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1 Introduction

The Bidomain model describes the spread of electrical excitation in the anisotropic
cardiac tissue in terms of the evolution of the transmembrane and extracellular elec-
tric potentials,v andue respectively. This model consists of a non-linear parabolic
reaction-diffusion partial differential equation (PDE) for v, coupled with an elliptic
linear PDE forue. The evolution equation is coupled through the non-linear reac-
tion term with a stiff system of ordinary differential equations (ODEs), the so-called
membrane model, describing the ionic currents through the cellular membrane. The
different space and time scales involved make the solution of the Bidomain sys-
tem a very challenging computational problem, because its discretization in three-
dimensional ventricular geometries of realistic size requires the solution of large
scale (often exceedingO(107) unknowns) and ill-conditioned linear systems at each
time step.

Several approaches have been developed in order to reduce the high compu-
tational costs of the Bidomain model. Fully implicit methods in time, requiring
the solution of non-linear systems at each time step, have been considered in e.g.
[10, 9]. Alternatively, most previous works have considered IMEX time discretiza-
tions and/or operator splitting schemes, where the reaction and diffusion terms are
treated separately, see e.g. [2, 3, 18, 20, 23]. The advantage of IMEX and operator
splitting schemes is that they only require the solution of alinear system for the
parabolic and elliptic PDEs at each time step. A further splitting approach consists
in uncoupling the parabolic PDE from the elliptic one, see e.g. [23, 4].

Many different preconditioners have been proposed in orderto obtain efficient
iterative solvers for the linear systems deriving from bothsplitting and uncou-
pling techniques: block diagonal or triangular [13, 14, 2, 22, 5], optimized Schwarz
[6], multigrid [19, 16, 15, 13, 14], multilevel Schwarz [11], Balancing Neumann-
Neumann [24] and BDDC [25] preconditioners.

The aim of the present work is to apply the Multilevel Additive Schwarz precon-
ditioners of [11] to both a coupled and an uncoupled time discretization of the Bido-
main system and to compare their parallel performance. Three-dimensional parallel
numerical tests on a BlueGene cluster, reported in Sec. 4, show that the uncou-
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pled technique is as scalable as the coupled one. Moreover, the conjugate gradient
method preconditioned by Multilevel Additive Schwarz preconditioners converges
faster for the uncoupled system than for the coupled one. Finally, in all parallel
numerical tests considered, the uncoupled technique proposed is always about 1.5
times faster than the coupled approach.

2 The anisotropic Bidomain model

The macroscopic Bidomain representation of the cardiac tissue volumeΩ is ob-
tained by considering the superposition of two anisotropiccontinuous media, the
intra- (i) and extra- (e) cellular media, coexisting at every point of the tissue and
separated by a distributed continuous cellular membrane; see e.g. [12] for a deriva-
tion of the Bidomain model from homogenization of cellular models. We recall that
the cardiac tissue consists of an arrangement of fibers that rotate counterclockwise
from epi- to endocardium, and that have a laminar organization modeled as a set of
muscle sheets running radially from epi- to endocardium, see [7]. The anisotropy
of the intra- and extracellular media is described by the orthotropic conductivity
tensorsDi(x) andDe(x), see e.g. [2].

We denote byΩ ⊂R
3 the bounded physical region occupied by the cardiac tissue

and introduce a parabolic-elliptic formulation of the Bidomain system. Given an ap-
plied extracellular current per unit volumeIe

app : Ω × (0,T )→ R, we seek the trans-
membrane potentialv : Ω ×(0,T )→R, extracellular potentialsue : Ω ×(0,T )→R,
gating variablesw : Ω ×(0,T )→R

Nw and ionic concentrationsc : Ω ×(0,T )→R
Nc

such that


























cm
∂v
∂ t

−div(Di(x)∇v)−div(Di(x)∇ue)+ Iion(v,w,c) = 0 in Ω × (0,T )

−div(Di(x)∇v)−div((Di(x)+ De(x))∇ue) = Ie
app in Ω × (0,T )

∂w
∂ t

−R(v,w) = 0,
∂c
∂ t

−S(v,w,c) = 0, in Ω × (0,T )

(1)

with insulating boundary conditions, suitable initial conditions onv,w,c and where
cm is the membrane capacitance per unit volume. The non-linearreaction termIion

and the ODE system for the gating variablesw and the ionic concentrationsc are
given by the chosen ionic membrane model. Here we will consider the Luo-Rudy I
(LR1) membrane model [8].

3 Discretization and numerical methods

Space discretization. The variational formulation of system (1) is first discretized
in space by the finite element method. In this work, we will consider isoparametric
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trilinear finite elements on hexahedral meshes. In the following, we denote byAi,e

the symmetric intra- and extracellular stiffness matricesand byM the mass matrix.
We define the block mass and stiffness matrices as

M =

[

M 0
0 0

]

, A =

[

Ai Ai

Ai Ai + Ae

]

.

Time discretization. We consider two implicit-explicit (IMEX) strategies, both
based on decoupling the ODEs from the PDEs and on treating thelinear diffusion
terms implicitly and the non-linear reaction terms explicitly.

