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1 Introduction

The Bidomain model describes the spread of electrical atait in the anisotropic
cardiac tissue in terms of the evolution of the transmemeard extracellular elec-
tric potentialsy andue respectively. This model consists of a non-linear paraboli
reaction-diffusion partial differential equation (PDYf, coupled with an elliptic
linear PDE forue. The evolution equation is coupled through the non-lineacr
tion term with a stiff system of ordinary differential eqicats (ODES), the so-called
membrane model, describing the ionic currents throughéftialar membrane. The
different space and time scales involved make the solutfathed Bidomain sys-
tem a very challenging computational problem, becauseistyetization in three-
dimensional ventricular geometries of realistic size ieggithe solution of large
scale (often exceedin@(107) unknowns) and ill-conditioned linear systems at each
time step.

Several approaches have been developed in order to rededagh compu-
tational costs of the Bidomain model. Fully implicit mettsoh time, requiring
the solution of non-linear systems at each time step, haga bensidered in e.g.
[10, 9]. Alternatively, most previous works have considelglEX time discretiza-
tions and/or operator splitting schemes, where the reaeta diffusion terms are
treated separately, see e.g. [2, 3, 18, 20, 23]. The advawofd®//EX and operator
splitting schemes is that they only require the solution ¢ihaar system for the
parabolic and elliptic PDEs at each time step. A furthert8pg approach consists
in uncoupling the parabolic PDE from the elliptic one, see B3, 4].

Many different preconditioners have been proposed in ord@btain efficient
iterative solvers for the linear systems deriving from betlitting and uncou-
pling techniques: block diagonal or triangular [13, 14, 2, 2], optimized Schwarz
[6], multigrid [19, 16, 15, 13, 14], multilevel Schwarz [11Balancing Neumann-
Neumann [24] and BDDC [25] preconditioners.

The aim of the present work is to apply the Multilevel Add&i8chwarz precon-
ditioners of [11] to both a coupled and an uncoupled timerdiszation of the Bido-
main system and to compare their parallel performance.eFdmensional parallel
numerical tests on a BlueGene cluster, reported in Sec.aly shat the uncou-
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pled technique is as scalable as the coupled one. Moretreeconjugate gradient
method preconditioned by Multilevel Additive Schwarz psaditioners converges
faster for the uncoupled system than for the coupled onalligjnn all parallel
numerical tests considered, the uncoupled technique peapis always about 1.5
times faster than the coupled approach.

2 The anisotropic Bidomain model

The macroscopic Bidomain representation of the cardiaudis/olumeQ is ob-
tained by considering the superposition of two anisotramiotinuous media, the
intra- (i) and extra- (e) cellular media, coexisting at gvpoint of the tissue and
separated by a distributed continuous cellular membrazeeesy. [12] for a deriva-
tion of the Bidomain model from homogenization of cellulandels. We recall that
the cardiac tissue consists of an arrangement of fibers dketercounterclockwise
from epi- to endocardium, and that have a laminar orgarminatiodeled as a set of
muscle sheets running radially from epi- to endocardiure, [3& The anisotropy
of the intra- and extracellular media is described by théairopic conductivity
tensord; (x) andDe(x), see e.g. [2].

We denote by2 ¢ R the bounded physical region occupied by the cardiac tissue
and introduce a parabolic-elliptic formulation of the Bidain system. Given an ap-
plied extracellular current per unit volunig,: Q x (0,T) — R, we seek the trans-
membrane potential: Q x (0, T) — R, extracellular potentialge: Q x (0,T) — R,
gating variablesv: Q x (0, T) — RN and ionic concentratiors Q x (0,T) — RN\e
such that

Cm%/ — div(D; (x)0v) — div(Di (x)[ue) +lion(V,W,¢) = 0 in Q x (0,T)

—div(Dj (x)0v) — div((Di(x) + De(x))Oue) = 155, inQx(0,T) (1)
ow Jc .
W—R(v,w)zo, E—S(v,w,c):o, in Q x (0,T)

with insulating boundary conditions, suitable initial ctitions onv,w,c and where
cm is the membrane capacitance per unit volume. The non-lieeation termq,

and the ODE system for the gating variablesind the ionic concentratiortsare
given by the chosen ionic membrane model. Here we will cagiie Luo-Rudy |
(LR1) membrane model [8].

