j,4)i− (ui,4)i] on Fi jh, (7)

(vi,4)i = γ jik[(ui,4)i− (u j,4)i]+ γki j[(ui,4)i− (uk,4)i] on Ei jkh, (8)

(v j,4)i = γi jk[(u j,4)i− (ui,4)i]+ γki j[(u j,4)i− (uk,4)i] on Ei jkh, (9)

(vk,4)i = γi jk[(uk,4)i− (ui,4)i]+ γ jik[(uk,4)i− (u j,4)i] on Ei jkh. (10)

We note from [(6) - (7)] that on Fi jh it holds

[(vi,4)i− (v j,4)i] = [(ui,4)i− (u j,4)i], (11)

and from [(8) - (9)] + [(8) - (10)] that on Ei jkh it holds

[(vi,4)i− (v j,4)i]+ [(vi,4)i− (vk,4)i] = [(ui,4)i− (u j,4)i]+ [(ui,4)i− (uk,4)i],

and it follows that B4P4 = B4 and P2
4 = P4.

In the FETI-DP method, the preconditioner M−1 is defined as follows:

M−1 = BDS′4BT
D =

N

∑
i=1

DiB
(i)
4 S′i,4(B(i)

4 )T Di.
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The main result of this paper is the following:

Theorem 1. For any λ ∈Ur, it holds that

〈Mλ ,λ 〉 ≤ 〈Fλ ,λ 〉 ≤ C(1+ log
H
h

)2〈Mλ ,λ 〉,

where C is a positive constant independent of hi, Hi, λ and the jumps of ρi. Here
and below, log(H

h ) := maxN
i=1 log(Hi

hi
).

Proof. Using the same algebraic arguments as in [2], it reduces to Lemma 1. The
proof of Lemma 1 for the 3-D case is new and given with details below.

Lemma 1. For any u4 ∈W4(Γ ′), it holds that

‖P4u4‖2
S′4

≤C(1+ log
H
h

)2‖u4‖2
S̃, (12)

where C is a positive constant independent of hi, Hi, u4 and the jumps of ρi.

Proof. Given u4 ∈W4(Γ ′), let u = (uΠ ,u4) ∈ W̃ (Γ ′) be the solution of

〈S̃u4,u4〉= min〈S′w,w〉=: 〈S′u,u〉, (13)

where the minimum is taken over w = (wΠ ,w4) ∈ W̃ (Γ ′) such that wΠ ∈ ŴΠ (Γ ′)
and w4 = u4. Hence, we can replace ‖u4‖S̃ in (12) by ‖u‖S′ .

Let us represent the u defined above as {ui}N
i=1 ∈W (Γ ′) where ui ∈Wi(Γ ′

i ). Let
v ∈ W̃ (Γ ′) be equal to P4u4 at the 4-nodes and equal to zero at the Π -nodes, i.e.,
v = 0 on V ′

i for 1 ≤ i ≤ N and zero average on faces and edges. Let us represent v
as {vi}N

i=1 ∈W (Γ ′), where vi ∈Wi(Γ ′
i ). We have

‖P4u4‖2
S′4

= ‖v‖2
S′ =

N

∑
i=1

‖vi‖2
S′i

in view of the definition of S′i,4 and S4, see (4.18), (3.5) and (4.6) in [2]. Hence, to
prove the lemma it remains to show that

N

∑
i=1

‖vi‖2
S′i
≤C(1+ log

H
h

)2‖u‖2
S′

since by (13) we obtain (12). By Corollary 3.2 in [2] we need to show

N

∑
i=1

d̃i(vi,vi)≤C(1+ log
H
h

)2
N

∑
i=1

d̃i(ui,ui),

where, see (2.9) in [2], d̃i(vi,vi) = di(Hivi,Hivi) and

d̃i(vi,vi) = ρi ‖ ∇(Hivi)i ‖2
L2(Ωi)