• Coupled method. The equations arising from the discretization of the PDEs are
solved as a coupled system. Givenwn, cn, vn, un

e at the generic time stepn:
- we first solve the ODEs system using the Implicit Euler method for the gating
variables and the Explicit Euler method for the ionic concentrations, obtaining
the new gating variableswn+1 and the new ionic concentrationscn+1,
- then we solve the PDEs system, obtaining the new potentialsvn+1 andun+1

e .
Summarizing in formulae, givenwn, cn, vn,un

e , the scheme is

wn+1−∆ t R(vn,wn+1) = wn

cn+1 = cn + ∆ t S(vn,wn+1,cn)

( cm

∆ t
M+A

)

[

vn+1

un+1
e

]

=
cm

∆ t
M

[

vn

un
e

]

+

[

−MIion(vn,wn+1,cn+1)

MIe,n+1
app

]

.

As a consequence, at each time step, we solve one linear system with unknowns
(vn+1,un+1

e ). Because the iteration matrix is symmetric positive semi-definite,
the iterative method employed is the preconditioned conjugate gradient (PCG)
method. Due to the ill-conditioning of the iteration matrixand the large num-
ber of unknowns required by realistic simulations of cardiac excitation in three-
dimensional domains, a scalable and efficient preconditioner is required. We
adopt here the 4-level Multilevel Additive Schwarz (MAS(4)) preconditioner,
see [21, 11].

• Uncoupled method. The two equations arising from the discretization of the
PDEs are uncoupled by introducing the following scheme. Givenwn, cn, vn, un

e
at the generic time stepn:
- we first solve the ODEs system using the Implicit Euler method for the gating
variables and the Explicit Euler method for the ionic concentrations, obtaining
the new gating variableswn+1 and the new ionic concentrationscn+1,
- then we solve the elliptic equation, obtainingun

e ,
- and finally we update the transmembrane potentialvn+1 by solving again the
parabolic equation.
Summarizing in formulae, givenwn, cn, vn,un

e , the uncoupled scheme is
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wn+1−∆ t R(vn,wn+1) = wn

cn+1 = cn + ∆ t S(vn,wn+1,cn)

(Ai + Ae)un
e = −Aivn + MIe,n

app
(cm

∆ t
M + Ai

)

vn+1 =
cm

∆ t
Mvn −Aiun

e −MIion(vn,wn+1,cn+1).

As a consequence, at each time step we solve first the linear system with matrix
Ai + Ae deriving from the elliptic equation and afterwards the linear system with
matrix cm

∆ t M + Ai deriving from the parabolic equation. Both linear systems are
solved by the PCG method, since the matrices are symmetric positive definite in
the parabolic case and semi-definite in the elliptic case. The preconditioner used
for the parabolic system is Block Jacobi (BJ), because the related matrix is well-
conditioned, while the preconditioner used for the ill-conditioned elliptic system
is the MAS(4) preconditioner, described below.

Multilevel Additive Schwarz preconditioners. Let Ω k, for k = 0, ..., ℓ−1, be a
family of ℓ nested triangulations ofΩ , coarsening fromℓ−1 to 0,Aℓ−1 = A in the
coupled method andAℓ−1 = Ai +Ae in the uncoupled method, andRk the restriction
operators fromΩ ℓ−1 to Ω k. Define the matrices on each grid asAk = RkAℓ−1RkT

for
k = 0, ..., ℓ−2. We then decompose each gridΩ k, for k = 1, ..., ℓ−1, into N over-
lapping subgridsΩ k

m for m = 1, ...,N and define the local restriction operatorsRk
m

from Ω ℓ−1 to Ω k
m and the local matricesAk

m = Rk
mAℓ−1RkT

m . The Multilevel Additive
Schwarz (MAS(ℓ)) preconditioner is given by

B−1
MAS = R0T

A0−1
R0 +

ℓ−1

∑
k=1

N

∑
m=1

RkT

m Ak−1

m Rk
m.

The condition number of the resulting preconditioner operator TMAS = B−1
MASAℓ−1 is

bounded by

κ2(TMAS) ≤C max
k=1,...,ℓ−1

(

1+
hk−1

δk

)

,

wherehk is the mesh size ofΩ k grid, δk is the overlap size on levelk andC is a
constant independent ofhk, δk, N andℓ; see [11] and for hybrid variants [17].

4 Numerical results

In this section, we present the results of parallel numerical experiments performed
on the BlueGene Cluster BG/Q of the Cineca Consortium (www.cineca.it). Our
FORTRAN code is based on the parallel library PETSc [1], fromthe Argonne Na-
tional Laboratory.
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procs do f coupled uncoupled
κ2 = λM/λm it time κ2 = λM/λm it time

64 4,319,890 41.85=8.70/2.08e-1 43 5.6515.52=4.50/2.90e-1 29 1.82+1.07=2.89
128 8,553,474 33.41=6.79/2.03e-1 39 5.5714.94=4.46/2.99e-1 28 2.02+1.03=3.05
256 17,040,642 36.37=6.81/1.87e-1 40 5.7015.36=4.46/2.91e-1 28 1.92+1.05=2.97
512 33,949,186 27.37=5.16/1.88e-1 36 5.4814.35=4.38/3.05e-1 28 1.98+0.99=2.97