3 Discretization and numerical methods

Space discretization. The variational formulation of system (1) is first disceeti
in space by the finite element method. In this work, we will sider isoparametric
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trilinear finite elements on hexahedral meshes. In thevioilg, we denote by ¢
the symmetric intra- and extracellular stiffness matriaed byM the mass matrix.
We define the block mass and stiffness matrices as

™M o (A A
M‘[o 0}’ A‘[A A-+Ae]'

Time discretization. We consider two implicit-explicit (IMEX) strategies, ot
based on decoupling the ODEs from the PDEs and on treatinintes diffusion
terms implicitly and the non-linear reaction terms exhci

e Coupled method. The equations arising from the discretization of the PDEs ar
solved as a coupled system. Giweh, c", v", ud at the generic time step
- we first solve the ODEs system using the Implicit Euler mdtfar the gating
variables and the Explicit Euler method for the ionic cortcations, obtaining
the new gating variables"* and the new ionic concentration%"?,
- then we solve the PDEs system, obtaining the new potentialsandu**.
Summarizing in formulae, givew", c", v",ug, the scheme is

wl _ At R(Vn,WnJ"l) —wh

¢t = c"+ At S(v", w1 M)
Cm vl Cmy e [ V" —Mljon(V",wn+1 1)
S A) — Sy A

(At * [ug‘” At u |t Migpst

As a consequence, at each time step, we solve one lineanmsyste unknowns
(v+1 ultl). Because the iteration matrix is symmetric positive sesfirtte,
the iterative method employed is the preconditioned caatigradient (PCG)
method. Due to the ill-conditioning of the iteration materd the large num-
ber of unknowns required by realistic simulations of cacdéacitation in three-
dimensional domains, a scalable and efficient preconditios required. We
adopt here the 4-level Multilevel Additive Schwarz (MAS 4reconditioner,
see [21, 11].

e Uncoupled method. The two equations arising from the discretization of the
PDEs are uncoupled by introducing the following schemeeGw", c", v", ud
at the generic time stem
- we first solve the ODEs system using the Implicit Euler mdtfar the gating
variables and the Explicit Euler method for the ionic cortcations, obtaining
the new gating variables™! and the new ionic concentratioo’,

- then we solve the elliptic equation, obtaininigy

- and finally we update the transmembrane potential by solving again the
parabolic equation.

Summarizing in formulae, givew", c", v",ug, the uncoupled scheme is
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Wn+l — At R(Vn,wn-&-l) — Wn

et = "+ At S(v", w1 M)
(A + AUl — AV MIED,
G G
(A—";M +A5)v”+1 — A—";Mv”—Aiug—Mlion(v”,W”“,c”*l).

As a consequence, at each time step we solve first the linstarsywith matrix
A + Ac deriving from the elliptic equation and afterwards the éingystem with
matrix 8M + A; deriving from the parabolic equation. Both linear systemes a
solved by the PCG method, since the matrices are symmesityeodefinite in
the parabolic case and semi-definite in the elliptic case.preconditioner used
for the parabolic system is Block Jacobi (BJ), because tlagee matrix is well-
conditioned, while the preconditioner used for the ill-dd@ioned elliptic system
is the MAS(4) preconditioner, described below.

Multilevel Additive Schwar z preconditioners. Let QX fork=0,....¢ —1,be a
family of ¢ nested triangulations a®, coarsening fronf — 1 to 0,A’"1 = A in the
coupled method and’~1 = A; + A¢ in the uncoupled method, af¥ the restriction
operators fron2/~1 to Q. Define the matrices on each gridafs= RFAIR for
k=0,...,/ — 2. We then decompose each gff, fork=1,...,/—1, into N over-
lapping subgridsQX for m= 1,...,N and define the local restriction operatt§
from Q/~1 to QX and the local matrice&k, = REA‘LRK . The Multilevel Additive
Schwarz (MAS()) preconditioner is given by

1 00 | o o kT pk Tk
Buas= RO AY RO+ 5 5 RO AL Ry
k=1m=1
The condition number of the resulting preconditioner of@T&yas = B,(,,}ASAffl is
bounded by
he_1
Ty < 1+ —=
K2(Tmas) =C, _max ( 5 >,
wherehy is the mesh size o grid, & is the overlap size on levé& andC is a
constant independent bf, &, N and/; see [11] and for hybrid variants [17].

=1,... =

4 Numerical results

In this section, we present the results of parallel numeggperiments performed
on the BlueGene Cluster BG/Q of the Cineca Consortium (wimeaa.it). Our

FORTRAN code is based on the parallel library PETSc [1], fitbe Argonne Na-

tional Laboratory.
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procs| dof coupled uncoupled
K2 = Am/Am it time K2 = Am/Am it time
64 4,319,89041.85=8.70/2.08e-1 43 5.6%5.52=4.50/2.90e-1 29 1.82+1.07=2)89
128 8,553 474{33.41=6.79/2.03e-1 39 5.574.94=4.46/2.99e-1 28 2.02+1.03=3)05
256 17,040642/36.37=6.81/1.87e-1 40 5.1Q05.36=4.46/2.91e-1 28 1.92+1.05=2)97
512 33,949 186/27.37=5.16/1.88e-1 36 5.484.35=4.38/3.05e-1 28 1.98+0.99=2(97
1,024 67,766,274{29.53=5.16/1.75e-1 36 5.694.43=4.42/3.06e-1 28 2.17+1.04=3)21
2,048 135268 866/27.56=5.08/1.84e-1 34 8.303.23=4.33/3.28e-1 27 2.93+1.72=4)65
4,096 270,274,05028.91=5.09/1.76e-1 34 16.38.23=4.33/3.28e-1 27 5.58+3.63=9[21
8,192 540021 25025.03=5.10/2.04e-1 32 16.512.41=4.30/3.47e-1 26 5.93+3.75=9)68
16,3841,079,515 650/26.55=5.11/1.92e-1 32 17.32.41=4.30/3.47e-1 26 6.24+3.83=1(.07
32,7642,159978 114 - 12.03=4.32/3.59e-1 26 6.90+3.94=1(.84