+ ∑
j∈Fi

ρiδ

li jhi j
‖ (vi)i− (vi) j ‖2

L2(Fi j)
. (14)
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Here, (vi)i = (Hivi)i and (ui)i = (Hiui)i inside of the subdomains Ωi.
To estimate the terms of the right-hand side (RHS) of (14) we represent (vi)i as

(vi)i = ∑
Fi j⊂(∂Ωi\∂Ω)

θFi j(vi)i + ∑
Ei jk⊂∂Ωi

θEi jk(vi)i (15)

and Hi is discrete harmonic on Ωi. Here, θFi j(vi)i := Ihi(ϑFi j(vi)i) and θEi jk(vi)i :=
Ihi(ϑEi jk(vi)i), where ϑFi j and ϑEi jk are the standard face and edge cutoff functions
and Ihi the finite element interpolator. We note that we do not have any vertex terms
in (15) since (vi)i = 0 on Vi. From now on, we denote ∇(H`w`)` by ∇(w`)` for
` = i, j,k and w = v,u. Hence, using (15), we have

‖∇(vi)i‖2
L2(Ωi)

≤C{ ∑
j∈F 0

i

‖θFi j(vi)i‖2
H1/2

00 (Fi j)
+ ∑

( j,k)∈E 0
i

‖θEi jk(vi)i‖2
L2(Ei jk)

} (16)

by well-known estimates, see [3]. Note that (16) is also valid for substructures Ωi
which intersect ∂Ω by using the same arguments as for the 2-D case; see [2]. Using
(6), (ūi)i,Fi j = (ū j)i,Fi j and Lemma 4.26 in [3], we obtain

ρi ‖ θFi j(vi)i ‖2
H1/2

00 (Fi j)
= ρiγ

2
ji ‖ θFi j [(ui)i− (u j)i] ‖2

H1/2
00 (Fi j)

(17)

≤ Cρiγ
2
ji(1+ log

Hi

hi
)2|(ui)i− (u j)i|2H1/2(Fi j)

.

Let Qi,Fi j be the L2-projection onto Xi(Fi j), the restriction of Xi(Ωi) on F̄i j. Using
the triangle and inverse inequalities, and the H1/2- and L2-stability of the Qi,Fi j pro-
jection, we have

|(ui)i− (u j)i|2H1/2(Fi j)
(18)

≤ C{|Qi,Fi j [(ui)i− (u j) j]|2H1/2(Fi j)
+ |Qi,Fi j [(u j) j − (u j)i]|2H1/2(Fi j)

≤ C {|(ui)i|2H1(Ωi)
+ |(u j) j|2H1(Ω j)

+
1
hi
‖(u j) j − (u j)i‖2

L2(Fi j)
}.

Substituting (18) into (17) and using ρiγ
2
ji ≤ min{ρi,ρ j} if β ∈ [1/2,∞), we obtain

ρi‖θFi j(vi)i‖2
H1/2

00 (Fi j)
≤ (19)

≤C(1+ log
Hi

hi
)2 {ρi|(ui)i|2H1(Ωi)

+ρ j|(u j) j|2H1(Ω j)
+

ρ j

hi
‖(u j) j − (u j)i‖2

L2(Fi j)
}

≤ C(1+ log
Hi

hi
)2{d̃i(ui,ui)+ d̃ j(u j,u j)}.

We now estimate the second term of (16). Using (8), we have

ρi‖θEi jk(vi)i‖2
L2(Ei jk)

≤ 2ρi{γ
2
jik‖(ui)i− (u j)i‖2

L2(Ei jk)
+ γ

2
ki j‖(ui)i− (uk)i‖2

L2(Ei jk)
}.
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Using (ūi)i,Ei jk = (ū j)i,Ei jk and Lemma 4.17 in [3], and the same arguments given in
(18), and ρiγ

2
jik ≤ min{ρi,ρ j} for β ∈ [1/2,∞), we obtain

ρiγ
2
jik‖(ui)i− (u j)i‖2

L2(Ei jk)
≤C(1+ log

Hi

hi
)ρiγ

2
jik|(ui)i− (u j)i|2H1/2(Fi j)

(20)