1,024 67,766,274 29.53=5.16/1.75e-1 36 5.6914.43=4.42/3.06e-1 28 2.17+1.04=3.21
2,048 135,268,866 27.56=5.08/1.84e-1 34 8.5013.23=4.33/3.28e-1 27 2.93+1.72=4.65
4,096 270,274,050 28.91=5.09/1.76e-1 34 16.3913.23=4.33/3.28e-1 27 5.58+3.63=9.21
8,192 540,021,250 25.03=5.10/2.04e-1 32 16.5112.41=4.30/3.47e-1 26 5.93+3.75=9.68

16,3841,079,515,650 26.55=5.11/1.92e-1 32 17.3912.41=4.30/3.47e-1 26 6.24+3.83=10.07
32,7682,159,978,114 – 12.03=4.32/3.59e-1 26 6.90+3.94=10.84

Table 1 Test 1. Weak scaling for coupled and uncoupled MAS(4) solvers on ellipsoidal structured
meshes. Average condition number (κ2), extreme eigenvalues (λM , λm), PCG iteration count (it)
and CPU time in seconds (time) per time step. The CPU times in the uncoupled column are ex-
pressed as the sum of the elliptic plus the parabolic solver.The run with 32K cores in the case of
coupled solver failed because of RAM limitations.

4.1 Test 1: weak scaling on ellipsoidal domains, structured mesh

The coupled and uncoupled linear solvers are compared here in a scaled speedup
test on ellipsoidal deformed domains, discretized by structuredQ1 finite element
grids. The number of subdomains (and processors) is increased from 64 to 32,768,
forming increasing ellipsoidal domainsΩ . The fine mesh is chosen so as to keep the
local mesh size on each subdomain fixed at 32× 32× 32. With these choices, the
global size of the discrete Bidomain system increases from about 4 million dof for
the smallest domain with 64 subdomains to more than 2 billiondof for the largest do-
main with 32,768 subdomains. The physical dimensions of theincreasing cartesian
slabs are chosen so that the fine mesh sizeh is kept fixed to the valueh = 0.01 cm.
The simulation is run for 10 time steps of 0.05 ms during the depolarization phase,
which is the most intense computationally.

The results reported in Table 1 clearly show that, since the MAS(4) precondi-
tioner is employed, both the coupled and uncoupled methods are scalable. In fact,
all mathematical quantities (condition number, extreme eigenvalues, PCG iteration
count) seem to approach constant values when increasing thenumber of subdo-
mains. Also the CPU times scale quite well, because they onlyincrease of about a
factor 3−4 from 64 to 32,768 processors, with a very small and slow increase after
4096, while the global problem increases by a factor 512.
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method it Tit time Ttime
coupled 22 82,861 2.43 9.29e+3

uncoupled27 92,157 1.72 5.87e+3

Table 2 Test 2. Comparison of coupled and uncoupled solvers on a whole heartbeat simulation,
with 28,755,650 dof, 1,024 processors. Average PCG iteration count (it) and CPU time (time) per
time step, total PCG iteration count (Tit) and CPU time (Ttime). The CPU times are expressed in
seconds.

v (26 ms)
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Fig. 1 Test 2. Epicardial transmembrane (left) and extracellular(right) potential distributions at
t = 26 ms after an electric stimulus applied during the systolic phase of the heart beat.

4.2 Test 2: comparison between coupled and uncoupled methods
on a complete cardiac cycle simulation

We now compare the coupled and uncoupled solvers on a complete heartbeat (500
ms) in a portion of an ellipsoid, modeling half of the left ventricle, discretized by a
Q1 structured finite element grid of 384×384×96 elements (28,755,650do f ). The
MAS(4) preconditioner is employed in the coupled solver andfor the elliptic linear
system in the uncoupled solver, while the BJ preconditioneris employed for the
parabolic linear system in the uncoupled solver. The simulations are run on 1,024
cores. The time step size is changed according to the adaptive strategy described in
[2].

The results reported in Table 2 show that the uncoupled method is about 1.5
times faster than the coupled one, because at each time step one solves two linear
system of half size, the parabolic one being well conditioned and cheap to solve.
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Fig. 1 reports the epicardial transmembrane and extracellular potential distributions
at t = 26 ms after an electric stimulus has been applied during the systolic phase of
the heart beat at the center of the epicardial surface.

5 Conclusion

We have applied Multilevel Additive Schwarz preconditioners to both coupled and
uncoupled time discretizations of the Bidomain model of thecardiac bioelectric ac-
tivity and we have compared their parallel performance. Three-dimensional parallel
numerical tests on a BlueGene/Q cluster up to 32K cores have shown that the uncou-
pled technique is as scalable as the coupled one. Moreover, the conjugate gradient
method preconditioned by Multilevel Additive Schwarz preconditioners converges
faster for the uncoupled system than for the coupled one. Finally, in all parallel nu-
merical tests considered, the uncoupled technique proposed was always about 1.5
times faster than the coupled approach.
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