Tablel Test 1. Weak scaling for coupled and uncoupled MAS(4) selwerellipsoidal structured
meshes. Average condition numbegp), extreme eigenvalues\, Am), PCG iteration countit)

and CPU time in secondsiife) per time step. The CPU times in the uncoupled column are ex-
pressed as the sum of the elliptic plus the parabolic solMe.run with 32K cores in the case of
coupled solver failed because of RAM limitations.

4.1 Test 1: weak scaling on ellipsoidal domains, structured mesh

The coupled and uncoupled linear solvers are compared hexescaled speedup
test on ellipsoidal deformed domains, discretized by stmed Q; finite element
grids. The number of subdomains (and processors) is inedelasm 64 to 32,768,
forming increasing ellipsoidal domaigs. The fine mesh is chosen so as to keep the
local mesh size on each subdomain fixed ak32 x 32. With these choices, the
global size of the discrete Bidomain system increases frooug4 million dof for
the smallest domain with 64 subdomains to more than 2 bitlimfrfor the largest do-
main with 32,768 subdomains. The physical dimensions ofrtbeasing cartesian
slabs are chosen so that the fine mesh Bizekept fixed to the valuh = 0.01 cm.
The simulation is run for 10 time steps of0® ms during the depolarization phase,
which is the most intense computationally.

The results reported in Table 1 clearly show that, since t#Si4) precondi-
tioner is employed, both the coupled and uncoupled methesaalable. In fact,
all mathematical quantities (condition number, extrengepvalues, PCG iteration
count) seem to approach constant values when increasingutider of subdo-
mains. Also the CPU times scale quite well, because theyioohgase of about a
factor 3— 4 from 64 to 32,768 processors, with a very small and sloweiase after
4096, while the global problem increases by a factor 512.
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method | it Tit  time Ttime
coupled (22 82,861 2.43 9.29e+3
uncoupleq27 92,157 1.72 5.87et3

Table 2 Test 2. Comparison of coupled and uncoupled solvers on aenfedrtbeat simulation,
with 28,755 650 dof, 1024 processors. Average PCG iteration coimtand CPU timet{me) per
time step, total PCG iteration couritif) and CPU timeTtime). The CPU times are expressed in
seconds.

V (26 ms) o u, (26 ms) .
0
-50
~83.49 23.89 5.00 100 26,91 23.70 5.00 ~50

Fig. 1 Test 2. Epicardial transmembrane (left) and extracell(fght) potential distributions at
t = 26 ms after an electric stimulus applied during the systolic ghaithe heart beat.

4.2 Test 2: comparison between coupled and uncoupled methods
on a complete cardiac cycle simulation

We now compare the coupled and uncoupled solvers on a caatpdertbeat (500
ms) in a portion of an ellipsoid, modeling half of the left veiate, discretized by a
Qq structured finite element grid of 384384 x 96 elements (2855, 650dof). The
MAS(4) preconditioner is employed in the coupled solver tordhe elliptic linear
system in the uncoupled solver, while the BJ preconditiasemployed for the
parabolic linear system in the uncoupled solver. The sitraria are run on 1,024
cores. The time step size is changed according to the adaitategy described in
[2].

The results reported in Table 2 show that the uncoupled ndeih@bout 1.5
times faster than the coupled one, because at each timerstegobves two linear
system of half size, the parabolic one being well condittbaad cheap to solve.
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Fig. 1 reports the epicardial transmembrane and extrdaelhotential distributions
att = 26 ms after an electric stimulus has been applied during the Bggibase of
the heart beat at the center of the epicardial surface.

5 Conclusion

We have applied Multilevel Additive Schwarz precondition® both coupled and
uncoupled time discretizations of the Bidomain model ofdaediac bioelectric ac-
tivity and we have compared their parallel performancee€hdimensional parallel
numerical tests on a BlueGene/Q cluster up to 32K cores teversthat the uncou-
pled technique is as scalable as the coupled one. Moretreeconjugate gradient
method preconditioned by Multilevel Additive Schwarz paditioners converges
faster for the uncoupled system than for the coupled onalljrin all parallel nu-
merical tests considered, the uncoupled technique prdpeas always about 1.5
times faster than the coupled approach.
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