≤ C(1+ log
Hi

hi
){ρi|(ui)i|2H1(Ωi)

+ρ j|(u j) j|2H1(Ωi)
+

ρ j

hi
‖(u j) j − (u j)i‖2

L2(Fi j)
}

≤ C(1+ log
Hi

hi
){d̃i(ui,ui)+ d̃ j(u j,u j)}

and similarly

ρiγ
2
ki j‖(ui)i− (uk)i‖2

L2(Ei jk)
≤C(1+ log

Hi

hi
){d̃i(ui,ui)+ d̃k(uk,uk)}. (21)

Hence, by adding (20) and (21), we obtain

ρi‖θEi jk(vi)i‖2
L2(Ei jk)

≤C(1+ log
Hi

hi
){d̃i(ui,ui)+ d̃ j(u j,u j)+ d̃k(uk,uk)}. (22)

Substituting (19) and (22) into (16), we get

ρi‖∇(vi)i‖2
L2(Ωi)

≤C(1+ log
Hi

hi
)2{d̃i(ui,ui)+ d̃ j(u j,u j)+ d̃k(uk,uk)}. (23)

We now estimate the second term of the RHS of (14). Note that (vi)i and (vi) j are
defined on different meshes. In addition, the nodal values of (vi)i(x), are defined by
different formulas if a node x belongs to Fi jh or to Ei jkh ⊂ ∂Fi j, see (6) and (8). The
same holds for (vi) j(x). These issues must be taken into account when estimating
the second terms of the RHS of (14). We have

‖(vi)i− (vi) j‖2
L2(Fi j)

≤ 2{‖(vi)i−Qi,Fi j(vi) j‖2
L2(Fi j)

+‖(vi) j −Qi,Fi j(vi) j‖2
L2(Fi j)

}

≡ 2{I + II}. (24)

Using (15) and that wi = θFi j wi +θ∂Fi j wi for wi ∈ Xi(Ωi)|F̄i j
, we have

I ≤ C{‖θFi j [(vi)i−Qi,Fi j(vi) j]‖2
L2(Fi j)

+‖θ∂Fi j [(vi)i−Qi,Fi j(vi) j]‖2
L2(Fi j)

}

≡ C{IFi j + I∂Fi j}. (25)

To estimate IFi j , we first represent (vi) j = θFji(vi) j +θ∂Fji(vi) j to obtain

IFi j ≤ 2{‖θFi j{(vi)i−Qi,Fi j θFji(vi) j})‖2
L2(Fi j)

+‖θFi j Qi,Fi j θ∂Fji(vi) j)‖2
L2(Fi j)

}

≡ 2{I(1)
Fi j + I(2)

Fi j}. (26)

Using (6) and (7), we have
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I(1)
Fi j ≤Cγ

2
ji‖θFi j{[(ui)i− (u j)i]−Qi,Fi j θFji [(ui) j − (u j) j]}‖2

L2(Fi j)

and by adding and subtracting θFi j Qi,Fi j θ∂Fji [(ui) j − (u j) j], we obtain

I(1)
Fi j ≤ Cγ

2
ji{‖θFi j{[(ui)i− (u j)i]−Qi,Fi j [(ui) j − (u j) j])}‖2

L2(Fi j)
+

+ ‖θFi j Qi,Fi j θ∂Fji [(ui) j − (u j) j])}‖2
L2(Fi j)

}

≤ Cγ
2
ji{‖(ui)i−Qi,Fi j(ui) j‖2

L2(Fi j)
+‖(u j)i−Qi,Fi j(u j) j‖2

L2(Fi j)
+

+ ∑
E jik⊂∂Fji

h j‖(ui) j − (u j) j‖2
L2(E jik)

} ≤Cγ
2
ji{‖(ui)i− (ui) j‖2

L2(Fi j)
+

+ ‖(u j)i− (u j) j‖2
L2(Fi j)

+h j(1+ log
H j

h j
)|(ui) j − (u j) j|2H1/2(Fji)

}

≤ Cγ
2
ji{‖(ui)i− (ui) j‖2

L2(Fi j)
+‖(u j)i− (u j) j‖2

L2(Fi j)
+ (27)

+ (1+ log
H j

h j
)(h j|(ui)i|2H1(Ωi)

+h j|(u j) j|2H1(Ω j)
+‖(ui)i− (ui) j‖2

L2(Fi j)
},

where we have used the L2-stability of Qi,Fi j and θFji , the constraint (ūi) j,E jik =
(ū j) j,E jik and Lemma 4.17 in [3]. For the last inequality of (27), we have used a
similar argument as in (18).

To estimate I(2)
Fi j

, first note that

I(2)
Fi j

≤Ch j‖(vi) j‖2
L2(∂Fji)

≤Ch j ∑
E jik⊂∂Fji

‖(vi) j‖2
L2(E jik)

(28)

and using the definition of (v j)i, see (9), we have

‖(vi) j‖2
L2(E jik)

≤ 2{γ
2
jik‖(ui) j − (u j) j‖2

L2(E jik)
+ γ

2
ki j‖(ui) j − (uk) j‖2

L2(E jik)
}. (29)

The first term of the RHS of (29) is estimated as in (20) while the second term as

h j‖(ui) j − (uk) j‖2
L2(E jik)

≤ 2h j{‖(ui) j − (u j) j‖2
L2(E jik)

+‖(u j) j − (uk) j‖2
L2(E jik)

}

≤ C(1+ log
H j

h j
){h j|(ui)i|2H1(Ωi)

+h j|(u j) j|2H1(Ω j)
+‖(ui) j − (ui)i‖2

L2(Fji)

+h j|(uk)k|2H1(Ω j)
+‖(uk) j − (uk)k‖2

L2(Fjk)
}. (30)

Substituting (29) and (30) into (28) and adding with (27), see (26), we obtain

ρiδ

li jhi j
IFi j ≤C(1+ log

H
h

){
h j

hi j
d̃i(ui,ui)+

h j

hi j
d̃ j(u j,u j)+ ∑

Ei jk⊂∂Fi j

h j

hi j
d̃k(uk,uk)}.

We now estimate I∂Fi j , see (25). Note that (v̄i) j,Fji = 0 implies a zero average of
Qi,Fi j(vi) j on Fi j. We also have (v̄ j)i,Fi j = 0. Using previous arguments, we obtain
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I∂Fi j ≤Chi‖(vi)i−Qi,Fi j(vi) j‖2
L2(∂Fi j)

≤ Chi{‖(vi)i‖2
L2(∂Fi j)

+‖Qi,Fi j θFji(vi) j‖2
L2(∂Fi j)

+‖Qi,Fi j θ∂Fji(vi) j‖2
L2(∂Fi j)

}

≤ C ∑
Ei jk⊂∂Fi j

{hi‖(vi)i‖2
L2(Ei jk)

+hi‖Qi,Fi j θFji(vi) j‖2
L2(Ei jk)

+h j‖(vi) j‖2
L2(E jik)

}

≡ C ∑
Ei jk⊂∂Fi j

{I(1)
Ei jk

+ I(2)
Ei jk

+ I(3)
Ei jk

}. (31)

It is not hard to see, using the same argument as priviously, that

I(1)
Ei jk

= hi‖γ jik[(ui)i− (u j)i]+ γki j[(ui)i− (uk)i]‖2
L2(Ei jk)

(32)

≤ C(1+ log
Hi

hi
){γ

2
jik(hi|(ui)i|2H1(Ωi)

+hi|(u j) j|2H1(Ω j)
+‖(u j) j − (u j)i‖2

L2(Fi j)
)

+ γ
2
ki j(hi|(ui)i|2H1(Ωi)

+hi|(uk)k|2H1(Ωk)
+‖(uk)k − (uk)i‖2

L2(Fik)
)},

I(2)
Ei jk

≤Chiγ
2
ji‖Qi,Fi j θFji [(u j) j − (ui) j]‖2

L2(Ei jk)
(33)

≤ Chiγ
2
ji{‖Qi,Fi j [(u j) j − (ui) j]‖2

L2(Ei jk)
+‖Qi,Fi j θ∂Fji

[(u j) j − (ui) j]‖2
L2(Ei jk)

}

≤ Cγ
2
ji{hi(1+ log

Hi

hi
)|(u j) j − (ui) j‖2

H1/2(Fji)
+h j‖(u j) j − (ui) j‖2

L2(Ei jk)
}

≤ Cγ
2
ji(hi +h j)(1+ log

H
h

)|(u j) j − (ui) j|2H1/2(Fji)

≤ Cγ
2
ji(hi +h j)(1+ log

H
h

){|(ui)i|2H1(Ωi)
+ |(u j) j|2H1(Ω j)

+
1
hi
‖(ui)i− (ui) j‖2

L2(Fi j)
},

I(3)
Ei jk

≤Ch j‖(γ jik[(ui) j − (u j) j]+ γki j[(ui) j − (uk) j])‖2
L2(E jik)

≤C(1+ log
H j

h j
)∗

{(γ2
jik + γ

2
jik)(h j|(ui)i|2H1(Ωi)

+h j|(u j) j|2H1(Ω j)
+‖(ui)i− (ui) j‖2

L2(Fi j)
)

+γ
2
ki j(h j|(ui)i|2H1(Ωi)

+h j|(uk)k|2H1(Ωk)
+‖(uk)k − (uk) j‖2

L2(Fjk)
)}. (34)

Substituting (32), (33) and (34) into (31), we obtain

ρiδ

li jhi j
I∂Fi j ≤C(1+ log

H
h

){hi +hi

hi j
(d̃i(ui,ui)+ d̃ j(u j,u j))+ ∑

Ei jk⊂∂Fi j

h jk

hi j
d̃k(uk,uk)}.

It remains to estimate II in (24). Using a L2-projection property, we have

II ≤ Chi|(vi) j|2H1/2(Fji)
≤C{hi|θFji(vi) j|2H1/2(Fji)

+hi|θ∂Fji(vi) j|2H1/2(Fji)
}

≡ C{IIFji + II∂Fji}. (35)
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Using similar arguments as above, we obtain

IIFji ≤Chi(1+ log
H j

h j
)2

γ
2
ji|(ui) j − (u j) j|2H1/2(Fji)

(36)

≤ C(1+ log
H j

h j
)2

γ
2
ji{hi|(ui)i|2H1(Ωi)

+hi|(u j) j|2H1(Ω j)
+

hi

h j
‖(ui)i− (ui) j‖2

L2(Fi j)
},

II∂Fji ≤C
hi

h j
‖θ∂Fji(vi) j‖2

L2(Fji)
≤Chi ∑

E jik⊂∂Fji

‖(vi) j‖2
L2(E jik)

, (37)

and

hi‖(vi) j‖2
L2(E jik)

≤C(1+ log
H j

h j
){(γ jik + γki j)∗ (38)

(hi|(ui)i|2H1(Ωi)
+hi|(u j) j|2H1(Ω j)

+
hi

h j
‖(ui) j − (ui)i‖2

L2(Fji)
)

+γki j(hi|(uk)k|2H1(Ωk)
+hi|(u j) j|2H1(Ω j)

+
hi

h j
‖(uk) j − (uk)k‖2

L2(Fjk)
)}.

Substituting (38) into (37) and adding (36), see (35), we obtain

ρiδ

li jhi j
II ≤C(1+ log

H j

h j
)(

hi

hi j
d̃i(ui,ui)+

hi

hi j
d̃ j(u j,u j)+ ∑

Ei jk⊂∂Fi j

h jk

hi j

hi

h j
d̃k(uk,uk)}.

The proof is complete.

Remark 1. The proof of Lemma 1 also works with minor modifications when F̄i j =
∂Ωi ∩ ∂Ω j is an union of faces, also, for FETI-DP with corner and average face
constraints only, or with corner and edge constraints only.
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